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Abstract

Categorical judgments possess a context-clearing property, mak-
ing them difficult to express elegantly in the LF logical framework
because the context of available LF hypotheses grows monotonically.
We describe a connection between categorical judgments and a refine-
ment to open terms of LF’s subordination relation. Leveraging this
connection, we propose a logical framework, based on open-terms
subordination, that supports elegant higher-order encodings of cate-
gorical judgments. As a concrete example of its expressive power, we
present an encoding of judgmental S4 modal logic and establish its
adequacy.

1 Introduction

The LF logical framework [HHP93] and its metalogic Twelf [PS99] have
proven to be an extraordinarily useful methodology and system for the
specification and metatheoretic analysis of logics and programming lan-
guages. Much of this power is derived from the elegant, higher-order way
in which object-language hypothetical and parametric judgments are iden-
tified with the corresponding meta-language judgments. This typically
leads to formalizations of object-language α-equivalence and substitution
for “free,” on the basis of the underlying meta-language operations.

At the same time, it is by no means a straightforward exercise to give ad-
equate, higher-order LF encodings of deductive systems containing other
classes of judgments which affect the context of available assumptions. For
example, in judgmental S4 modal logic (JS4) [PD01], the validity judgment
is categorical with respect to ordinary truth—proofs of validity may not
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2 Categorical Judgments in a Logical Framework

depend on truth assumptions. Because LF assumptions persist throughout
the whole of a meta-language derivation, this context-clearing property is
problematic when encoding categorical judgments such as JS4 validity.

Appearing to be quite similar to this property, that proofs of a given
categorical judgment may not depend on certain kinds of assumptions, is
the notion of subordination [Vir99]. Roughly, we say that an LF type family
a is subordinate to an LF type family b if it is possible for an LF term of
family a to appear inside a term of family b. Conversely, when a is not
subordinate to b, we can be sure that terms of family b cannot contain terms
of family a.

This project therefore aims to provide an account of the similarity be-
tween categorical judgments and (non-)subordination. The primary goal is
to leverage this similarity to propose an extension of LF that admits ade-
quate, higher-order encodings of categorical judgments.

In fact, as we describe in Section 4, categorical judgments do not cor-
respond to the standard notion of subordination, but rather to a refined
notion which deals specifically with open terms. As a proposed framework
for encoding categorical judgments, in Section 6, we present LF��o , a ver-
sion of LF with validity judgments, indexed by type families and related
via the open-terms subordination preorder. Finally, in Section 8, we estab-
lish the adequacy of an encoding of JS4, thereby demonstrating the efficacy
of the LF��o framework.

Unfortunately, we fall short of our goal of giving an internally sound
framework: we have not been able to prove (or disprove) a substitution
theorem for LF��o . This is discussed in Section 7 in more detail, where we
describe several proof attempts.

Organization of the Report. In Section 2, we review judgmental S4 modal
logic, as it will serve as our motivating example. To better understand what
goes wrong in encodings of JS4 in LF, we attempt several encodings in Sec-
tion 3. In Section 4, we attempt an encoding with subordination built in to
the LF type theory, the failure of which allows us to recognize the distinc-
tion between categorical judgments and subordination. Section 5 describes
an intermediate framework based on open-terms subordination, but argues
that the validity substitution principle of JS4 does not come for free. Sec-
tions 6 and 7 presents LF��o and its metatheory. Section 8 establishes the
adequacy of an encoding of JS4. Finally, Section 9 overviews related work.
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Categorical Judgments in a Logical Framework 3

Propositions A,B,C ::= P | A⊃B | �A
Truth Contexts γ ::= · | γ, x:A true
Validity Contexts δ ::= · | δ, u::A valid

Figure 1: Syntax of JS4

A prop

A prop B prop

A⊃B prop
⊃F

A prop

�A prop
�F

γ ctx

· ctx
nilγF

γ ctx A prop x /∈ dom γ

(γ, x:A true) ctx
consγF

δ vctx

· vctx
nilδF

δ vctx A prop u /∈ dom δ

(δ, u::A valid) vctx
consδF

Figure 2: Proposition and Context Formation for JS4

2 Review of JS4

Before diving into an attempt at encoding JS4 in LF, we would like to briefly
review the implication and necessity fragment of judgmental S4 modal
logic (JS4) [PD01].

Syntax and Formation Judgments. The syntax of JS4 is given in Figure 1.
Propositions A, B, and C (and decorated variants) may be atomic, implica-
tion, or necessity. Because we will need to reason from assumptions, truth
contexts γ and validity contexts δ are included. To reduce notational clut-
ter, we will typically omit the judgment labels true and valid when they are
apparent from the context.

Figure 2 gives the formation rules for JS4 propositions and contexts. The
judgment A prop checks the well-formedness of propositions. A proposi-
tion is well-formed when its constituents are. Judgments γ ctx and δ vctx
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4 Categorical Judgments in a Logical Framework

δ; γ ` A true

δ; γ, x:A true ` A true
x

δ, u::A valid; γ ` A true
u

δ; γ, x:A true ` B true

δ; γ ` A⊃B true
⊃Ix

δ; γ ` A⊃B true δ; γ ` A true

δ; γ ` B true
⊃E

δ; · ` A true

δ; γ ` �A true
�I

δ; γ ` �A true δ, u::A valid; γ ` C true

δ; γ ` C true
�Eu

Figure 3: Inference Rules for JS4

verify that JS4 contexts are well-formed. These judgments hold if each hy-
pothesis consists of a unique label and a well-formed proposition.

Judgmental Principles and Inference Rules. Because we will want to
reason from hypotheses, the main form of judgment in JS4 is the hypo-
thetical judgment δ; γ ` C true. To ensure that JS4 respects the meaning
of a hypothetical judgment, it must adhere to two principles: a hypothesis
should suffice as evidence for a conclusion of the same (identity), and ev-
idence for a conclusion should justify a hypothesis of the same in a proof
(substitution).

The usual inference rules for truth hypotheses and implication are given
in Figure 3.

The intended meaning of the categorical judgment A valid is that A is
necessarily true, that is, true without reliance on truth hypotheses. As a
result, the following definition of validity is adopted:

Definition (Validity).
1. If · ` A true, then A valid.
2. If A valid, then γ ` A true.

The second part of this definition acts as the identity principle for va-
lidity. Based on this definition, the following substitution principle is ob-
tained:

Principle (Substitution for Validity).
If δ; · ` A true and δ, u::A valid; γ ` C true, then δ; γ ` C true.
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Categorical Judgments in a Logical Framework 5

With these principles in hand, the inference rules for validity (see Fig-
ure 3) may be justified. The identity principle is captured as a hypothesis
rule, labeled with the name of the corresponding hypothesis. The proposi-
tion �A internalizes validity, so it is introduced in the �I rule by establish-
ing the corresponding validity judgment. (The first part of the definition of
validity is silently applied in this premise.) Finally, the �Eu rule eliminates
necessity in what is essentially an application of the substitution principle
for validity.

3 Attempting an Encoding of JS4 in LF

To motivate our desire to develop a method for encoding categorical judg-
ments in an LF-style logical framework, we now turn to describing several
unsuccessful attempts at encoding the implication and necessity fragment
of JS4 in LF. This will also serve as a means of discovering the expressive
power that is needed in our extension of LF.

Since the syntax of JS4 is not fundamentally different than that of im-
plicational propositional logic, we expect that a standard LF encoding of
propositions will carry over to JS4:

o : type.

imp : o→ o→ o.
box : o→ o.

We also expect that the encoding of the implicational fragment should re-
main the same:

true : o→ type.

impI : ΠA:o.ΠB:o. (true A→ true B)→ true (imp A B).
impE : ΠA:o.ΠB:o. true (imp A B)→ true A→ true B.

The most natural attempt at encoding the necessity fragment would be to
mimic the judgmental apparatus of JS4 and include the type family

lvalid : o→ type.

where the name lvalid is intended to suggest that this family should only
be used on the left of LF hypothetical judgments.

In LF, there is no support for subtyping. Therefore, given this approach,
we will need an explicit coercion from lvalid to true to serve as the en-
coding of the validity hypothesis rule. We contend that this rule and the

PROJECT REPORT MAY 8, 2010



6 Categorical Judgments in a Logical Framework

�Eu rule are straightforward:

vhyp : ΠA:o. lvalid A→ true A.
boxE : ΠA:o.ΠC:o. true (box A)→ (lvalid A→ true C)→ true C.

The question is what encoding should be given for the �I rule.

Attempt 1: In strict syntactic correspondence with JS4, one might initially
consider a constant:

boxI1 : ΠA:o. true A→ true (box A).

Unfortunately, without any additional restrictions, such an encoding would
be unsound with respect to JS4. For example, from x:true A we could con-
struct a term of type true (box A), parametrically in A; truth and validity
have incorrectly collapsed within the encoding. In other words, this en-
coding is too permissive in that it fails to prevent truth hypotheses from
occurring under �s.

Attempt 2a: Next, one might recall that A valid is defined as · ` A true
in JS4. Since lvalid is the family corresponding to the validity judgment,
perhaps the �I rule could instead be encoded with a constant:

boxI2 : ΠA:o. lvalid A→ true (box A).

Though this encoding is sound, it is also incomplete. For example, one
cannot construct a term of type ΠA:o. true (box (imp A A)) in the empty
LF context. In other words, this encoding is too restrictive in that there is
no way to build terms of family lvalid which are not variables.

Attempt 2b: In an attempt to find a midpoint between these extremes,
one might consider introducing a constant corresponding to the definition
of validity:

vconc2 : ΠA:o. true A→ lvalid A.

In addition, the boxI2 constant would be retained. This resolves the in-
completeness problem. However, without any additional restrictions, we
are now back to an unsound encoding. The term boxI2 A (vconc2 A M) is
morally the same as boxI1 A M , and so the counterexample from the first
attempt still applies.

Moreover, there is a new problem related to the appearance of lvalid
on the right of the LF hypothetical judgment. Under the hypothesis that
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Categorical Judgments in a Logical Framework 7

xu:lvalid A, both boxI2 A xu and boxI2 A (vconc2 A xu) would be terms
of type true (box A) intended to correspond to the JS4 derivation

δ, u::A; · ` A
u

δ, u::A; γ ` �A
�I

As a result, we will be unable to obtain a bijection between JS4 derivations
and LF terms of family true under this encoding.

Attempt 3: A possible fix for this new problem is to introduce a type fam-
ily rvalid, so named because it only appears on the right. Then, the vconc
and boxI constants would be revised to reflect the change:

rvalid : o→ type.

vconc3 : ΠA:o. true A→ rvalid A.
boxI3 : ΠA:o. rvalid A→ true (box A).

There is now a one-to-one correspondence between LF terms and JS4 deriva-
tions because there are no LF hypotheses of family rvalid. However, the
unsoundness of the encoding for the �I rule persists.

4 Attempting an Encoding of JS4 in LF�

The key problem with our first and third attempts at an encoding of JS4 in
LF was the absence of a method for clearing the truth hypotheses before
proving the �I rule’s premise.

As previously noted, the notion of subordination developed by Virga
[Vir99] appears to be similar to a context-clearing effect. A type family a is
subordinate to type family b, written a � b, if terms of family a may appear
in types or terms of family b. Conversely, when a 6� b, terms of family a
may not appear in types or terms of family b.

Leveraging this apparent similarity, a possible idea is to prescribe a con-
straint on the subordination relation, such as true 6� rvalid, that might
capture the context-clearing nature of the categorical judgment. The hope
is that one could then obtain an adequate encoding of the �I rule in LF�

[Vir99]1, a version of LF that supports subordination in the type theory.
Unfortunately, upon closer examination, subordination and categorical

judgments are not quite the same. Non-subordination demands that all
1Refer to [HL07] for a modern canonical forms presentation of LF�.
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8 Categorical Judgments in a Logical Framework

terms of a given family, whether open or closed, not appear in types or
terms of another family. For instance, in LF�, the constant

vconc3 : ΠA:o. true A→ rvalid A.

would be rejected when true 6� rvalid. This is because admitting such
a constant would allow terms of family true to appear in terms of family
rvalid, such as impI A A (λy. y) in vconc3 A (impI A A (λy. y)).

On the other hand, a categorical judgment demands that only the open
derivations of a given judgment not appear. For example, consider the
derivations:

D1 =

·; y:A ` A true
y

·; · ` A⊃A true
⊃Iy

·;x:A⊃A ` �(A⊃A) true
�I D2 =

u::A; · ` A true
u

u::A;x:A ` �A true
�I

D3 =
u::A;x:A ` A true

x

u::A;x:A ` �A true
?

The derivationsD1 andD2 are indeed well-formed because their subderiva-
tions of A⊃A true and A true, respectively, are closed with respect to truth
hypotheses. (Note, however, that the subderivation may be open with re-
spect to validity hypotheses, as D2 demonstrates.) On the other hand, the
derivationD3 is not well-formed because its subderivation ofA true is open
with respect to x:A true.

Based on this distinction, we contend that the standard notion of all-
terms subordination is too restrictive for our purposes. Requiring true 6�
rvalid, disallows truth-closed terms needed for adequacy, such as

boxI3 A (vconc3 A (impI A A (λy. y))),

which we expect to be the encoding of D1. We therefore propose a second,
refined notion of open-terms subordination. We shall say that a type family
a is open-subordinate to a type family b, written a �o b, if open terms of
family amay appear in types or terms of family b. Conversely, when a 6�o b,
open terms of family a may not appear in types or terms of family b.
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Categorical Judgments in a Logical Framework 9

5 Attempting an Encoding with Open-Terms Subor-
dination

Given a notion of open-terms subordination, one idea is to design a version
of LF where open-terms subordination is built into the type theory, similar
to the way that all-terms subordination is built into LF�. We attempted
such a framework, which we call LF�o . Its defining characteristic is that
hypotheses not open-subordinate to some family a are removed from the
ambient context when a term is checked against a type of family a. This is
best exemplified by the second premise of the rule

Γ ` R⇒ Πx:A2. A Γ|�o

A2
`M ⇐ A2

Γ ` R M ⇒ [M/x]A

where Γ|�o

A2
is the result of removing from Γ all hypothesis that are not open-

subordinate to the family to which type A2 belongs. By removing these
hypotheses, no open terms of a family not open-subordinate to the family
ofA2 may appear in well-typedM : all variables needed to build such open
terms are no longer in scope.

Let us return to our third attempt at an encoding of JS4, examining it in
the context of this framework based on open-terms subordination.

true : o→ type.
lvalid : o→ type.
rvalid : o→ type.

true 6�o rvalid. lvalid �o rvalid.
true �o true. lvalid �o true.
vhyp : ΠA:o. lvalid A→ true A.
vconc3 : ΠA:o. true A→ rvalid A.
boxI3 : ΠA:o. rvalid A→ true (box A).
boxE : ΠA:o.ΠC:o. true (box A)→ (lvalid A→ true C)→ true C.

In the fourth line, we now prescribe that true is not open-subordinate to
rvalid. Thus, when type checking a term boxI3 A (vconc3 A M), the term
M will be checked in a context that does not contain hypotheses of family
true:

Γ|�o
rvalid|

�o
true `M ⇐ true A.

Because true 6�o rvalid and lvalid �o rvalid, the innermost context
restriction, |�o

rvalid, removes from Γ all hypotheses of family true but retains
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10 Categorical Judgments in a Logical Framework

all hypotheses of family lvalid. Thus, by this context restriction, the �I
rule’s premise is now adequately encoded.

5.1 The Substitution Principle for Validity is Not Free

The traditional advantages of higher-order encodings in LF are that object-
language α-equivalence and substitution principles can be obtained for
“free”, by using the corresponding notions from the LF meta-language no-
tions. By using our LF�o-level notion of context restriction, we have simi-
larly obtained context-clearing for “free”.

Unfortunately, under our encoding, it does not seem possible to obtain
the substitution principle for validity (see Section 2) for free in LF�o . We
would need to express a substitution of some LF�o term for a hypothesis
xu:lvalid A. As there are no constants for constructing terms of family
lvalid, such a substitution would essentially be an α-variation and would
not capture the desired substitution principle.

Failure to obtain the validity substitution principle for free is a conse-
quence of having separate type families for validity hypotheses (lvalid)
and conclusions (rvalid).2 This is similar to the failure to obtain a cut prin-
ciple for free in the sequent calculus since separate hypothesis and conclu-
sion judgments are used there.

In the author’s opinion, the absence of a free substitution principle for
validity is not of major concern: it should be straightforward enough to
prove this as a metatheorem in LF�o . Nonetheless, as we show in the sub-
sequent sections of this report, by adding meta-level validity hypotheses,
it is possible to construct a more expressive framework in which the sub-
stitution principle for validity can indeed be obtained for free. Since we
will argue that LF�o is a fragment of this framework, this approach avoids
taking a strong position on the issue. If the user insists on having the sub-
stitution principle for free, that is possible; otherwise, the LF�o fragment
can be used.

6 LF��o

In keeping with the previous discussion, we propose a logical framework,
called LF��o , containing a family of validity judgments indexed by type

2It might appear that replacing occurrences of rvalid with lvalid would resolve this.
However, doing so would be analogous to our second attempt at an encoding of JS4 in
ordinary LF, and the problems with adequacy would carry over (see Section 3).
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Categorical Judgments in a Logical Framework 11

Kinds K ::= type | Πu::A[a].K

Atomic Type Families P ::= a | P N
Canonical Types A,B ::= P | Πu::A[a]. B

Atomic Terms R ::= c | u | R N
Canonical Terms N,M ::= R | λu.N

Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts ∆ ::= · |∆, u::A[a]

Figure 4: Syntax of LF��o

family constants.
Validity will indicate respect for open-terms subordination. For instance,

in the hypothesis u::A[a], we intend that u stands for a term of type A that
does not contain open terms of types not open-subordinate to type family
a. To keep encodings clean, we want every hypothesis to carry a type fam-
ily label. We therefore reject ordinary, non-valid typing hypotheses, instead
relying only on the validity hypotheses.

6.1 Syntax

In Figure 4, we present the syntax of LF��o . Following the canonical forms
approach to LF pioneered by Watkins et al. [WCPW02], we classify types
and terms as either atomic or canonical.

Rather than internalizing family-indexed validity as a family-indexed
necessity modality, we internalize the hypothetical judgment as the depen-
dent modal function type Πu::A[a]. B. This technique avoids commuting
conversions and related “exotic” canonical terms, and is borrowed from
the dependent contextual modal type theory [NPP08]. Because the frame-
work rejects non-valid hypotheses, there is no ordinary dependent function
type. Consequently, Πu::A[a]. B is the cornerstone of LF��o .

Just as we have dependent modal function types, we have correspond-
ing dependent modal function kinds Πu::A[a].K. Again, there are no ordi-
nary dependent function kinds, such as would be found in LF.

Since we have only modal function types and kinds, applications R N
and P N at the level of terms and type families refer to modal applications.
(We choose not to use decorations in the concrete syntax to make this ex-
plicit; juxtaposition is far too convenient concrete syntax to surrender.)
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12 Categorical Judgments in a Logical Framework

The remaining syntax is analogous to that of LF: a and b stand for type
family constants, c stands for term constants, and u and v stand for vari-
ables.

6.2 Open-Terms Subordination

As previously motivated, we intend that a type family a is open-subordinate
to a type family b, written a �o b, if terms of family a are permitted to
appear in types or terms of family b. Formally, we impose the following
requirements:

Definition (Open-Terms Subordination Relation). An open-terms subordi-
nation relation �o for a signature Σ is a binary relation between family-level
constants declared in Σ that satisfies:

1. Well-formedness: The judgment `�o Σ sig is derivable (see Fig. 5).
2. Refinement: If � is an all-terms subordination relation for Σ, then �o ⊆ �.
3. Reflexivity: For all a ∈ dom Σ, a �o a.
4. Transitivity: If a1 �o a2 and a2 �o a3, then a1 �o a3.

The well-formedness constraint enforces consistency of the signature
with the open-terms subordination relation. The refinement property is
necessary because it is incoherent to allow open terms to appear if no terms,
whether open or closed, may appear. Reflexivity reflects the fact that an
open term appears in itself, a term in its own right. The transitivity prop-
erty is a result of the underlying “may appear in” relation naturally being
transitive.

Because the open-terms subordination relation is given as a list of pairs
of type family constants, decidability is trivial. This justifies use of the no-
tation a 6�o b to indicate that a is not open-subordinate to b.

Thus far, we have not imposed any conditions on open-terms subordi-
nation relations that suggest their connection to open terms. As previously
sketched, this is accomplished by restriction of a context to a type family:

∆|�o

b = ∆′

(·)|�o

b = ·
(∆, u::A[a])|�o

b = ∆|�o

b , u::A[a] if a �o b
(∆, u::A[a])|�o

b = ∆|�o

b if a 6�o b

In LF��o , the hypothesis u::A[a] acts as a placeholder for a term that is po-
tentially open with respect to type families a′ such that a′ �o a. If a �o b,

PROJECT REPORT MAY 8, 2010



Categorical Judgments in a Logical Framework 13

`�o Σ sig

`�o · sig
SIG NIL

`�o Σ sig · `Σ,�o K kind

`�o Σ, a:K sig
SIG CONS FAM

`�o Σ sig · `Σ,�o A type

`�o Σ, c:A sig
SIG CONS TM

`Σ,�o ∆ vctx

`Σ,�o · vctx
VCTX NIL

`Σ,�o ∆ vctx a ∈ dom Σ ∆|�o
a `Σ,�o A type

`Σ,�o ∆, u::A[a] vctx
VCTX CONS

Figure 5: Signature and Context Formation

then u may survive the restriction since all families a′ that may appear in a
term substituted for u are themselves open-subordinate to b (by transitiv-
ity). In this way, judicious use of a context restriction in the typing rules will
ensure that open-terms subordination lives up to its intended meaning.

6.3 Signature and Context Well-Formedness

In Figure 5, we present the rules for checking well-formedness of signatures
and contexts. Except for the last two premises of the VCTX CONS rule, these
rules are standard.

In the VCTX CONS rule, the second premise checks that the judgment in-
dex a is truly a declared type family constant. The third premise checks
that A is a well-formed type in the restricted context ∆|�o

a , rather than the
full preceding context. This guarantees that context restriction preserves
well-formedness, as we will prove in Section 7.
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14 Categorical Judgments in a Logical Framework

6.4 Typing Judgments

In analogy with LF, we have five key typing judgments:

∆ `Σ,�o K kind K is checked to be a well-formed kind
∆ `Σ,�o P ⇒ K Kind K is synthesized for atomic type family P
∆ `Σ,�o A type A is checked to be a well-formed canonical type
∆ `Σ,�o R⇒ A Canonical type A is synthesized for atomic term R
∆ `Σ,�o N ⇐ A Canonical term N is checked to have canonical type A

In all judgments, the signature Σ, the open-terms subordination relation
�o, the context ∆, and the subjects (K, P , A, R, and N , respectively) are
inputs. In the term checking judgment, A is also an input. In the synthesis
judgments, the remaining components, K and A, respectively, are outputs.
Non-subject inputs are always presupposed to be well-formed, whereas
outputs are guaranteed to be well-formed.

The rules for these judgments are presented in Figure 6. We describe
the salient rules in detail.

ΠE Rule: To synthesize a canonical type for the modal function appli-
cation R N , we first synthesize a canonical type for R. Because R is a
function, the synthesized type should be a dependent modal function type
Πu::A2[a]. A. Consequently, the argument N should have type A2 and
be valid with respect to type family a. Because a-validity means that N
should be closed with respect to families not open-subordinate to a, the
second premise utilizes a context restriction. This removes all hypotheses
not open-subordinate to a, preventing them from appearing in N . We then
check that N has type A2.

As u may appear free in the type A, the synthesized type should be
morally [[N/u]]A, the modal substitution of N for u in A. Unfortunately,
ordinary modal substitution may not produce a canonical type. There-
fore, we follow Watkins et al. [WCPW02] and use a hereditary substitu-
tion, [[N/u]]a

A−2 [a]
A, which contracts any β-redices that would be introduced

during ordinary substitution. We define hereditary substitution in the fol-
lowing section.

ΠKE Rule: This rule is analogous to the ΠE rule. Because Πu::A[a].K
is the kind synthesized for P , the argument N should have type A and be
a-valid. As in the ΠE rule, the second premise therefore checks N against
type A in the restricted context ∆|�o

a .

PROJECT REPORT MAY 8, 2010



Categorical Judgments in a Logical Framework 15

∆ `Σ,�o K kind

∆ ` type kind
typeF

a ∈ dom Σ ∆|�o
a ` A type ∆, u::A[a] ` K kind

∆ ` Πu::A[a].K kind
ΠKF

∆ `Σ,�o P ⇒ K

a ∈ dom Σ

∆ ` a⇒ Σ(a)
a

∆ ` P ⇒ Πu::A[a].K ∆|�o
a ` N ⇐ A [[N/u]]kA−[a]K = K ′

∆ ` P N ⇒ K ′
ΠKE

∆ `Σ,�o A type

a ∈ dom Σ ∆|�o
a ` A2 type ∆, u::A2[a] ` A type

∆ ` Πu::A2[a]. A type
ΠF

∆ ` P ⇒ type

∆ ` P type
⇒type

∆ `Σ,�o R⇒ A

c ∈ dom Σ

∆ ` c⇒ Σ(c)
c

u ∈ dom ∆

∆ ` u⇒ ∆(u)
u

∆ ` R⇒ Πu::A2[a]. A ∆|�o
a ` N ⇐ A2 [[N/u]]a

A−2 [a]
A = A′

∆ ` R N ⇒ A′
ΠE

∆ `Σ,�o N ⇐ A

∆, u::A2[a] ` N ⇐ A

∆ ` λu.N ⇐ Πu::A2[a]. A
ΠI

∆ ` R⇒ P

∆ ` R⇐ P
⇒⇐

Figure 6: LF��o typing rules.
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16 Categorical Judgments in a Logical Framework

ΠF Rule: Much of this rule is standard: to check that Πu::A2[a]. A is a
well-formed type, we check that A2 is a well-formed type and then check
that A is a well-formed type in the context extended with u::A2[a].

The main novelty is the context that we use when checking the well-
formedness of A2. By using the restricted context, ∆|�o

a , rather than the full
context, we can maintain our invariant on the well-formedness of the type
used in type checking. Specifically, from the first premise of the ΠE rule,
we learn that ∆ ` Πu::A2[a]. A type. Before making the call to the second
premise of that rule, we must guarantee that ∆|�o

a ` A2 type. Because we
have designed the ΠF rule to use the restricted context, this indeed holds.

ΠKF Rule: In analogy with the ΠF rule, we check the well-formedness
of type A under the restricted context ∆|�o

a .

6.5 Hereditary Substitution

Since the syntax of terms precludes the existence of β-redices, we must be
sure that no β-redices arise during typing. Ordinary substitution would
violate this syntax. For example, although both λx. y x and u z are β-
normal, the substitution

[(λx. y x)/u](u z) = (λx. y x) z

is not. For this reason, we follow Watkins et al. [WCPW02] and use a heredi-
tary substitution, which eliminates any β-redices that would be introduced
during a standard substitution. For example, hereditary substitution of
λx. y x for u in u z would instead result in y z. In Figures 7 and 8, we
present the definition of hereditary substitution of canonical terms in the
various syntactic categories.

As typical, we annotate hereditary substitutions with the simple type
of the term which is being substituted. Simple types, which are presented
in Figure 9 ignore the dependent nature of types. This is captured by the
erasure, A− = α, of a type A to its unique simple type α.

7 Metatheory of LF��o

To gain confidence in the coherence of our design of LF��o , we turn to a
study of its metatheoretic properties. We are primarily interested in verify-
ing that the typing judgments respect the meaning of a hypothetical judg-
ment. Specifically, LF��o should enjoy substitution and identity principles:
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[[N/u]]kα[a]K = K ′

[[N/u]]kα[a]type = type
SUBST K TYPE

[[N/u]]aα[a]B2 = B′2 [[N/u]]kα[a]K = K ′

[[N/u]]kα[a](Πv::B2[b].K) = Πv::B′2[b].K ′
SUBST K PI

[[N/u]]pα[a]P = P ′

[[N/u]]pα[a]b = b
SUBST P CONST

[[N/u]]pα[a]P = P ′ [[N/u]]nα[a]M = M ′

[[N/u]]pα[a](P M) = P ′ M ′
SUBST P APP

[[N/u]]aα[a]A = A′

[[N/u]]pα[a]P = P ′

[[N/u]]aα[a]P = P ′
SUBST A P

[[N/u]]aα[a]B2 = B′2 [[N/u]]aα[a]B = B′

[[N/u]]aα[a](Πv::B2[b]. B) = Πv::B′2[b]. B′
SUBST A PI

[[N/u]]rrα[a]R = R′

[[N/u]]rrα[a]c = c
SUBST RR CONST

v 6= u

[[N/u]]rrα[a]v = v
SUBST RR VAR

[[N/u]]rrα[a]R = R′ [[N/u]]nα[a]M = M ′

[[N/u]]rrα[a](R M) = R′ M ′
SUBST RR APP

[[N/u]]rnα[a]R = M : α′

[[N/u]]rnα[a]u = N : α
SUBST RN VAR

[[N/u]]rnα[a]R = λv.N1 : β2[b]→ β [[N/u]]nα[a]M = M ′ [[M ′/v]]nβ2[b]
N1 = N2

[[N/u]]rnα[a](R M) = N2 : β
SUBST RN APP

Figure 7: Hereditary substitution for LF��o

PROJECT REPORT MAY 8, 2010



18 Categorical Judgments in a Logical Framework

[[N/u]]nα[a]M = M ′

[[N/u]]rnα[a]R = M ′ : α′

[[N/u]]nα[a]R = M ′
SUBST N RN

[[N/u]]rrα[a]R = R′

[[N/u]]nα[a]R = R′
SUBST N RR

[[N/u]]nα[a]M = M ′

[[N/u]]nα[a](λv.M) = λv.M ′
SUBST N LAM

[[N/u]]cα[a]∆ = ∆′

[[N/u]]cα[a]· = ·
SUBST C NIL

[[N/u]]cα[a]∆ = ∆′ [[N/u]]aα[a]B = B′ v 6= u v /∈ FV(N)

[[N/u]]cα[a](∆, v::B[b]) = ∆′, v::B′[b]
SUBST C CONS

Figure 8: Hereditary substitution for LF��o , continued.

Simple Types α, β ::= a | α[a]→ β

A− = α

a− = a
(P N)− = P−

(Πu::A2[a]. A)− = A−2 [a]→ A−

Figure 9: Erasure to Simple Types
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we should be justified in using hereditary substitution to replace a hypoth-
esis with a well-typed canonical term, and we should be able to construct
a well-typed canonical term from a hypothesis. These correspond to global
soundness and completeness, respectively.

7.1 Properties of Hereditary Substitution

Before proving the substitution and identity principles, we need a few
properties of hereditary substitution. Since our definition of hereditary
substitution is isomorphic to hereditary substitution for LF, these proper-
ties are standard and should be unsurprising. Nonetheless, we state them
and sketch their proofs for the sake of completeness.

First of all, hereditary substitution is a partial function on its inputs:

Lemma 1 (Functionality of Substitution).
1. If [[N0/u0]]nα0[a0]N = N1 and [[N0/u0]]nα0[a0]N = N2, then N1 = N2.
2. If [[N0/u0]]rrα0[a0]R = R1 and [[N0/u0]]rrα0[a0]R = R2, then R1 = R2.
3. If [[N0/u0]]rnα0[a0]R = N1 : α1 and [[N0/u0]]rnα0[a0]R = N2 : α2,

then N1 = N2 and α1 = α2.
and similarly for the remaining syntactic categories.

Proof. By structural induction on the first given substitution derivation.

Next, erasure to simple types is invariant under substitution:

Lemma 2 (Invariance of Erasure under Substitution).
1. If [[N0/u0]]pα0[a0]P = P ′, then P− = (P ′)−.
2. If [[N0/u0]]aα0[a0]A = A′, then A− = (A′)−.

Proof. By induction on the structures of P and A. Note that the first part
does not need to appeal to the second part.

Like ordinary substitution, the hereditary version leaves a term un-
changed if the variable being substituted for does not appear in the term:

Lemma 3 (Vacuous Substitutions).
1. If u0 /∈ FV(R), then [[N0/u0]]rnα0[a0]R = N : α is not derivable.
2. If u0 /∈ FV(N), then [[N0/u0]]nα0[a0]N = N .
3. If u0 /∈ FV(R), then [[N0/u0]]rrα0[a0]R = R.
and similarly for the other syntactic categories.
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20 Categorical Judgments in a Logical Framework

Proof. By induction on the structure of the object into which the substitu-
tion occurs. Note that the induction need not be mutual across all parts.
For example, the first part can be proved independently of the others, and
the second and third parts can be proved together with an appeal to the
first part.

Ordinary substitution also possesses a commutativity property:

[e0/x0][e2/x2]e1 = [([e0/x0]e2)/x2][e0/x0]e1

Hereditary substitution does as well, though the statement and proof are
complicated by relational definition (since hereditary substitution is not to-
tal) and the numerous syntactic categories. We have tried to mimic the
indices used in the statement for ordinary substitution.

Lemma 4 (Composition of Substitutions).
Suppose [[N0/u0]]nα0[a0]N2 = N ′2, u2 6= u0, and u2 /∈ N0. Then:

1. If [[N0/u0]]nα0[a0]N1 = N1,0 and [[N2/u2]]nα2[a2]N1 = N1,2,
then [[N ′2/u2]]nα2[a2]N1,0 = N and [[N0/u0]]nα0[a0]N1,2 = N .

2. If [[N0/u0]]rrα0[a0]R1 = R1,0 and [[N2/u2]]rrα2[a2]R1 = R1,2,
then [[N ′2/u2]]rrα2[a2]R1,0 = R and [[N0/u0]]rrα0[a0]R1,2 = R.

3. If [[N0/u0]]rrα0[a0]R1 = R1,0 and [[N2/u2]]rnα2[a2]R1 = N1,2 : β,
then [[N ′2/u2]]rnα2[a2]R1,0 = N : β and [[N0/u0]]nα0[a0]N1,2 = N .

4. If [[N0/u0]]rnα0[a0]R1 = N1,0 : β and [[N2/u2]]rrα2[a2]R1 = R1,2,
then [[N ′2/u2]]nα2[a2]N1,0 = N and [[N0/u0]]rnα0[a0]R1,2 = N : β.

Proof. By lexicographic induction on the unordered pair {α0, α2} and on
the first given substitution derivation.

7.2 Properties of Context Restriction

Because LF��o ’s novel feature is a context restriction, it will be useful to
characterize its properties, notably the interaction between hereditary sub-
stitution and context restriction.

First, we prove a few algebraic properties:

Lemma 5 (Distributivity of Context Restriction).
For all contexts ∆ and ∆′, we have (∆,∆′)|�o

a = ∆|�o
a ,∆′|�o

a .

Proof. By straightforward induction on ∆′.
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Lemma 6 (Idempotence of Context Restriction).
For all ∆, if a0 �o a, then ∆|�o

a |�o
a0

= ∆|�o
a0

and ∆|�o
a0
|�o
a = ∆|�o

a0
.

Proof. By straightforward induction on ∆.

Since substitution on contexts does not affect the type family constants
that index the validity judgments, it follows that context restriction com-
mutes with substitution:

Lemma 7 (Restriction Commutes with Substitution).
If [[N0/u0]]cα0[a0]∆ = ∆′, then [[N0/u0]]cα0[a0](∆|

�o
a ) = ∆′|�o

a .

Proof. By induction on the structure of ∆. We show one case for nonempty
∆.

Case: ∆ = ∆1, u::A1[a1].

D :: [[N0/u0]]cα0[a0](∆1, u::A1[a1]) = ∆′ Given
∆′ = ∆′1, u::A′1[a1] where
D1 :: [[N0/u0]]cα0[a0]∆1 = ∆′1 and D2 :: [[N0/u0]]aα0[a0]A1 = A′1 By inversion
[[N0/u0]]cα0[a0](∆1|�o

a ) = ∆′1|�o
a By i.h. on D1

Subcase: a1 �o a
[[N0/u0]]cα0[a0](∆1|�o

a , u::A1[a1]) = ∆′1|�o
a , u::A′1[a1] By SUBST C CONS rule

(∆1, u::A1[a1])|�o
a = ∆1|�o

a , u::A1[a1] By definition of |�o
a

(∆′1, u::A′1[a1])|�o
a = ∆′1|�o

a , u::A′1[a1] By definition of |�o
a

[[N0/u0]]cα0[a0]((∆1, u::A1[a1])|�o
a ) = (∆′1, u::A′1[a1])|�o

a By equality

Subcase: a1 6�o a
(∆1, u::A1[a1])|�o

a = ∆1|�o
a By definition of |�o

a

(∆′1, u::A′1[a1])|�o
a = ∆′1|�o

a By definition of |�o
a

[[N0/u0]]cα0[a0]((∆1, u::A1[a1])|�o
a ) = (∆′1, u::A′1[a1])|�o

a By equality

[[N0/u0]]cα0[a0](∆|
�o
a ) = ∆′|�o

a By replacing equals with equals

As alluded to in the discussion of context well-formedness, the rules
were designed so that context restriction preserves context well-formedness.
This property will be necessary for the substitution principle on contexts.

Lemma 8 (Context Restriction Preserves Well-Formedness).
If `Σ,�o ∆ vctx, then `Σ,�o ∆|�o

a vctx for all a ∈ dom Σ.
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Proof. By induction on the structure of ∆. We again show the case for
nonempty ∆.

Case: ∆ = ∆′, u0::A0[a0]

` ∆ vctx Given
` ∆′ vctx and ∆′|�o

a0
` A0 type By inversion

` ∆′|�o
a vctx By i.h. on ∆′

Subcase: a0 �o a
∆′|�o

a |�o
a0

= ∆′|�o
a0

By idempotence of |�o

∆′|�o
a |�o

a0
` A0 type By equality

` ∆′|�o
a , u0::A0[a0] vctx By VCTX CONS rule

` (∆′, u0::A0[a0])|�o
a vctx By definition of |�o

a

Subcase: a0 6�o a
` ∆′|�o

a vctx From above
` (∆′, u0::A0[a0])|�o

a vctx By definition of |�o
a

7.3 Substitution Principle

Before discussing the substitution principle, we expect to have weakening
for LF��o :

Theorem 9 (Weakening). LetJ be one of the formation judgments. If ∆,∆′ ` J
and u /∈ dom ∆ ∪ dom ∆′, then ∆, u::A[a],∆′ ` J .

Proof. By structural induction on the first premise.

At this point, we would like to prove a substitution principle for LF��o :

Theorem 10 (Substitution).
1. If ` ∆1, u0::A0[a0],∆2 vctx and ∆1, u0::A0[a0],∆2 ` C type

and ∆1|�o
a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` N ⇐ C,

then [[N0/u0]]c
A−0 [a0]

∆2 = ∆′2 and ` ∆1,∆′2 vctx,

and [[N0/u0]]a
A−0 [a0]

C = C ′ and ∆1,∆′2 ` C ′ type,

and [[N0/u0]]n
A−0 [a0]

N = N ′ and ∆1,∆′2 ` N ′ ⇐ C ′.

2. If ` ∆1, u0::A0[a0],∆2 vctx and ∆1|�o
a0
` N0 ⇐ A0

and ∆1, u0::A0[a0],∆2 ` R⇒ C,
then [[N0/u0]]c

A−0 [a0]
∆2 = ∆′2 and ` ∆1,∆′2 vctx,

and [[N0/u0]]a
A−0 [a0]

C = C ′ and either:
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• [[N0/u0]]rr
A−0 [a0]

R = R′ and ∆1,∆′2 ` R′ ⇒ C ′, or

• [[N0/u0]]rn
A−0 [a0]

R = N ′ : (C ′)− and ∆1,∆′2 ` N ′ ⇐ C ′.

and similarly for the remaining syntactic categories.

Attempt 1: Following the lead of other canonical forms presentations of
LF frameworks [WCPW02, HL07, LP08], our first attempt was to prove a se-
ries of proto-substitution lemmas that do not assume the well-formedness
of various components. For example, we first attempted to prove proto-
substitution for terms:

Lemma 11 (Proto-substitution for Terms).
1. If ∆1|�o

a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` N ⇐ C

and [[N0/u0]]c
A−0 [a0]

∆2 = ∆′2 and [[N0/u0]]a
A−0 [a0]

C = C ′,

then [[N0/u0]]n
A−0 [a0]

N = N ′ and ∆1,∆′2 ` N ′ ⇐ C ′.

2. If ∆1|�o
a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` R⇒ C

and [[N0/u0]]c
A−0 [a0]

∆2 = ∆′2 then [[N0/u0]]a
A−0 [a0]

C = C ′ and either:

• [[N0/u0]]rr
A−0 [a0]

R = R′ and ∆1,∆′2 ` R′ ⇒ C ′, or

• [[N0/u0]]rn
A−0 [a0]

R = N ′ : (C ′)− and ∆1,∆′2 ` N ′ ⇐ C ′.

Unfortunately, a standard proof by mutual lexicographic induction on
the simple type A−0 and then on the typing derivation which hypothesizes
u0::A0[a0] fails. To see why, consider the case for the ΠE rule when a0 6�o a:

D1

∆1, u0::A0[a0],∆2 ` R1 ⇒ Πu::A2[a]. A
D2

∆1|�o
a ,∆2|�o

a ` N2 ⇐ A2

D3

[[N2/u]]a
A−2 [a]

A = C

∆1, u0::A0[a0],∆2 ` R1 N2 ⇒ C
ΠE

As u0 is no longer in scope when checking N2, we would like to argue that
the vacuous substitutions [[N0/u0]]c

A−0 [a0]
(∆2|�o

a ) = ∆2|�o
a , [[N0/u0]]n

A−0 [a0]
N2 =

N2, and [[N0/u0]]a
A−0 [a0]

A2 = A2 exist. This way, we would be able to argue
by functionality of substitution that D2 is the derivation of

∆1|�o
a ,∆′2|�o

a ` N ′2 ⇐ A′2

which we need to reapply the ΠE rule to obtain the required result for this
case. However, given the available assumptions, it is not true that u0 /∈
FV(∆2|�o

a ), which would be needed for the vacuous substitution. It seems
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that the only way to guarantee that u0 /∈ FV(∆2|�o
a ) is if the underlying

context is well-formed.
Once we assume that the context is well-formed, other rules necessitate

further well-formedness assumptions, resulting in a cascade. For example,
the ΠI rule requires that we know that the type against which we check a
canonical term is well-formed since that type is added to the context. Thus,
a simple proto-substitution approach does not appear to work.

Attempt 2: Our second attempt was to prove a substitution lemma in one
large statement:

Lemma 12 (Substitution).
1. If ∆1|�o

a0
` N0 ⇐ A0 and ` ∆1, u0::A0[a0],∆2 vctx,

then [[N0/u0]]c
A−0 [a0]

∆2 = ∆′2 and ` ∆1,∆′2 vctx.

2. If ∆1|�o
a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` K kind

and ` ∆1, u0::A0[a0],∆2 vctx
and [[N0/u0]]c

A−0 [a0]
∆2 = ∆′2 and ` ∆1,∆′2 vctx,

then [[N0/u0]]k
A−0 [a0]

K = K ′ and ∆1,∆′2 ` K ′ kind.

3. If ∆1|�o
a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` A type

and ` ∆1, u0::A0[a0],∆2 vctx
and [[N0/u0]]c

A−0 [a0]
∆2 = ∆′2 and ` ∆1,∆′2 vctx,

then [[N0/u0]]a
A−0 [a0]

A = A′ and ∆1,∆′2 ` A′ type.

4. If ∆1|�o
a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` P ⇒ K

and ` ∆1, u0::A0[a0],∆2 vctx
and [[N0/u0]]c

A−0 [a0]
∆2 = ∆′2 and ` ∆1,∆′2 vctx,

then ∆1, u0::A0[a0],∆2 ` K kind
and [[N0/u0]]k

A−0 [a0]
K = K ′ and ∆1,∆′2 ` K ′ kind

and [[N0/u0]]p
A−0 [a0]

P = P ′ and ∆1,∆′2 ` P ′ ⇒ K ′.

5. If ∆1|�o
a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` N ⇐ C

and ` ∆1, u0::A0[a0],∆2 vctx
and [[N0/u0]]c

A−0 [a0]
∆2 = ∆′2 and ` ∆1,∆′2 vctx

and ∆1, u0::A0[a0],∆2 ` C type
and [[N0/u0]]a

A−0 [a0]
C = C ′ and ∆1,∆′2 ` C ′ type,

then [[N0/u0]]n
A−0 [a0]

N = N ′ and ∆1,∆′2 ` N ′ ⇐ C ′.

6. If ∆1|�o
a0
` N0 ⇐ A0 and ∆1, u0::A0[a0],∆2 ` R⇒ C

and ` ∆1, u0::A0[a0],∆2 vctx
and [[N0/u0]]c

A−0 [a0]
∆2 = ∆′2 and ` ∆1,∆′2 vctx,
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then ∆1, u0::A0[a0],∆2 ` C type
and [[N0/u0]]c

A−0 [a0]
C = C ′ and ∆1,∆′2 ` C ′ type

and either:

• [[N0/u0]]rr
A−0 [a0]

R = R′ and ∆1,∆′2 ` R′ ⇒ C ′, or

• [[N0/u0]]rn
A−0 [a0]

R = N ′ : (C ′)− and ∆1,∆′2 ` N ′ ⇐ C ′.

The lexicographic termination metric attempted for proto-substitution
will not suffice here because the various cases call each other on inputs that
are larger. Therefore, we follow the approach of Reed for HLF [Ree09], and
attempt a lexicographic induction on the simple type A−0 , then an ordering
on the six cases, and finally on the derivation that hypothesizes u0::A0[a0].
Rather than guessing a particular ordering, we attempted to uncover a cor-
rect one by carrying out the cases and then analyzing termination.

Unfortunately, we were again unable to find a correct ordering of the
cases. To see why, consider the case for the ΠKE rule when a0 �o a:

D1

∆1, u0::A0[a0],∆2 ` P1 ⇒ Πu::A2[a].K
D2

∆1|�o
a , u0::A0[a0],∆2|�o

a ` N2 ⇐ A2

D3

[[N2/u]]k
A−2 [a]

K = L

∆1, u0::A0[a0],∆2 ` P1 N2 ⇒ L
ΠKE

To substitute for u0 in the subderivation D2, we need to make an inductive
call to substitution into canonical terms. Due to the ΠI rule, which extends
the context with a component of the type, the statement of substitution
into canonical terms requires the type to be well-formed. (Otherwise, we
would not be able to preserve context well-formedness.) Therefore, we
must supply a derivation of

∆1|�o
a , u0::A0[a0],∆2|�o

a ` A2 type

before making the inductive call on D2. We can have this derivation by
inversion, if we can find a derivation of

∆1, u0::A0[a0],∆2 ` Πu::A2[a].K kind

Since it doesn’t seem possible to reconstruct this from an assumption about
the well-formedness of L, we choose to produce a well-formedness deriva-
tion for the kind in the inductive hypothesis for atomic type families. (Pro-
ducing, rather than assuming, this derivation is also consistent with the
intended modes of the synthesis judgment.)
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However, this therefore demands that, as part of this case, we establish

∆1, u0::A0[a0],∆2 ` L kind

from the derivation obtained by inversion on the result of the inductive call
on D1:

∆1, u0::A0[a0],∆2, u::A2[a] ` K kind

The natural way to do this is by making an inductive call to substitute N2

in for u. As the derivation may be large, this requires that the inductive
hypothesis for kinds is ordered smaller than atomic type families.

Unfortunately, the inductive hypothesis for atomic type families must
be no larger than the inductive hypothesis for kinds. This is because the
⇒⇐ rule makes an inductive call on an atomic type family and the ΠKF
rule makes an inductive call on a canonical type, both when the simple
type A−0 remains the same. In other words, the hypothesis for atomic type
families can be no larger than that for canonical types, which can be no
larger than that for kinds.

For this reason, we were not able to make this attempt go through.

Attempt 3: Finally, we tried to revisit proto-substitution and insert a con-
dition weaker than context well-formedness. Namely, we tried assuming,
for all type family constants b, that a0 6�o b implies u0 /∈ FV(∆2|�o

b ). This,
too, failed because of the ΠI rule:

D1

∆1, u0::A0[a0],∆2, u::A2[a] ` N1 ⇐ A

∆1, u0::A0[a0],∆2 ` λu.N1 ⇐ Πu::A2[a]. A
ΠI

To make the inductive call onD1, we need to verify that u0 /∈ FV(A2) when-
ever a0 6�o a and a �o b. But this seems to require well-formedness of A2

since there is no reason to expect a type to contain or not contain an arbi-
trary free variable.

Summary: As a result, we were unable to prove a substitution theorem
for LF��o . At the same time, we were unable to find a counterexample to
the desired substitution theorem: only termination of the various attempts
seems to fail. Nonetheless, the absence of a proof is quite disappointing as
it fails to support confidence in the framework’s foundations. In the future,
we would like to continue to search for a correct proof.
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7.4 Expansion and Identity

In addition to a substitution theorem, the framework LF��o should also
possess an identity property that expresses its global completeness: morally,
we want to show that u::A[a] ` u⇐ A. Unfortunately, as in other LF logical
frameworks, this statement is not correct because the ⇒⇐ typing rule re-
stricts the transition from atomic to canonical terms to occur at base types.

To state an identity theorem, we follow the standard approach and in-
troduce η-expansion, which converts atomic terms to their canonical coun-
terparts. The conversion is driven by the ostensible simple type of the term:
ηα(R) = N

ηa(R) = R
ηα2[a]→α(R) = λu. ηα(R ηα2(u))

The identity theorem can then be stated as a particular instance of the prop-
erty that η-expansion preserves typing:

If A− = α, then ∆, u::A[a] ` ηα(u)⇐ A.

In the proof of this η-expansion theorem, we will need a lemma demon-
strating that η-expansion commutes with substitution. To establish this,
we require an auxiliary judgment that approximates the simple type of an
atomic term when its head is a variable whose simple type is known:

u0::α0[a0] ` u0 : α0

u0::α0[a0] ` R : α2[a]→ α

u0::α0[a0] ` R N : α

Note that the simple type produced by hereditary substitution into an atomic
term matches this approximation:

Lemma 13.
If [[N0/u0]]rnα0[a0]R = N ′ : α′ and u0::α0[a0] ` R : α, then α′ = α.

Proof. By induction on the structure of R.

The statement of commutativity of η-expansion with substitution relies
on a variable-only notion of substitution, [v/u]E. Unlike substitution of a
canonical term for a variable, variable-only substitution can proceed com-
positionally without generating β-redices. This is because a variable at the
head of an atomic term is only ever replaced by another variable.

Lemma 14 (η-Expansion Commutes with Substitution).
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1. (a) If [[ηα(v)/u]]nα[a]N = N ′, then [v/u]N = N ′.
(b) If [[ηα(v)/u]]rrα[a]R = R′, then [v/u]R = R′.
(c) If [[ηα(v)/u]]rnα[a]R = N : β, then [v/u](ηβ(R)) = N .

2. If [[N0/u0]]nα0[a0]ηα(R) = N ′ and

(a) |R| 6= u0, then [[N0/u0]]rrα0[a0]R = R′ and ηα(R′) = N ′.
(b) |R| = u0 and u0::α0[a0] ` R : α, then [[N0/u0]]rnα0[a0]R = N ′ : α.

and similarly for the other syntactic categories.

Proof. By lexicographic induction on the structure of α and the given sub-
stitution derivation.

Now we are finally ready to prove that η-expansion preserves typing.
The development of η-expansion has thus far been completely standard,
following very closely that of other LF logical frameworks (e.g., LFR [LP08]).
Even here, the statement of and induction metric for the η-expansion theo-
rem are standard. Nonetheless, due to the context restriction present in the
ΠE typing rule, we must take special care to verify that the theorem holds.

Theorem 15 (η-Expansion).
If ∆ ` R⇒ A and A− = α, then ∆ ` ηα(R)⇐ A.

Proof. By induction on the structure of α. We show the case for→ simple
types.

Case: α2[a]→ α

∆ ` R⇒ Πu::A2[a]. A Given
∆, v::A2[a] ` R⇒ Πu::A2[a]. A By weakening
∆|�o

a , v::A2[a] ` v ⇒ A2 By hypothesis rule
∆|�o

a , v::A2[a] ` ηα2(v)⇐ A2 By i.h. on α2

(∆, v::A2[a])|�o
a ` ηα2(v)⇐ A2 By defn of |�o

a since a �o a
∆, v::A2[a] ` R ηα2(v)⇒ [[ηα2(v)/u]]aα2[a]A By ΠE rule
∆, v::A2[a] ` R ηα2(v)⇒ [v/u]A By commutativity of subst. with η
∆, u::A2[a] ` ηα(R ηα2(u))⇐ A By α-equivalence and i.h. on α
∆ ` λu. ηα(R ηα2(u))⇐ Πu::A2[a]. A By ΠI rule

Identity then follows immediately, since ∆, u::A[a] ` u⇒ A is derivable
by the hypothesis rule:
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Corollary 16 (Identity).
If A− = α, then ∆, u::A[a] ` ηα(u)⇐ A.

7.5 Relationship to LF�o

In Section 5, we sketched a framework, named LF�o , which did not in-
clude meta-validity judgments and therefore could not provide the JS4 va-
lidity substitution principle for free. We claimed that LF��o would sub-
sume LF�o . We now argue why this is the case, though we do not present
a formal proof since that would require a full description of LF�o .

Recall that the ΠE rules for the two frameworks are:

LF�o rule:

Γ ` R⇒ Πx:A2. A Γ|�o

A2
` N ⇐ A2 [N/x]a

A−2
A = A′

Γ ` R N ⇐ A′
ΠE

LF��o rule:

∆ ` R⇒ Πu::A2[a]. A ∆|�o
a ` N ⇐ A2 [[N/u]]a

A−2 [a]
A = A′

∆ ` R N ⇐ A′
ΠE

Suppose that we introduce a function |A2|, which gives the type family
constant at the head of a type:

|a| = a
|P N | = |P |

|Πx:A2. A| = |A|

If we additionally impose the requirement that Πu::A2[a]. A is only valid
syntax in LF��o when a = |A2|, then the two frameworks collapse. The in-
dex on a validity judgment becomes unnecessary since it can be extracted
from that hypothesis’s type. Moreover, under this requirement, the frame-
works’ context restrictions will behave the same way. That is, Γ|�o

A2
and

∆|�o
a would both remove those hypotheses with head type family equal to

|A2|.
For this reason, we contend that LF��o is strictly more expressive than

LF�o , justifying our focus on LF��o ’s metatheory at the expense of LF�o ’s
metatheory.

8 Adequacy of Encoding for JS4

At this point, we would like to consider an encoding of JS4 in LF��o and
sketch a proof of its adequacy. The signature is given in Figure 10.
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o : type.

imp : o[o]→ o[o]→ o.
box : o[o]→ o.

true : o[o]→ type.
lvalid : o[o]→ type.

o �o true. lvalid �o true.
o �o lvalid. true 6�o lvalid.

impI : ΠA::o[o].ΠB::o[o].
((true A)[true]→ true B)[true]→ true (imp A B).

impE : ΠA::o[o].ΠB::o[o].
(true (imp A B))[true]→ (true A)[true]→ true B.

boxI : ΠA::o[o].
(true A)[lvalid]→ true (box A).

boxE : ΠA::o[o].ΠC::o[o].
(true (box A))[true]→ ((true A)[lvalid]→ true C)[true]→ true C.

Figure 10: Signature for an encoding of JS4.
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A prop � NA ⇐ o B prop � NB ⇐ o

A⊃B prop � imp NA NB ⇐ o
ENC O IMP

A prop � NA ⇐ o

�A prop � box NA ⇐ o
ENC O BOX

Figure 11: Encoding of JS4 Propositions

In particular, note the absence of an explicit coercion from validity to
truth; this is now captured by the LF��o hypothesis rule since the valid-
ity assumptions are encoded as (true A)[lvalid]. Also, note that the boxI
constant handles the context-clearing effect directly by demanding a term
of type true A that may contain only those open terms that are open-
subordinate to lvalid.

In Figure 11, we present an encoding relation between JS4 propositions
and LF��o terms of type o. For simplicity, we ignore propositional param-
eters, instead assuming that there exists an adequate encoding of at least
one propositional constant. This allows us to focus on only the cases for
implication and necessity. This encoding relation is a bijection:

Theorem 17 (Adequacy for Propositions).
1. If A prop � N ⇐ o, then A prop and · ` N ⇐ o.
2. If A prop, then there exists a unique term N such that A prop � N ⇐ o.
3. If · ` N ⇐ o, then there exists a unique proposition A such that A prop �
N ⇐ o.

Proof. By independent inductions on the structure of the given derivation.
The third part requires a straightforward lemma for inversion of canonical
terms of type o.

Figure 12 presents an encoding relation for contexts. Assuming that
fresh variables are used in this encoding, it is adequate:

Theorem 18 (Adqeuacy for Contexts).
1. If δ; γ � ∆ vctx, then δ vctx and γ ctx and ` ∆ vctx.
2. If δ vctx and γ ctx, then there exists a unique context ∆ (modulo α-

equivalence and exchange) such that δ; γ � ∆ vctx.
3. If ` ∆ vctx, then there exists a unique pair of contexts δ; γ (modulo α-

equivalence and exchange) such that δ; γ � ∆ vctx.
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·; · � · vctx
ENC CTX NIL

δ; γ � ∆ vctx A prop � NA ⇐ o

δ; γ, x:A true � ∆, ux::(true NA)[true] vctx
ENC CTX CONS1

δ; γ � ∆ vctx A prop � NA ⇐ o

δ, u::A valid; γ � ∆, uu::(true NA)[lvalid] vctx
ENC CTX CONS2

Figure 12: Encoding of JS4 Contexts

Proof. By independent inductions on the given derivation(s).

Finally, we can turn our attention toward proving adequacy for the en-
coding of JS4 derivations. The rules defining the encoding are given in
Figure 13.

Theorem 19 (Adequacy for Derivations).
1. If δ; γ � ∆ vctx and D :: δ; γ ` A true � ∆ ` N ⇐ true NA, then

• A prop � NA ⇐ o,
• D derives δ; γ ` A true, and
• ∆ ` N ⇐ true NA.

2. If δ; γ � ∆ vctx and D derives δ; γ ` A true, then there exist unique N
and NA such that ∆ ` N ⇐ true NA.

3. If δ; γ � ∆ vctx and ∆ ` N ⇐ true NA, then there exist unique A and
D such that D derives δ; γ ` A true.

Proof. By independent inductions on the second given derivations. We
show the case for ENC TRUE BOXI in the first part.

Case: ENC TRUE BOXI

δ; γ � ∆ vctx Given
D1 :: δ; · ` A prop � ∆|�o

lvalid ` N ⇐ true NA Given
δ; · � ∆|�o

lvalid By defn of encoding and �o

A prop � NA ⇐ o and
D1 derives δ; · ` A true and
∆|�o

lvalid ` N ⇐ true NA By i.h.(1)
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�A prop � box NA ⇐ o By ENC PROP BOX rule
δ; γ ` �A true By �I rule on D1

· ` NA ⇐ o By adequacy of the encoding for propositions
∆|�o

o = · By given �o preorder
∆ ` boxI NA N ⇐ true (box NA) By LF��o typing rules

We would also like to know that the JS4 substitution principles are cap-
tured by substitution at the level of LF��o terms. This is stated as the fol-
lowing theorem:

Theorem 20 (Compositionality of the Encoding of Derivations).
1. If δ; γ, x:A true � ∆, ux::(true NA)[true]

and D2 :: δ; γ ` A true � ∆ ` N2 ⇐ true NA

and D :: δ; γ, x:A true ` C true � ∆, ux::(true NA)[true] ` N ⇐
true NC

and [D2/x]D = E and [[N2/ux]]n
true[true]N = N ′,

then E :: δ; γ ` C true � ∆ ` N ′ ⇐ true NC .
2. If δ, u::A valid; γ � ∆, uu::(true NA)[lvalid]

and D2 :: δ; · ` A true � ∆|�o
lvalid ` N2 ⇐ true NA

and D :: δ, u::A valid; γ ` C true � ∆, uu::(true NA)[lvalid] ` N ⇐
true NC

and [[D2/u]]D = E and [[N2/uu]]n
true[lvalid]N = N ′,

then E :: δ; γ ` C true � ∆ ` N ′ ⇐ true NC .

Assuming that a substitution theorem for LF��o can be proved, the
compositionality of this encoding follows by induction on the encoding
derivation.

9 Related Work

One method proposed in the literature for achieving a higher-order encod-
ing of judgmental S4 [Cra09], based on a similar technique for encoding
linear logic [Pfe94], is to use an auxiliary judgment on modal proof terms:

local : (tm→ tm)→ type.

where the judgment local (λx.Mx) means that the variable x is not used
within any validity proofs inMx. Unfortunately, this places additional bur-
den on the user in terms of spelling out the details of the local judgment
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and proving local-specific metalemmata. In other words, the categorical
nature of validity does not come for free. This technique thereby sacrifices
some of the traditional advantages of LF and Twelf.

It is also possible to phrase modal logics in terms of explicit Kripke se-
mantics [Sim94]. Since this formulation does not contain categorical judg-
ments, it admits a straightforward encoding in LF [Mur08]. However, this
does not uniformly resolve the case of general categorical judgments.

Also related is the Hybrid Logical Framework (HLF) [Ree09], devel-
oped as a linear metalogical framework, which labels LF assumptions with
worlds relating them to the object-language context on which the corre-
sponding object-language assumptions depend. It seems possible to en-
code categorical judgments in HLF. However, HLF requires new unifica-
tion and coverage checking procedures, a requirement which we hope to
avoid by staying as close to LF as possible.

Finally, the family of validity judgments used by LF��o seems techni-
cally similar to Nigam and Miller’s subexponentials for linear logic [NM09].
Just as subexponentials are indexed by labels related by a preorder, the va-
lidity judgments of LF��o are indexed by type family constants and related
by the open-terms subordination preorder. Differences include the absence
of linearity and presence of dependent types in LF��o and the classical na-
ture of Nigam and Miller’s subexponentials.

10 Conclusion

In this project, we have proposed a novel refinement of subordination which
deals specifically with open terms. We have demonstrated its connection to
categorical judgments, using judgmental S4 modal logic (JS4) as our exam-
ple. Based on this connection, we have proposed LF��o , a logical frame-
work that supports higher-order encodings of categorical judgments. We
were able to prove identity and η-expansion theorems, but, disappoint-
ingly, could not prove (or disprove) a substitution theorem. Finally, we
presented an adequate encoding of JS4 in LF��o . We now conclude with a
few suggestions for future work.

Future Work. The future work of primary importance is to pin down a
proof of a substitution theorem. Without this, LF��o is of dubious foun-
dations. Once this is complete, there are at least two notable avenues for
future work.
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First, it would be useful to implement LF��o as an extension of Twelf.
This way, we might gain practical benefits by being able to formalize cat-
egorical judgments within Twelf. We conjecture that type checking and
reconstruction would be the primary components that would need to be
modified.

Second, we would like to consider support for indexed categorical judg-
ments, such as K knows judgments from judgmental logics of knowledge
[GBB+06]. Because the open-terms subordination relation in LF��o is para-
metric with respect to type indices, subordination on a family

knows : principal→ o→ type.

would be too coarse to capture the property that K knows is categorical
with respect to L knows when L 6= K. Perhaps using a refined notion
of open-terms subordination that accounts for type indices would permit
clean support for indexed categorical judgments.
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