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Abstract

Modal logic is used by game theorists in the form of epistemic modal
logic, where the [J operator is interpreted as a knowledge operator.
This is useful because it allows the knowledge of players in games to
be formalized and included in models of games. Then outcomes can be
characterized by this knowledge, leading to theorems of the form “in
games of type z, if all players have knowledge y, then solution z will
be realized.” The system of modal logic used in this context is classical
S5, a very strong system which translates into an epistemic logic with
a very strong knowledge operator which may not be appropriate for
all situations. The purpose of this project, therefore, is to examine
the results of using other systems of modal logic, S4 and T, as a basis
for the epistemic logic used by game theorists. A natural starting
place for inquiry is Aumann’s framework and his well-known result
that common knowledge of rationality implies the backward inductive
outcome in perfect information games. It is shown in this paper that
Aumann’s result does not depend on an S5-based framework; his result
holds for S4- and T-based frameworks as well.

1 Introduction

1.1 Motivation

Jaakko Hintikka’s 1962 book Knowledge and Belief [11] is regarded as the
foundation of epistemic logic, using modal logic as a means to formalize and
study the logical properties of knowledge. Not long after, Robert Aumann
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[2]-[6] and others [8] realized that being able to represent knowledge formally
is important in fields such as economics and game theory, where the beliefs
and knowledge of different agents about each other and about their situation
play a significant role in how those agents make and should make decisions.

As an intuitive example of the importance of taking account of players’
knowledge when studying a game situation, consider poker games. Studying
such games and calculating optimal strategies clearly requires not just a
formal representation of the game itself, but also of the knowledge of the
players. Which cards are dealt to which players and whose hand is most likely
to be the best are important questions to consider when deciding whether
to fold, call or raise in response to an opponent’s bet; at least as important,
however, are questions about what each player knows about the distribution
of cards and about their opponents, including their opponents’ knowledge.
Player A’s optimal action depends just as much on whether A knows her
opponent B is bluffing, whether A knows that B knows that A knows that
B is bluffing, and whether A knows that B knows that A is also bluffing, as
on the probability of A’s actual hand beating B’s actual hand in the end.

Reflection on this and other common game situations makes clear that study-
ing interactive situations as game theorists and economists do requires taking
account of the knowledge and beliefs that the agents in the situation have.
To study such situations formally therefore necessitates formalizing knowl-
edge and belief as done by Hintikka and continued by Aumann, Fagin et al
[8] and others [17]. The problem is that in such formalisms the definition of
knowledge is based on the S5 system of classical modal logic.

1.2 The task

This universal adherence to S5 as a basis for defining knowledge is a problem
for several reasons. One is that the S5 definition of knowledge may not be ap-
propriate for all situations, as it assumes knowledge to have some very strong
properties. The purpose of this project, however, is not to determine once
and for all which system of modal logic is the best for defining knowledge;
the purpose is to explore how our choice of a logical system on which to base
our definition of knowledge affects our descriptions of games and the theo-
rems that can be proved about them. Specifically, the task in this project
is to determine whether important theorems in game theory depend on an
S5 definition of knowledge, in particular by testing Aumann’s well known
theorem that common knowledge of rationality entails the backward induc-
tive outcome in perfect information games [3], where the backward inductive
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outcome is the result of all players making the choice at every decision point
that is optimal given that all subsequent choices will be made according to
the same principle. The theorem will be tested in an S4-based and a T-based
system. It will be shown that Aumann’s Theorem holds for such systems,
and thus that it does not depend on an S5 definition of knowledge.

1.3 Previous work, and how it suggests focusing on Aumann

The use of Aumann’s work as a base is appropriate partly because Aumann’s
papers are foundational. Aumann’s most sophisticated framework is largely
the product of lectures given in 1989 and it is essentially the culmination of
work done by Aumann and others on the formal study of knowledge during
a period of about 20 years following Hintikka’s [11], as Aumann explains in
[4]. See, for example, [8]. The standard model of knowledge in games is that
of Aumann. Other knowledge-based models build on that of Aumann and
use extended information structures which include a hypothetical knowledge
operator in addition to the usual knowledge operator; see [1], [10], and [14].
For the purposes of this project, Aumann’s model is the clear choice for an
object of study since it uses only the knowledge operator which is the in-
tended focus; it is best to see how the choice of a logical system for knowledge
influences frameworks in the simple case before investigating what influence
it has when other operators are added.

Besides being simple, standard and foundational, Aumann’s framework has
some other properties that make it a desirable subject of study: Aumann
approaches knowledge both semantically through a possible worlds semantics
and syntactically through epistemic modal logic in [4]. He discusses the
advantages of building a semantic knowledge system from a syntax, allowing
the semantic system to be constructed canonically and bringing transparency
to the logical properties of knowledge. This transparency will prove useful
to the current project, since it will be very clear in what way the S4- and T-
based canonical semantic knowledge systems that I construct incorporate the
axioms of S4 and T. The proof of Aumann’s Theorem in [3] is not carried
out in a canonical semantic knowledge system constructed from a syntax;
its use of SH properties of knowledge is visible only in that the knowledge
operator of the semantic system partitions the state space, implying that
the knowledge operator is an equivalence relation and is therefore an S5
operator. Because of the above described virtues of beginning with a syntax,
I re-prove Aumann’s Theorem in semantic systems that are canonical and
syntax-based.
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Much of the related prior work not due directly to Aumann is focused on an-
other important theorem that Aumann proved, again assuming an S5 knowl-
edge operator. This theorem, the Agreeing to Disagree theorem [2], says that
if two people have the same prior probability distribution over possible states
of the world, and if their posterior probabilities for some event (calculated
based on private information) are common knowledge between them, then
they have equal posterior probabilities for the event. The details of this the-
orem are not important for this project; the two important points regarding
the theorem are firstly that it is proved using information partitions of the
possible states of the world which implies that the knowledge operator de-
fined is that of the modal logic S5, and secondly that there is a body of
literature investigating Aumann’s results, especially ways of weakening Au-
mann’s assumptions (such as the partitional structure of information) while
still enabling the proof of the agreeing to disagree impossibility result. See
[7], 19], [13], and [15] for some important papers in that literature. These
papers are similar to the current project in that they test one of Aumann’s
important theorems and demonstrate that the theorem is provable with a
definition of knowledge weaker than the S5 definition. In this sense, there is
a precedent for my project. My project is unlike the previous work in that it
is concerned with game situations rather than economics, and in that I will
be starting from syntax and focusing specifically on the underlying modal
logical structure of the definition of knowledge, whereas other previous work
has focused on whether the state space (set of possible worlds) must be as-
sumed to be partitioned by the knowledge operator, often not mentioning
the underlying logical properties of knowledge.

1.4 Obtaining the results

The project will begin by stating Aumann’s Theorem more clearly and giving
some more detail on what he accomplishes in his most relevant papers. Then
I will build a framework for formalizing games based on these papers, but
with modifications to incorporate game situations into the formalism and
to base the knowledge operator on S4 rather than S5. Then I will prove
an analog of Aumann’s Theorem in the new S4-based system. I will show
that with little difficulty, the same can be done with a T-based knowledge
operator.
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2 Aumann’s work

2.1 Backward Induction and Common Knowledge of Ratio-
nality

In Backward Induction and Common Knowledge of Rationality [3], Aumann
proves the theorem which will be a focal point of this project, referred to
here as Aumann’s Theorem:

Aumann’s Theorem (Theorem 1): Let & be a perfect information game
and R = (Q,s, (K;)ien) be a knowledge system for &, where 2 is a set of
states taken as primitive, s is a function from states to strategies for each
player, and the K;’s are partitions of the state space for each player. It is
assumed that s; is measurable with respect to IC; (i.e. the players have the
same strategy for all worlds in a given element of their information partition,
so they all know their own strategies at all worlds). Then CR C BI (those
worlds at which there is common knowledge of rationality are a subset of
those at which the backward inductive outcome is realized).

The proof of Aumann’s Theorem in [3] is carried out in a semantic knowledge
system which takes states of the world as primitive and assumes that the set
of states is partitioned by the knowledge operator. This means that the
knowledge operator divides the state space into sets of worlds which are
subjectively indistinguishable from one another; the agent’s knowledge at
any world in the set is the same as at any other in the set. This partitional
structure implies that the knowledge operator obeys the axioms of S5: (T)
everything known by an agent is true, (4) an agent’s knowing something
implies their knowing that it is known, (5) an agent’s not knowing something
implies their knowing that it is not known, and (K) if it is known that A
implies B then knowing A implies knowing B. See [8], for example, for an
explanation of the axioms of S5 interpreted as knowledge axioms.

2.2 Interactive Epistemology

Aumann’s Interactive Epistemology I: Knowledge [4] is a nice paper using
Dov Samet’s idea of characterizing possible worlds by the propositions that
hold there [15]. In it Aumann gives syntactic and semantic formalisms for
knowledge and shows them to be equivalent in a sense, and observes that the
syntactic approach is more straightforward than the semantic and clears up
conceptual difficulties. I will use this approach, but I will need to augment
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it quite a bit since Aumann does not incorporate game situations or the
concept of rationality into this paper and focuses on single player knowledge.
So, my framework will be a greatly-augmented version of Aumann’s in [4],
proving the new versions of Aumann’s Theorem in the constructed canonical
semantic knowledge systems rather than in the kind of semantic knowledge
system used in [3].

3 An S4-based Aumann-style framework

3.1 The game

This project’s definition of a game is based on Aumann’s in [3]. Let & be
a perfect information game with non-degenerative payoffs. For & to be a
perfect information game means that at every point in the game all players
know what has happened previously. For the payoffs to be non-degenerative
means that the payoffs to each player differ depending on which outcome of
the game is realized (where the outcome depends on the strategy choices of
the players). Define

& = (N,V, (Ui, Si)ien).

N is a set of players, assumed here to be finite. V is a set of nodes, points
at which a player makes a decision, selecting an action; V; will refer to those
nodes at which player ¢ € N makes a decision. For w,v € V', w > v indicates
that the node w follows the node v, or in other words a playing of the game
that includes a decision at w also includes a decision at v. Each player i has a
set of strategies, S;, each of which specifies a choice of action for every v € V;.
Crucially, each strategy s; selects an action for all of the player’s decision
nodes, whether or not the player expects that node to be reached during the
actual playing of the game. The players select full strategies before the start
of play, so they must decide what they would do in every situation that could
possibly arise, if they found themselves in that situation. A player’s choice
of action at a particular node v according to strategy s; will be written s7,
and at nodes after v as s7V. U; is a utility function
Ui: xS = N;

JEN
the payoffs to a player are determined by the strategy choices of all the
players.
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3.2 The syntax
3.2.1 The language

The language presented here is a modification of Aumann’s [4], altered to
reflect the shift from S5 to S4 and the application of the formalism to a
game situation, as Aumann’s formalism deals very generally with formalizing
knowledge alone. Assume that a game & is given. Then construct a language
L starting with an alphabet

X={z,9,2...9, (Sf)lgxgsi\,ieN}-

The alphabet is assumed to be finite or denumerable, as in [4]. The language
will have symbols V, =, (, ), k; for all i € N, and e” for n € N. The members
of X are primitive propositions representing relevant simple facts relevant to
the game situation.

Then a formula of £ is defined as follows:

For all letters of the alphabet x € X, x is a formula.
If f and g are formulae, then so is (f) V (g).

If fis a formula, then so is —(f).

If f is a formula, then so is k;(f) for every i.

If fis a formula, then so is €"(f) for every n € N.

Parentheses will often be omitted in the usual way, and the familiar connec-
tives A ,—, <», and A will be used as abbreviations.

3.2.2 Tautologies

Following Aumann again (with the appropriate modifications), define a tau-
tology as a formula with one of the following forms, for any f, g, h € L,
ieN,neN 1<z <[5 and 1 <y <|S;| with 2 and y distinct in any
formula.

(a) (fVf)—f

(b) f = (fVg)

(c) (fVvg)—(gVf)

(d) (f =9) = ((hV f) = (hVg))
() kif — f
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£) ki(f — g) = ((kif) = (kig))
g) kif = kikif
h) s? — k;s?

i) 57— (A=)
Yy

(
(
(
(

(7)) g
(k) (A kif) < e'f

1EN
(W) (A kie™f) > et f

1EN
An intuitive explanation for the list of tautologies and their intended seman-
tic interpretation may be useful: (a) through (d) are propositional tautolo-
gies, which should hold in any model of any game. Note that Aumann’s
tautology —k;f — k;—k;f |4] corresponding to the axiom 5 of S5 has been
replaced with (g) k;f — k;k;f corresponding to axiom 4 of S4. Also note
that (e) is the axiom T and (f) is the axiom K, or the distribution axiom.
(h) specifies intuitively that the players know their own strategies, while (i)
ensures that this strategy choice is unique. (j) represents the fact that propo-
sitions about the game itself are universally true within the framework. (k)
and (1) define the e™ operator, which represents n’th level mutual knowledge:
el f is true if all players know f , or in other words if there is first level mu-
tual knowledge of f. There is n + 1’th level mutual knowledge if all players
know that there is n’th level mutual knowledge.

3.2.3 Lists and the syntax

In a manner similar to that of [4], call the set of all formulae in our language
L, given the game & and alphabet X, a syntax. Then let (&, X) be the
syntax for £. The syntax will be abbreviated as &.

A list is a set of formulae. A list £ is logically closed if f € £and f — g € £
implies g € £; in other words, a list is logically closed if it is closed under
modus ponens. £ is epistemically closed if f € £ implies k; f € £. A list is
strongly closed if it is logically and epistemically closed. The strong closure
of a list £ is the smallest strongly closed list including £. A list £ is coherent
if =f € £ implies f ¢ £. It is complete if the reverse is true.
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3.3 The semantic knowledge system
3.3.1 Possible worlds

The connection between the syntax developed above and the semantic knowl-
edge system to be developed below and used in proofs is via possible worlds.
In Aumann [3], for instance, possible worlds are taken as primitives, and
therefore their nature is somewhat mysterious. By constructing possible
worlds out of a syntax, as in [4] and in this paper, the mystery is dissi-
pated as it is made explicit exactly what possible worlds are: possible worlds
are defined as lists of formulae that could all possibly be true at once. In
other words, a possible world is defined by the list of the formulae that are
true at that world. Another advantage of constructing possible worlds from
the syntax, besides increased clarity, is that there is a canonical construc-
tion. The canonical construction delivers a unique set of possible worlds,
namely all those possible worlds which are both internally consistent and
give a definite answer as to whether any formula in the language is true.
This circumvents the problem with other potential construction methods of
deciding how much information each world should contain (how many for-
mulae should be included) and how many possible worlds there should be.
There is no particular good reason for a construction to construct only some
possible worlds and not others, or to make the worlds less informative than
the language makes possible. The canonical construction is therefore less
ad hoc and less prone to the resulting problems than other constructions.
Aumann [4] credits Samet [15] with the idea of characterizing worlds in this
way rather than taking them as primitives.

Construct the set of possible worlds from the syntax & above as follows:

Define a possible world w as a list £ with the following properties: £ contains
the list £* of all tautologies; the list £* of tautologies is epistemically closed.
£ is logically closed. £ is coherent and complete. Note that the epistemic
closure of £* corresponds to the necessitation rule of modal logic, which is
present in all normal systems including S4, S5, and T; here it corresponds
to all players knowing all tautologies.

The set of all possible worlds (all such lists of formulae) is €.
3.3.2 The canonical system

Given any world w € €, there is a set of formulae known by any player ¢
to be true at that world. Following Samet [15], call this set the ken of the
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agent at w, written here as
K?(w) :={f € w|f = kg for some g}.

Then those other possible worlds w’ € € considered possible by an agent
at world w are those worlds at which everything the agent knows at w —
everything in the agent’s ken at w — is true. Therefore I define a possibility
relation wp;w’, saying that at w agent ¢ considers w’ possible:

wpiw’ iff K (w) Cw'.
Then the set of worlds considered possible by the agent at w,
Pi(w), is just {w'|wpw'}.

Note that given the choice of tautologies, the relation p; is reflexive (due to
(e)) and transitive (due to (g)). It is not, however, symmetric (and therefore
not an equivalence relation, nor does it partition ). See section 2.4 of
[8] for proofs of these familiar correspondences between possibility relations
between possible worlds and modal logical axioms.

Then
<= (Q, &, (Kz.)zeN)

is the canonical semantic knowledge system for the game &.

3.3.3 The formula-event correspondence

With the semantic knowledge system it is possible to reason about events,
which are subsets of 2. An event is a set of worlds, corresponding to the
formulae that are true at every one of those worlds. This is now defined
precisely. Upper-case letters will be used to denote events, while the corre-
sponding lower-case letters will continue to be used to denote formulae, for
convenience. Sometimes an event will also be denoted by square brackets,
following Aumann [3]. This will be the case in particular when an event
corresponds to a formula in the syntax which doesn’t have a specific name.

For any formula f, define the semantic event F":
F:={weQ|f ew}

Note first of all that since f can be any formula, it could in particular be a
formula of the form k;g, and so F' could be an event K;G representing an
agent’s knowledge of some other event G. Also note that since the tautologies
are all true at all w, if a formula ¢ is a tautology, then the event T' = ). Since
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the formula G is one such tautology, interpreted in the semantic knowledge
system as all the information about the game itself, G = €.

The formulae s} remain to be interpreted; it was suggested earlier that they
correspond to strategies of player ¢; now it must be determined which for-
mulae correspond to which strategies. First, define the semantic event that
some generic strategy S7 is played as usual:

S¥i={w € QJs¥ € w}.
Then let the function
si + {(S ) 1<a<isy|} — Si

be a bijection; each event that some strategy is played by ¢ is mapped to
exactly one of ¢’s strategies in the game, and all strategies are chosen in some
set of worlds. Denote by s(w) the n-tuple of strategies chosen by the players
at w. This will be abbreviated as s when it is not necessary to explicitly
name w.

4 A proof in S4

4.1 The theorem

Aumann proved in his partitional framework in [3| that in perfect information
games if there is common knowledge of rationality among players then the
backward inductive outcome is realized. Here is Aumann’s Theorem, in
the notation of this paper. The formal definitions of rationality, common
knowledge of rationality and backward induction will be set forth in the
subsequent subsection.

Aumann’s Theorem (Theorem 1): Let & be a perfect information game
and 8 = (0, s, (K;)ien) be a knowledge system for &, where Q) is a set of
states taken as primitive, s is a function from states to strategies for each
player, and the K;’s are partitions of the state space for each player. It is
assumed that s; is measurable with respect to IC; (i.e. the players have the
same strategy for all worlds in a given element of their information partition,
so they all know their own strategies at all worlds). Then CR C BI (those
worlds at which there is common knowledge of rationality are a subset of
those at which the backward induction outcome is realized).

Aumann’s Theorem is proved not in a canonical semantic knowledge system
like that constructed above, but rather in a semantic knowledge system which
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takes possible worlds as primitive. It also takes an S5 information partition
for each player as primitive. In this section, I will prove an analogue of
Aumann’s Theorem in the canonical semantic knowledge system developed
above, which is S4-based and therefore non-partitional. This new theorem
will be called S4-A’s Theorem.

S4-A’s Theorem (Theorem 2): Let & be a perfect information game, &
a syntax, and € the canonical semantic knowledge system as defined above.
Then where C'R is the event that there is common knowledge of rationality
and BI is the even that the backward induction strategy is chosen by every
player, CR C BI.

4.2 Prerequisite definitions and lemmas
4.2.1 Common knowledge

For a proposition to be common knowledge means that all players know it, all
know that all know it, all know this, and so on ad infinitum. In other words,
a proposition is common knowledge exactly when it is mutual knowledge
at every level n € N. A common knowledge operator is not included in the
language L for a few reasons. One is that it can be straightforwardly defined
from mutual knowledge in the semantic knowledge system; the event that a
proposition is common knowledge is the same event as that proposition being
every level of mutual knowledge. The other reason is that including a com-
mon knowledge operator in the language would require stating the axioms
of common knowledge as tautologies, which is problematic since common
knowledge is an infinitary concept, while formulae of £ must be finite.

Recall that for any event F' and level of mutual knowledge m, the event that
F is m’th level mutual knowledge is E™F', where

EmF :={weQe"f cw}.
Then the event that F' is common knowledge, C'F', is defined by
CF := () E"F.

neN
It is worth noting in passing that since every closed, coherent and complete
set of formulae of £ (containing the tautologies, etc.) constitutes a possible
world w, there will exist worlds where some event is common knowledge.

Aumann proves in [3| that the set of worlds in his state space €2 contains at
least one in which rationality is common knowledge, but as the purpose of
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this paper is not to discuss or prove the possibility of common knowledge, I
will not do the same here.

4.2.2 Rationality

Rationality, like common knowledge, is not included in the language. To
build rationality into £ would require including tautologies governing when
it obtains, which would unduly complicate the language since rationality
can only be defined from other complex concepts which would themselves
need to be explicitly added to the language. The event of a player i being
rational is the same as another event, the event that as far as i knows, at
all ¢’s decision nodes, ¢’s chosen action based on ¢’s strategy yields at least
as high of a conditional payoff as any other action that could be taken.
Every player’s full strategy is explicitly given for every possible world, and
all relevant propositions about the game itself (including strategy options
and utilities) are listed in each possible world; therefore, in the semantic
knowledge system in which syntactic strategy choices have been interpreted
as actual strategies, the conditional payoffs to each player at a given world
for their actual strategy and for deviations from it can be calculated. The
set of worlds where the conditional payoffs for each node for a player’s actual
strategy are higher than the conditional payoffs for any deviation from that
strategy is an event. The event that the player knows this event is the event
that the player is rational.

The conditional payoff to i at v given an n-tuple of strategies s € x;enS; is
written hY(s). The conditional payoff if i were to select strategy ¢; instead
is hy(s,t;). The conditional payoff at a node v given s is the payoff a player
would receive if, starting at node v, the players selected the given strategies
s;. The event that i’s conditional payoff at v would be greater if ¢ selected
some strategy ¢; rather than the strategy s; specified by s (those worlds at
which the actual strategy choice is not the best, conditional on v) is written
[hY(s;ti) > h{(s)]. The event R} that i is rational at v, then, is the event
that ¢ does not know that this is the case:
RV = ) (~ Kifhi(sit) > hY(s)]).

t;€5;
1 is rational, R;, if 7 is rational at every node:

Ri:= (1 ) (~ Ki[hi(s;t:) > hi(s)]).

veEV;t;ES;

The event that all players are rational at all nodes is
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4.2.3 Backward induction

The backward inductive outcome is defined as the outcome of the game when
at every decision node, the player to act at that node makes the (backward)
inductive choice. The inductive choice is the choice that would result in the
highest payoff to the chooser given that all players at all subsequent nodes
would also make the inductive choice. This bottoms out in the last possible
decision node of the game, since the inductive choice at the last node is
trivially just the choice that yields the highest payoff for the acting player.
Since our game is a perfect information game, the player to move at the
last node knows exactly what payoffs will result from each possible action,
and furthermore these payoffs must be different for each action as part of
our specification of the game. Therefore there will be a single choice at the
last node of the game which maximizes the payoff to the acting player, and
this is the unique inductive choice at that node. Given this, the inductive
choice at all previous nodes is also determined. Following Aumann, I call
the inductive choice (at a given decision node v) b”. The event that the
inductive choice is made at v is [s” = b"]. The outcome of the game that
results from all players choosing strategies that make the inductive choice at
all nodes is referred to as BI:

BI := () [s" =b"].

veV

4.2.4 Lemmas

The following lemmas 4-10 will be used in the proof; they are numbered
so as to match the numbering in [3]. 4-7 and 9-10 are taken directly from
[3], as they are not affected by the change from S5 to S4. Lemma 8* is a
modification of Aumann’s original Lemma 8: K; ~ K;E =~ K;E, which no
longer holds in our system, as it corresponds to the axiom 5 of S5. The new
Lemma 8* is trivially an instance of Lemma 9, but it is included because
it is used in the proof and the change makes clear an important difference
between Aumann’s system and the current one.

Lemma 4. CF = K;CF
Lemma 5. If G C F then K;G C K;F
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Lemma 6. K;GNK;F = K;(GNF)

Lemma 7. CF CF

Lemma 8*. K; ~ K;F C~ K;F

Lemma 9. K,GCG

Lemma 10. BIY C K;BI" for all nodes v of player 1.

The proofs of the lemmas are included in the Appendix, since they are of less
independent interest than the proof of S4-A’s Theorem. It should be noted,
however, that they are essential to the proof and, unlike the proof of the
theorem, the proofs of the lemmas in the current S4 system are substantially
different from (and less automatic than) the proofs Aumann would have
given for his system; Aumann himself shows only the proof of Lemma 10 in

13].

4.3 The proof

The proof of S4-A’s Theorem is nearly identical to the proof of Aumann’s
Theorem, given the lemmas. The difference is near the end of the proof, and
it noted there.

S4-A’s Theorem (Theorem 2): Let & be a perfect information game, &
a syntax, and € the canonical semantic knowledge system as defined above.
Then CR C BI.

Proof. First I show that for all nodes v, CR C BI”. Assume therefore that
for all w > v for some v, CR C BI". Let i be the player to act at the node
v. By assumption CR C BI", and so by Lemma 5, K;CR C K;BI". Since
by Lemma 4, CR = K;CR, it follows that CR C K;BI", still for all w > v.
Then by Lemma 6, CR C (| K;BI". By the definition of BI", and Lemma

w>v
6 again, [ K;BI*Y = ) K;[s¥ =b"] = K; [ [s¥ = 0] = Ki[s”" = b7"].
w>v w>v w>v

Therefore, CR C K;[s”" = b”"].

By Lemma 7 and the definitions of R and R;,

CR C R C R; C~ K;[hY(s;b;) > hY(s)].

Using Lemma 6 again, we prove that K;[s”" = b~V N K;[h{(s; b;) > hY(s)] =
K;[s”" = b”Y ARY(s;b;) > h¥(s)] = Ki[s™" = b"" A hY(b) > hY(b;sY)

= K;[s™" = b>"] N [hY(b) > hY(b;sV)]. The move from the second to the
third equality here is justified by the fact that the conditional payoffs h}(z)
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depend only on node v and those that follow it, and the backward inductive
strategy choices are known to be made at all w > v. Therefore if there is a
higher conditional payoff for making the backward inductive choice at v for
player ¢, then the backward inductive strategy choices at and after v have a
higher conditional payoff than would switching to some other strategy choice
at v.

Given the above equality, K;[s”" = b>"]N ~ K;[hY(s;b;) > hY(s)]

= K;[s”? = b”]N ~ K;[hY(b) > hY(b;sV)]. Therefore since

CR C K;[s”" = b”"|N ~ K;[hY(s;b;) > hY(s)], also

CR C K;[s”" =b""IN ~ K;[hY(b) > h¥(b;s”)], and so

CR C~ K;[hY(b) > hY(b;s")]. Since b is defined so that b" is optimal given
b7, ~ KGRP(B) > hY(b;s?) =~ Ki[sU # bY]. By definition, ~ K[s’ #
b’ =~ K; ~ BI'" ; and ~ K; ~ BI" =~ K; ~ K;BI" by Lemma 10.

Now the proof diverges from Aumann’s, but only in that his next step was
an equality whereas mine is a subset relation:

By Lemma 8*, ~ K; ~ K;BIY C~~ K;BI" = K;BIY. By Lemmas 9 and
10, K;BIY = BI"Y, and so CR C BI". Since this is true for all nodes v,
CR C BI. O

5 The T-based Aumann-style framework, and proof

5.1 The difference between S4 and T

The above shows that S4-A’s Theorem, an analog of Aumann’s Theorem,
can be proved in the canonical S4 semantic knowledge system. Thus the
substance of Aumann’s Theorem, that if there is common knowledge of ra-
tionality in a perfect information game then the backward inductive outcome
is realized, does not depend either on a partitional structure of knowledge or
on the axiom 5 of S5. The next question is whether the axioms of S4 might
also include more than is necessary to prove such a theorem, and therefore
whether the axioms of T might be sufficient. The observant reader will al-
ready suspect an affirmative answer to this question. The difference between
the modal logical systems S4 and T is that T lacks the axiom O¢ — ¢,
this axiom is present in the S4 system above in the list of tautologies of the
system, in the form of (g) k;f — k;k;f. It is included because it replaces the
tautology —k;f — k;—k;f, corresponding to the axiom 5 of S5, which was
present in Aumann’s development of the syntax for knowledge in [4]. Yet
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(g) is used neither in proving any of the lemmas nor in proving S4-A’s Theo-
rem. Therefore the T-based system resulting from simply removing (g) from
the list of tautologies and leaving the rest of the syntax and the canonical
construction of the semantic knowledge system intact results in a semantic
knowledge system in which all of the above lemmas and an analog to S4-A’s
Theorem can still be proved.

5.2 A T-based knowledge system

Let &(®,X) be the syntax for the language L as above. Remove
(2) kif — k;k; f from the list of tautologies. Then define a possible world w”
as a list £7 of formulae that is logically closed, complete, coherent, contains
all tautologies, and in which the set of tautologies is epistemically closed.
The set of all such w? is called Q7. Define the ken of an agent i at w’ as
KI*WT) .= {f € wT|f = kig for some g}. Then €7 = (QT, &, (KI*)ien) is
the canonical (T-based) semantic knowledge system for the game &. Other
definitions can be stated as for the system €; there is no substantial differ-
ence, but only a difference in notation.

5.3 A T-based theorem and proof

T-A’s Theorem (Theorem 3): Let & be a perfect information game, S a
syntax, and €7 the canonical semantic knowledge system as defined above.
Then CR C BI.

Proof. Just as the proof of S4-A’s Theorem above. O

6 Conclusion

The above proves that Aumann’s Theorem does not require a strong S5-
definition of knowledge; common knowledge of rationality implies backward
induction in perfect information games in systems with weaker definitions of
knowledge. The systems I have constructed are based on S4 and T, which
have the advantage compared to S5 of incorporating fewer assumptions about
players’ knowledge. There are still weaker systems of modal logic which
would make fewer assumptions about knowledge, but these systems would
in fact assume too little about knowledge and are not suitable for defining it.
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This is primarily because systems weaker than T do not include the axiom
T, which in the context of knowledge says that if an agent knows something,
then it is true. Unlike the axioms 4 and 5, the axiom T is essential to any
definition of knowledge, since truth is the main feature distinguishing belief
in a proposition from knowledge of it. Therefore by proving that analogs of
Aumann’s Theorem hold when knowledge is based on S4 or T I have proved
essentially that Aumann’s Theorem holds under any reasonable definition of
knowledge. This discovery strengthens the theorem.

A natural extension of this project would be to investigate the influence of
S4- or T-based definitions of knowledge on systems with both a knowledge
operator and a hypothetical knowledge operator, as discussed by Horacio
Arl6-Costa and Cristina Bicchieri [1], Joseph Halpern [10], and Samet [14].
Such systems are extensions of the standard Aumann-type system which
have the advantage of explicitly representing the hypothetical reasoning that
game players engage in; such reasoning takes the form of determining what
an agent would know in the event that some sequence of game actions took
place, and using this hypothetical knowledge to select optimal strategies.
It would be worthwhile to extend the current project to such sophisticated
systems.

The reader interested in the connection between axioms of modal logic and
the semantic knowledge systems employed by Aumann and others may find
useful a recent paper by Samet, S5 Knowledge Without Partitions [16]. In
this paper, Samet makes the surprising observation that having an S5-based
knowledge operator does not entail a partitional structure of the state space
unless the knowledge operator is defined for all subsets of possible worlds
or the state space is finite. If the knowledge operator partitions the state
space, however, then it must obey the axioms of S5. Also of interest is
Michael Bacharach’s Some extensions of a claim of Aumann in an aziomatic
model of knowledge |7], which contains some philosophical discussion about
the universality in economics of the assumption that agents have informa-
tion partitions and the justification (or lack thereof) for employing strong
epistemic models incorporating such assumptions.

7 Appendix: Proofs of the lemmas

Lemma 9. K,GCG

Proof. K;G = {wlkig € w} = {w|(kig) A (kig — g) € w}, since k;g — g is a
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tautology and is therefore in all w. Then since each w is a list closed under
modus ponens, {w|(k;g) A (kig — g) € w} =

{wl(kig) A (kig — g) A (9) € w} C{wlg € w} =G, O
Lemma 8*. K; ~ K;F C~ K;F

Proof. By Lemma 9, with G =~ K;F. O
Lemma 7. CF CF

Proof. CF = () E"F = () {w|e"f € w}. From tautologies (k), (1), and (e)
neN neN
another tautology, e f — f, is derivable, and this fact in conjunction with

the closure of the w’s under modus ponens yields that () {w|e"f € w} =
neN

NAwle"Hn(e"f = HN() ewt € N{wlf ewt ={w|f ew}=F. O

neN neN

Lemma 6. K;GNK;F = K;(GNF)

Proof. K;GNK;F ={wlkig € wyn{w|kif e w}. g— (f = (gAf)) € w for
all w, since it is a propositional tautology, and since the set of tautologies is
epistemically closed, also k(g — (f — (g A f))) € w for all w. By tautology
(f), then, k;f — ki(9 = g A f) € w for all w, and by propositional logic and
(f) again, also for all w, k;f — (kig — kig A f) € w. Then K;G N K;F =
{wlkighkif € w} = {w|(kigNkif)N(kif — (kig — kigNf)) € w} , and since
all w are logically closed, this is equal to {w|k;f A g € w}= K;(GNF). O

The following corollary to Lemma 6 is needed for the proof of Lemma 4:

Corollary 1. For any |X| € N, where X is any index set, (| K;Fy =

xeX
Ki N Fo.
zeX

Proof. By induction on |X|. For the base case, Lemma 6 shows that when
‘X‘ = 2, ﬂ K, F, = K; n F, since K;G1 N K;Gy = KZ(Gl N GQ) Now

zeX reX
suppose that for some |X| =k, (| K;F, = K; () Fy. It remains to be show
zeX zeX
that the equality () K;F, = K; [\ F, holds for X* = X U {z}, where
yeX* yeX*

| X*| =k +1.



7 APPENDIX: PROOFS OF THE LEMMAS 20

N KiFy = () KiF;)N(K;F;). By the induction hypothesis, this is equal
yeX* rzeX
to (K;( () F»))NK,F,. Since this reduces the problem to the base case, this

zeX
is equal to K;(( () Fz) N (F%)) = K; () Fy. Then for any | X|, (| K;F, =
zeX yeX* rzeX
B& r} P&- O

rzeX

Lemma 4. CF = K;CF

Proof. By Lemma 9, K;CF C CF.
For the other inclusion: CF = (| E"F = () {wle"f € w}. By the tau-

neN neN
tology (n), this is equal to () {w| A kie" 1f € w}= N N KE"'F C
neN 1EN 1€NneN

N K;E"~'F. By Corollary 1, this is equal to K; () E""'F. Since |N| -1 =
neN neN

IN|, (| E""'F = (| E"F. Therefore K; (] E""\F = K; (| E"F = K;CF.

neN neN neN neN
Then CF C K;CF.
It follows that CF = K,;CF. L]

Lemma 5. If G C F then K;G C K;F

Proof. If G C F then {w|g € w} C {w|f € w}. Then g € w implies [ € w,
and so g — f € w for all w since the w are complete and coherent. Then
{wlg = f € w} = Q, so g — [ is a tautology. Since the tautologies are
epistemically closed, then {w|ki(g — f) € w} = Q. Then by tautology (f),
the distribution axiom, {w|k;g — k;f € w} = Q, so K;G C K, F. O

Lemma 10. BIY C K;BI" for all nodes v of player i.

Proof. Suppose that for any node v, player i is to act at v. Then the event

that ¢ makes the backward inductive choice at v, BI" = [s} = b"]. Call
B; C S; the subset of i’s strategies at which s7 = b". Then the event that
s; = bY is the set of worlds at which a strategy t; € B; is chosen. So

where s; : {(S})1<az<|s,/} — Si is the function from strategy choice-events to

strategies, [s¥ = 0] = | s;'(t;). Bach s;*(t;) = S7 for some 1 < 2 < |Sj],
t,€B;

where S7 = {w[s} € w}. Then by tautologies (e) and (h) and the fact that

each w is logically closed, S7 = {w|s? As? < kis? € w} = {wl|kis? € w}.
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Therefore S7 = K;S7. Since each S} is an event that ¢’s strategy makes

the backward inductive choice at the node v, S7 € BIY. Then by Lemma 5,

since S7 = K;S?, K;S? C K;BI" for all z. Therefore BIV = | JS? = [JK;S? C
z z

K;BIY (where z = {r\si_l(ti) = S/ for some ¢; € B;}). Then BIV C K;BI"
for all nodes v of each player i. O
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