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Abstract

We present a novel formulation of CPL, a constructive logic of prov-
ability that is closely connected to the Gödel-Löb logic of provability.
Our logical formulation allows modal operators to talk about both
provability and non-provability of propositions at reachable worlds. We
use this logic as a basis for a discussion of negation in logic program-
ming.

1 Introduction

Consider the following propositions:

edge(X,Y ) ⊃ edge(Y,X)

edge(X,Y ) ⊃ path(X,Y )

edge(X,Y ) ⊃ path(Y,Z) ⊃ path(X,Z)

By treating these propositions as a bottom-up logic program, we can take
a description of the edge relation and compute its symmetric, transitive clo-
sure as the path relation by making repeated forward inferences. Once the
only facts we can derive are facts we already know — for instance, once we
have edge(a, b), edge(b, a), path(a, b), path(b, a), path(a, a), and path(b, b) —
we say we have reached saturation.

Next, consider the following proposition:

path(X,Y ) ⊃ ¬edge(X,Y ) ⊃ noedge(X,Y )
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2 Logic Programming in Constructive Provability Logic

Intuition says that this is meaningful and that, given our example, we
should be able to prove, for instance, noedge(a, a) and noedge(b, b). A bottom-
up logic programming semantics based on stratified negation verifies this in-
tuition. In a stratified logic program such as this one, we derive all the con-
sequences of the first three rules until saturation is reached. At this point,
we know that our database of facts contains everything there is to know
about the edge and path relations. When considering the negated premise
¬edge(X,Y ) in the fourth rule, we simply check the saturated database and
conclude that the premise holds if the fact does not appear in the database.

Stratified negation would, however, disallow the addition of the follow-
ing rule as paradoxical or contradictory:

path(X,Y ) ⊃ ¬edge(X,Y ) ⊃ edge(X,Y )

In this report, we consider a constructive modal logic that can be used to
give meaning to stratified negation. We call this logic CPL, for constructive
provability logic, for two reasons. The first is its connection to the Gödel-
Löb modal logic of provability, and the second is the fact that our modal
operators give us the ability to reflect on logical provability at accessible
worlds. We will discuss both of these points in turn.

Relationship to the provability logic of Gödel-Löb One of the critical
consequences of the design of our logic is that the accessibility relation
must be converse well-founded (defined in Section 2.1). This is a bit of an odd
requirement, and we are aware of no axiom scheme that gives a characteri-
zation of this class of Kripke structures. However, when combined with the
fairly pedestrian requirement that the accessibility relation be transitive, the
resulting logic validates the axioms of the Gödel-Löb logic of provability,
which is known variously as GL, Pr, KW, and K4W and is characterized
by the following three axioms:

• K : �(A ⊃ B) ⊃ �A ⊃ �B,

• 4 : �A ⊃ ��A,

• and GW : �(�A ⊃ A) ⊃ �A.

KW is an important logic for a number of reasons, and has been previ-
ously used for investigations of negation in logic programming by Gabbay
in [Gab91]. Gabbay argued that a modal interpretation of logic programs
must be based on either KW or a temporal modal logic; he then chose the
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former because it intuitively corresponds with the idea that logic program-
ming is about a search strategy for proofs.

While we will focus in this report on the use of CPL in the study of
logic programming, the connection between CPL and KW is also interest-
ing because necessitation in KW is essentially the same as the approxima-
tion modality that can be used to give semantic models to programming
languages with recursive types and other traditionally difficult-to-model
language features [Ric10, AMRV07].

Logical reflection on provability The logic CPL that we present combines
a familiar way of reasoning about truth at any particular world with a pow-
erful ability to reason about provability at accessible worlds.

Existing sequent calculi for modal logic, such as Pfenning-Davies S4
[PD01] or Simpson’s intuitionistic Kripke semantics [Sim94], treat an as-
sumption “�A is true at world w” as license to assume that A is true at all
worlds w′ accessible from w. In our logic, however, the assumption “�A is
true at worldw” does not act as an assumption thatA is true at all accessible
worlds so much as it acts as an assertion that A is provable at all accessible
worlds. In particular, if we have an assumption “�A is true at world w”
and there is some w′ accessible from w where A is not provable using the
currently assumed facts about w′, then the assumption �A is contradictory
and can be used (like any other form of contradiction) to conclude any fact
at w. Given the ability to reflect over provability at accessible worlds, it is
then natural to consider a modality for non-provability at accessible worlds
— it is this modality that can be used as an explanation for stratified nega-
tion in logic programming.

1.1 Outline of this report

This report has two parts. Our primary contribution, the presentation and
machine-checked formalization of CPL and its metatheory, can be found in
Section 2. In Section 3 we discuss the use of CPL as a logical justification for
constructive negation in logic programming, and in Section 4 we conclude
with a substantial discussion of future work suggested by our investiga-
tions.
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4 Logic Programming in Constructive Provability Logic

2 The constructive provability logic CPL

In this section, we propose a constructive provability logic which we call
CPL. The distinguishing feature of CPL is that it allows for a proposition
at any particular world to reflect over not truth, but provability at accessible
worlds.

In the following two sections we motivate and present CPL as an odd
sort of intuitionistic modal logic that, when given any transitive Kripke
frame, validates the axioms of the Gödel-Löb logic of provability. Then in
Section 2.3 we will present the full propositional sequent calculus for CPL,
including a modal operator for constructive negation and connectives cap-
turing provability and non-provability at specific worlds. In Section 2.4 we
discuss the metatheory of CPL, and in Section 2.5 we discuss the formaliza-
tion of this metatheory in the dependently-typed programming language
Agda [Nor07].

2.1 Basic CPL

The genesis of CPL was an exploration of constructive negation in modal
logic, and we considered and took ideas from the study of Judgmental S4
[PD01], adjoint logic [Ree09], intuitionistic Kripke semantics [Sim94], and
tethered modal logics [Pfe10]. The result is a system that is quite different
from any of these existing systems.

Towards a logic of provability Consider the introduction rule defining
modal ♦ in a Simpson-style intuitionistic Kripke semantics (we write “w1 ≺
w2” to indicate that the world w2 is accessible from the world w1):

w ≺ w′ Γ ` A[w′]

Γ ` ♦A[w]
♦R

Following Simpson, we can give a left rule for ♦ that posits a new future
world where A is true:

Γ,♦A[w], αworld , w ≺ α,A[α] ` J

Γ,♦A[w] ` J
♦LI

The introduction rule is in harmony with the elimination rule in the
sense that the logic is sound (given a proof of ♦A[w] and another proof
that uses the assumption ♦A[w] to prove something else, there’s a proof of
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that something else that doesn’t use the assumption) and complete (an as-
sumption of ♦A[w] can be used to prove ♦A[w]). However, these standard
metatheoretic results, while absolutely necessary, are not always sufficient
to ensure that we are satisfied with our logical definition.

As an example of where our dissatisfaction might arise, consider the fol-
lowing accessibility relation (where the arrows point to accessible worlds,
so δ ≺ γ and β ≺ α):

α γ
β δ

Given this setting, a Simpson-style modal logic provides no way of
proving the following sequent:

♦A[δ], A ⊃ B[α], A ⊃ C[γ] ` ♦(B ∧ C)[δ]

The sequent is unprovable because the assumption ♦A[δ] can only be used
to posit some new world δ′ and generate the additional hypothesis that
δ ≺ δ′ and that A is true at δ′. But this hardly seems fair! The assumption
♦A[δ] means that A is true at some world accessible from δ, and we know
what worlds are accessible from δ: there are two of them, α and γ. If A is
true at α then we can prove the sequent. . .

. . . ` A[α]
hyp

δ ≺ α

. . . , B[α] ` B[α]
hyp

. . . , B[α] ` B ∨ C[α]
∨R1

. . . , B[α] ` ♦(B ∨ C)[δ]
♦R

A[α], A ⊃ B[α], A ⊃ C[γ] ` ♦(B ∨ C)[δ]
⊃L

. . . and if A is true at γ the we can also prove the sequent. . .

. . . ` A[γ]
hyp

δ ≺ γ

. . . , C[γ] ` C[γ]
hyp

. . . , C[α] ` B ∨ C[γ]
∨R2

. . . , C[α] ` ♦(B ∨ C)[δ]
♦R

A[γ], A ⊃ B[α], A ⊃ C[γ] ` ♦(B ∨ C)[δ]
⊃L

So why can we not combine these two facts to prove ♦(B ∨ C)[δ] from
the assumption ♦A[δ]? Simpson’s intuitionistic Kripke semantics demand
not just provability but uniform provability, and the reasoning above is non-
uniform: essentially, we perform a case analysis on the accessibility relation
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6 Logic Programming in Constructive Provability Logic

and return an entirely different proof in each branch. If we want to express
a non-uniform rule, we can write the rule as follows:

∀w′.(w ≺ w′)⇒ Γ,♦A[w], A[w′] ` J

Γ,♦A[w] ` J
♦LE

The premise of ♦LE demands not a derivation but a function from proofs
that there is somew′ such thatw ≺ w′ to proofs that Γ,♦A[w], A[w′] ` J . We
generally think of such functions as being defined by case analysis with a
separate branch for eachw′ accessible fromw. However, this is only a rough
analogy: there is no reason that w could not have an infinite number of
successors, which would mean the “case analysis” would have an infinite
number of branches (and would realistically have to be defined in some
other way, perhaps parametrically as in ♦LI or perhaps by induction, if
worlds are represented by something like natural numbers).

We moved from an uniform modal logic to an non-uniform modal logic
when we elevated the process of reasoning about the accessibility relation
from an hypothesis within the logic to an assumption about the accessibility
relation. We move from an intuitionistic modal logic to a constructive logic
of provability when we do the same for provability. Instead of adding the
hypothesis A[w′] as in rule ♦LE , we can consider the following rule:

∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ Γ,♦A[w] ` J

Γ,♦A[w] ` J
♦LX

As it turns out, this rule is unreasonable: Γ ` A[w′] is a negative occurrence of
the judgment Γ ` J , which is disallowed when we are defining what Γ ` J
means in the first place. We can solve this problem if the accessibility rela-
tion is converse well-founded (sometimes called upwards well-founded), mean-
ing that there is no infinite ascending chain w1 ≺ w2, w2 ≺ w3, w3 ≺ w4,
. . . in the accessibility relation. In this case, we can consider the meaning
of Γ ` A[w′] to be entirely established before we consider the meaning of
Γ ` A[w]. Using this observation, we can correct the broken rule ♦LX by
tethering the premise to the conclusion:

∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ Γ,♦A[w] ` C[w]

Γ,♦A[w] ` C[w]
♦L

We can now give a sequent calculus presentation of CPL (Fig. 1). The
right and left rules for ♦ are those that follow from the previous discussion.
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Γ, Q[w] ` Q[w]
hyp (Q is an atomic proposition)

Γ, A[w] ` B[w]

Γ ` A ⊃ B[w]
⊃R

Γ, A ⊃ B[w] ` A[w] Γ, A ⊃ B[w], B[w] ` C[w]

Γ, A ⊃ B[w] ` C[w]
⊃L

∀w′.(w ≺ w′)⇒ (Γ ` A[w′])

Γ ` �A[w]
�R

(∀w′.(w ≺ w′)⇒ (Γ ` A[w′]))⇒ Γ,�A[w] ` C[w]

Γ,�A[w] ` C[w]
�L

w ≺ w′ Γ ` A[w′]

Γ ` ♦A[w]
♦R

∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ (Γ,♦A[w] ` C[w])

Γ,♦A[w] ` C[w]
♦L

Figure 1: Sequent Calculus for CPL

Similarly, the right rule for � has as its premise a function that, for any
successor of w′, produces a proof of A at that world. The left rule for �
may be surprising: it states that we are justified in using an assumption
�A[w] to conclude proposition C at world w if we can produce a higher-
order function that, given a function that for any successor of w provides a
proof of A at that world, produces a proof of C.

The usual interpretation for a left rule for � is that it should capture the
non-uniform interpretation of a universal quantifier:

w ≺ w′ (Γ ` A[w′])⇒ (Γ,�A[w] ` C[w])

Γ,�A[w] ` C[w]
�L0

However, it turns out that such a rule would be very nearly too weak in
terms of the metatheory of our logic, further requiring our accessibility re-
lation to be finitely branching. We thus adopted this version of �L since not
only does it cleanly handle infinitely branching accessibility relations, but
also because it is equivalent to the less surprising �L0 (assuming a finite
branching accessibility relation).

2.2 Axiomatic CPL and KW

In this section, we attempt to clarify what kind of modal logic CPL actu-
ally is. An upwards well-founded accessibility relation cannot be reflexive,
so the axiom T , which characterizes reflexivity in the accessibility relation,
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8 Logic Programming in Constructive Provability Logic

will not (and cannot) hold. However, under the condition that the accessi-
bility relation is transitive (that is, if axiom 4 holds), the previously men-
tioned axiom GL characterizing KW holds.

A key concept for the proof of Theorem 1 (and for some of our metathe-
oretical results) is that since we know the accessibility relation to be pre-
determined and upwards well-founded, we can prove properties of our
logic by using a induction principle over the accessibility relation itself;
in fact, the way we require the accessibility relation to be upwards well-
founded is by forcing it to admit just such an induction principle.

Definition 1 (Upwards well-founded accessibility relation). The accessibil-
ity relation w ≺ w′ is upwards well founded if, for any property P (w), we can
conclude that P (w) is true at every world if we know that, at every world w, P (w)
is true under the assumption that P (w′) is true at every w′ such that w ≺ w′.

Theorem 1. For all Γ, A, B, C, and w, the following hold:

• MP — Γ ` A[w] and Γ ` A ⊃ B[w] implies Γ ` B[w].

• ⊃S — Γ ` (A ⊃ B ⊃ C) ⊃ (A ⊃ B) ⊃ A ⊃ C[w].

• ⊃K — Γ ` A ⊃ B ⊃ A[w].

• ⊃I — Γ ` A ⊃ A[w].

• �K — Γ ` �(A ⊃ B) ⊃ �A ⊃ �B[w].

• 4 — If the accessibility relation is transitive, Γ ` ��A ⊃ �A[w].

• GL — If the accessibility relation is transitive, Γ ` �(�A ⊃ A) ⊃ �A[w].

Proof. By induction on the accessibility relation. As an example, modus po-
nens is derivable without recourse to the induction hypothesis at any world
by using cut, identity, and weakening (which we discuss in Section 2.4). We
can then prove �K by applying ⊃R twice, �L twice, �R and modus ponens
at the accessible world introduced by the �R rule.

Not unexpectedly, the only essential use of the induction hypothesis is
in the proof of axiom GL, which is itself an induction principle!

Theorem 1 also serves to establish the necessitation rule: ifA is provable
from modus ponens and the axioms of either K or GL (and if, in the latter
case, the accessibility relation is transitive), then for all Γ and w, Γ ` A[w].
But this also means that Γ ` A[w′] at every world w′ accessible from w, so
Γ ` �A[w].
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Γ ` >[w]
>R

Γ ` A[w] Γ ` B[w]

Γ ` A ∧B[w]
∧R

Γ, A ∧B[w], A[w] ` C[w]

Γ, A ∧B[w] ` C[w]
∧L1

Γ, A ∧B[w], B[w] ` C[w]

Γ, A ∧B[w] ` C[w]
∧L2

Γ,⊥[w] ` C[w]
⊥L

Γ ` A[w]

Γ ` A ∨B[w]
∨R1

Γ ` B[w]

Γ ` A ∨B[w]
∨R2

Γ, A ∨B[w], A[w] ` C[w] Γ, A ∨B[w], B[w] ` C[w]

Γ, A ∧B[w] ` C[w]
∨L

Figure 2: Sums and products in CPL

2.3 Full CPL

Having presented the core of the modal logic CPL, we can extend it straight-
forwardly with all the other standard connectives of a propositional logic:
conjunction, disjunction, and their units. This is done in Figure 2, and it
offers no surprises. More interestingly, we can define new connectives us-
ing CPL’s ability to reason about provability at accessible worlds. The first
such connective is a modality of constructive negation similar to �.

Consider our justification of �A at a world w. The proposition �A is
true in CPL at world w if A is provable in all worlds accessible from w. We
will define constructive negation in a similar manner: ¬A is true at a world
w if, for every world accessible from w, a proof of A entails a metalevel
contradiction (written as 0):

∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ 0

Γ ` ¬A[w]
¬R

Similarly to �L, the left rule for negation uses a higher-order function in its
premise.

(∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ 0)⇒ Γ,¬A[w] ` C[w]

Γ,¬A[w] ` C[w]
¬L

We understand ¬L as follows: we can use ¬A[w] to conclude C[w] if we can
produce a function that, given a function that derives a contradiction from
A being true at any world accessible from w, can produce a proof of C.

As we will see, the metatheory that ultimately shows that our logic is
reasonable is compatible with this interpretation of negation. We believe
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10 Logic Programming in Constructive Provability Logic

that this leads to a very general and satisfyingly proof-theoretic treatment
of negation from a logic programming point of view, as discussed in Sec-
tion 3.

Provability at particular worlds Our � and ♦ modalities deal with prov-
ability at all accessible worlds and at one arbitrary accessible world, re-
spectively. Similarly, our interpretation of negation deals with a lack of
provability at all accessible worlds. Describing logic programming with
the modal operators defined so far is not especially natural, since we gen-
erally think of an atomic proposition as being provable (or disprovable) in
one particular way. We could map atomic propositions onto a linear acces-
sibility relation and use the repeated application of ♦ to point back to the
correct world whenever we need to refer to truth or falsehood of a fact that
lives at the (eventually) accessible world. This, however, is not a particu-
larly satisfying explanation.

A better solution is obtained by introducing two new propositions: A@w
and A 6@w. The former refers to provability of A at a particular accessible
worldw, and the latter refers to non-provability ofA at the accessible world
w. The rules giving meaning to these propositions are straightforward (we
use Γ 0 A[w] as shorthand notation for (Γ ` A[w])⇒ 0):

w ≺ w′ Γ ` A[w′]

Γ ` A@w′[w]
@R

w ≺ w′ (Γ ` A[w′])⇒ (Γ, A@w′[w] ` C[w])

Γ, A@w′[w] ` C[w]
@L

w ≺ w′ Γ 0 A[w′]

Γ ` A 6@w′[w]
6@R

w ≺ w′ (Γ 0 A[w′])⇒ (Γ, A 6@w′[w] ` C[w])

Γ, A 6@w′[w] ` C[w]
6@L

Using these connectives, programs can then be annotated with refer-
ences to appropriate worlds. We postpone a further discussion of these
connectives to Section 3.1, and proceed with a presentation of the metathe-
ory of CPL.

2.4 Metatheory of CPL

So far, we have motivated and presented all the rules of our logic. Before
proceeding to the application of CPL in logic programming, we must first
show that the logic is indeed a reasonable logic. The usual way to do this
is by exploring its metatheoretic properties, ultimately showing that we
have developed a logic that is indeed globally sound and complete, which
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follows from the metatheoretical properties of admissibility of Identity and
Cut.

All the results in this section were implemented in Agda with contexts
represented as lists of assumptions. This fact accounts for several of the
slightly non-standard features of our development such as the definition of
Γ ∼ Γ′ at w.

2.4.1 Irrelevance of hypotheses at unreachable worlds

The logic we defined allows the context to contain propositions at arbi-
trary worlds, and the existence of constructive negation as a modal oper-
ator means that weakening cannot hold at accessible worlds: if we have
Γ ` ¬A[w] and w ≺ w′, then Γ, A[w′] ` ¬A[w] is not true! But what about
hypotheses at inaccessible worlds? When we introduced our system of re-
flecting over provability at other worlds, we said that in order for provabil-
ity at w to be defined, we must first fix the definition of provability at all
worlds accessible from w. Therefore, if w ≺ w′, assumptions at world w
should not be able to have any affect whatsoever on provability at world
w′. The irrelevance theorem verifies the intuition that if w ≺ w′ then there
is a proof of Γ ` A[w′] if and only if there is a proof of Γ, A[w] ` A[w′].

We develop the proof of irrelevant weakening and strengthening by
first defining a notion of equivalence of contexts at a given world.

Definition 2 (Context Equivalence). Context equivalence at a world w, writ-
ten Γ ∼ Γ′ at w, is inductively defined by the following rules, where w 6≺ w′ de-
notes that there does not exist any chain of accessible worlds w ≺ w1 . . . wn ≺ w′.

• · ∼ · at w, for any w.

• If Γ ∼ Γ′ at w and w 6≺ w′ then Γ ∼ (Γ′, A[w′]) at w, for any A and w′.

• If Γ ∼ Γ′ at w and w 6≺ w′ then (Γ, A[w′]) ∼ Γ′ at w, for any A and w′.

• If Γ ∼ Γ′ at w then (Γ, A[w′]) ∼ (Γ′, A[w′]) at w, for any A and w′.

We can now properly state a general property about weakening and
strengthening of hypotheses that are irrelevant from the perspective of the
world we are considering.

Theorem 2 (Irrelevance of hypotheses at unreachable worlds).

• If Γ ∼ Γ′ at w and Γ ` A[w] then Γ′ ` A[w].

Proof. The proof follows by structural induction on the proof of Γ ` A[w]
and by induction on the accessibility relation.
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12 Logic Programming in Constructive Provability Logic

2.4.2 Weakening and Exchange

As expected, the usual structural properties of weakening and exchange
hold in our system. These properties follow from a more general theorem
that is easier to establish within the Agda proof assistant. The informal
idea of this theorem is we can extend, contract, and rearrange elements in a
context freely so long as those changes pertain only to the particular world
we are referring to. We denote by Γ�w the judgment that context Γ only
holds assumptions of the form A[w].

Theorem 3 (Generalized Tethered Weakening).

• For all Γ,Γ′ and Ψ, if Γ ⊆ Γ′, Γ′�w and Ψ,Γ ` A[w] then Ψ,Γ′ ` A[w].

Proof. The proof follows by structural induction over the derivation of Γ,Ψ `
A[w].

The following are all immediate corollaries of Theorem 3:

• Tethered weakening: Γ ` C[w] implies Γ, A[w] ` C[w],

• Tethered exchange: Γ, A[w], B[w] ` C[w] implies Γ, B[w], A[w] ` C[w],
and

• Tethered contraction: Γ, A[w], A[w] ` C[w] implies Γ, A[w] ` C[w].

2.4.3 Identity

A logic can only be called such if it is globally complete. Global complete-
ness states that the left rules of the system are strong enough to decom-
pose a complex formula down to its atomic propositions (which can then
be concluded by the hypothesis rule) and is embodied by the admissibility
of Identity.

Theorem 4 (Admissibility of identity). For all A, Γ, A[w] ` A[w].

Proof. By structural induction on A. The cases for implication, conjunction,
disjunction and atomic propositions are standard. We present here some of
the more interesting cases:

Case: (A = ¬A)
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F :: (∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ 0)⇒ Γ,¬A[w] ` A[w]
by the following hypothetical reasoning:

Assume D0 :: (Γ ` A[w′])⇒ 0 for an arbitrary w′ such that w ≺ w′

D1 :: (Γ ` ¬A[w]) by ¬R
D1w :: (Γ,¬A[w] ` ¬A[w]) by weakening on D1

F ′ :: (Γ,¬A[w] ` ¬A[w]) by ¬L on F

Case: (A = �A)

F :: (∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ Γ,�A[w] ` �A[w])
by the following hypothetical reasoning:

Assume D0 :: (∀w′.(w ≺ w′)⇒ Γ ` A[w′])
D1 :: (Γ ` �A[w]) by �R on D0

D1w :: (Γ,�A[w] ` �A[w]) by weakening on D1

F1 :: (Γ,�A[w] ` �A[w]) by �L on F

Case: (A = ♦A)

F :: (∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ Γ,♦A[w] ` ♦A[w])
by the following hypothetical reasoning:

Assume D0 :: (Γ ` A[w′]) for an arbitrary w′ such that w ≺ w′

D1 :: (Γ ` ♦A[w]) by ♦R on D0

D1w :: (Γ,♦A[w] ` ♦A[w]) by weakening on D1

F1 :: Γ,♦A[w] ` ♦A[w] by ♦L on F

2.4.4 Cut elimination

Finally, we insist that a reasonable logic be not only globally complete, but
also globally sound. Global soundness in this setting follows from the proof
of admissibility of cut. It is particularly interesting that Theorem 5 can be
proved independently of cut admissibility at any other world.

Theorem 5 (Admissibility of tethered cut).

• If Γ ` A[w] and Γ, A[w] ` C[w] then Γ ` C[w]

Proof. Lexicographic induction over A, the first derivation, and the second
derivation. We present the most interesting (principal) cases:
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Case: (A = A ⊃ B)

D =

D1

Γ, A[w] ` B[w]

Γ ` A ⊃ B[w]
⊃R

E =

E1
Γ, A ⊃ B[w] ` A[w]

E2
Γ, A ⊃ B[w], B[w] ` C[w]

Γ, A ⊃ B[w] ` C[w]
⊃L

D′ :: Γ ` A[w] i.h. on A ⊃ B, D and E1
D′

1 :: Γ ` B[w] i.h. on A, D′ and E1
Dw :: Γ, B[w] ` A ⊃ B[w] by weakening on D
E ′2 :: Γ, B[w] ` C[w] i.h. on A ⊃ B, Dw and E2
F :: Γ ` C[w] i.h. on B, D′

1 and E ′2

Case: (A = ♦A)

D =

D1

w ≺ w′
D2

Γ ` A[w′]

Γ ` ♦A[w]
♦R

E =

E1
∀w′.(w ≺ w′)⇒ (Γ ` A[w′])⇒ Γ,♦A[w] ` C[w]

Γ,♦A[w] ` C[w]
♦L

F1 :: ((Γ ` A[w′])⇒ Γ,♦A[w] ` C[w]) by E1(D1)
F2 :: (Γ,♦A[w] ` C[w]) by F1(D2)
F3 :: (Γ ` C[w]) i.h. on ♦A, D and F2

Case: (A = ¬A)

D =

D1

∀w′.(w ≺ w′)⇒ (Γ ` A[w′]⇒ 0)

Γ ` ¬A[w]
¬R

E =

E1
w ≺ w′

E2
(Γ ` A[w′]⇒ 0)⇒ (Γ,¬A[w] ` C[w])

Γ,¬A[w] ` C[w]
¬L
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F1 :: (Γ ` A[w′]⇒ 0) by D1(E1)
F2 :: (Γ,¬A[w] ` C[w]) by E2(F1)
F3 :: (Γ ` C[w]) i.h. on ¬A, D and F2

Case: (A = �A)

D =

D1

∀w′.(w ≺ w′)⇒ Γ ` A[w′]

Γ ` �A[w]
�R

E =

E1
(∀w′.(w ≺ w′)⇒ (Γ ` A[w′]))⇒ Γ,�A[w] ` C[w]

Γ,�A[w] ` C[w]
�L2

F1 :: (Γ,�A[w] ` C[w]) by E1(D1)
F2 :: (Γ ` C[w]) i.h. on �A, D and F1

2.5 Formalization of CPL and its metatheory

All of the results discussed up to this point have been formalized in the
Agda proof assistant. In this section, we will discuss several aspects of this
formalization.

Positivity The definition of the logic itself is the only point at which our
formalization is not fully verified by the proof assistant, and for precisely
the reasons we discussed in our development of the left rule for ♦. The
well-foundedness of our logic definition is entirely dependent on the well-
foundedness of our accessibility relation, and Agda is unable to verify that
our definition is not tantamount to a negative occurrence. This is unsurpris-
ing: seemingly minor changes to our logic (such as a copy rule that allowed
us to assume A[w] given an assumption of A[w′] for w ≺ w′) would break
not only the irrelevance theorem but could interfere with the consistency
of Agda itself.

For this reason, most of our results were also established in a differ-
ent style that did not push past the limits of Agda’s positivity checker. In
this alternate formalization, provability at each world was defined inde-
pendently in an Agda module that took as an argument an unspecified
entailment relation at each of an unspecified number of reachable worlds.
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Then, given a finite accessibility relation, the logic could be instantiated
“by hand” by instantiating the logic at all worlds with no other accessible
worlds and then working backwards.

In this setting, the proof of every result established by induction on
the accessibility relation (such as the irrelevance of unreachable hypotheses
and the validity of axiom GL given a transitive accessibility relation) was
rather unpleasant. The truth of the theorem at all accessible worlds (the in-
duction hypothesis) needed to be passed as an argument to the module and
then verified at the present world within the module. This was an impor-
tant stage in the development of CPL, but once we had established that the
logic made sense in a fully-verified setting, we found it much more pleas-
ant to use the uniform version of the logic that does not pass Agda’s posi-
tivity checker, allowing us to use infinite (but still upwards well-founded)
accessibility relations.

Justifying cut elimination Agda verifies the termination arguments for
recursive proofs entirely by structural induction — in its simplest form,
this requires that one of the arguments to the recursive call is be a strict
subterm of one of the arguments to the function. However, if we consider
the principal cut for ♦A in the proof of cut elimination, what validates the
invocation of the induction hypothesis on ¬A[w], D, and F2? It is the fact
that F2 = (E1(D1))(D2) which we take to be smaller; the function E1 is a
subterm of the larger proof E , and the arguments to the function are un-
derstood as merely selecting the particular smaller proof that we need; any
one of these proofs is a subterm of E .

Primarily because of the complexity of the termination arguments for
the proof of cut admissibility, the Agda formalization of our metatheoretic
results was critical to our confidence in the language’s consistency. How-
ever, the validation of our termination arguments came at high cost. Many
cases of cut elimination (such as the principal cut for implication) rely on
the structural properties of weakening and exchange, and Agda does not
consider a subderivation of D with weakening applied to it to be a sub-
derivation of D for the purposes of cut elimination.

Our solution to this, which was straightforward if relatively high-effort,
was to create a copy of the logic that is indexed by a structural metric that
captures the shape of the derivation. A stronger version of the weaken-
ing and exchange lemmas was then proved; this stronger lemma asserts
that the application of weakening and exchange does not change the met-
ric representing the shape of the derivation. By proving cut elimination for
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the metric-endowed logic, Agda was able to verify that in every case the
shape of the derivation (if not the derivation itself) became smaller. Finally,
to establish cut for the logic as originally defined, we wrote two functions
that added and stripped the metric as needed. The higher-order aspects of
our derivation made the structural metric rather involved; we refer readers
to our Agda formalization for details.1

3 Logic programming in CPL

In this section, we consider the use of CPL as a way of understanding
negation in logic programming. In Section 3.1 we describe how Horn pro-
grams with negation can be translated into stratified CPL programs, and in
Section 3.2 we discuss how both backward-chaining and forward-chaining
proof search (as well as a mixture of the two) could be used as a basis for
implementing logic programming in CPL.

The examples in this section consider a first-order extension of CPL
with universal quantification. We did not formalize first-order CPL in Agda
as this would have introduced technical complications, but the inclusion is
not problematic from a logical perspective:

Γ ` A(α)[w]

Γ ` ∀x.A(x)[w]
∀αR

Γ, ∀x.A(x)[w], A(t)[w] ` C[w]

Γ,∀x.A(x)[w] ` C[w]
∀L

In terms of the operational semantics of a logic programming language,
there can be significant issues with the addition of quantification. Quantifi-
cation in logic programming is generally implemented by the introduction
of metavariables that are subject to instantiation, and it is often not possi-
ble to give a good logical account for the use of metavariables (especially
when mixing forward-chaining and backward-chaining). In order to avoid
consideration of the interaction of metavariables and the modalities, we
impose an operational requirement on proof search: queries about prov-
ability or non-provability at accessible worlds must be ground. This means
that when the logic programming interpreter encounters a subgoal about
provability at an accessible world, that subgoal can no longer contain any
metavariables. Existing techniques for mode checking in logic program-
ming can be utilized to verify this requirement [RP96], and we do not con-
sider such analyses here.

1The code is available from a public Subversion repository. To access the code, type the
command svn co https://svn.concert.cs.cmu.edu/lollibot/papers/modlog/cpl/ at
the command line of any machine with Subversion.
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3.1 Logic programming with explicit worlds

In this section, we will consider a modified version of the logic program
with stratified negation from the introduction (conjunction ∧ binds tighter
than implication ⊃):

edge(X,Y ) ⊃ edge(Y,X)

edge(X,Y ) ⊃ path(X,Y )

edge(X,Y ) ∧ path(Y, Z) ⊃ path(X,Z)

path(X,Y ) ∧ ¬edge(X,Y ) ⊃ noedge(X,Y )

path(X,Y ) ⊃ vertex(X)

¬path(X,Y ) ⊃ disconnected(X,Y )

We can explain the meaning of this logic program by interpreting it into
a Horn-like fragment of CPL. In order to define the Horn-like fragment
of CPL we first must present a function W from atomic propositions Q to
worlds. A well-formed Horn clause at a world w is defined inductively in
terms of W :

Q wf-horn w iff W (Q) = w

A ⊃ Q wf-horn w iff W (Q) = w and A wf-premise w

Q wf-premise w iff W (Q) = w

Q@w′ wf-premise w iff W (Q) = w′ and w ≺ w′

Q 6@w′ wf-premise w iff W (Q) = w′ and w ≺ w′

A ∧B wf-premise w iff A wf-premise w and B wf-premise w

Having described well-formed Horn clauses, we need to pick some set
of worlds, an accessibility relation, and a mapping from worlds to atomic
propositions. The only constraints on this selection are that the result has to
be consistent with the uses of negation in the original logic program. The
following accessibility relation and assignment of atomic propositions to
worlds works for our example, though it is not the only possibility:

α
edge(X,Y )
path(X,Y )

γ
vertex(X)

β
noedge(X,Y )

δ
disconnected(X,Y )
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Now we can appropriately annotate our program with references to the
correct worlds and locate each rule at the world where its conclusion be-
longs. Each rule below is a valid Horn clause according to our definition.

(edge(X,Y ) ⊃ edge(Y,X)) @α

(edge(X,Y ) ⊃ path(X,Y )) @α

(edge(X,Y ) ∧ path(Y,Z) ⊃ path(X,Z)) @α

(path(X,Y ) @α ∧ edge(X,Y ) 6@α ⊃ noedge(X,Y )) @β

(path(X,Y ) @α ⊃ vertex(X)) @ γ

(path(X,Y ) 6@α ⊃ disconnected(X,Y )) @ δ

It is worthwhile to note that, because the strategy we have outlined al-
ways refers to other worlds by explicit reference, requiring the accessibility
relation to be transitive comes at no cost to expressiveness. Therefore, we
can equivalently consider ourselves to be doing logic programming in CPL
or in a constructive variant of KW.

3.2 Proof search strategies

Logic programming is the use of a fixed proof search strategy that allows a
programmer to reason (formally or informally) about the behavior of proof
search. The most common proof search strategies for logic programs are
SLD resolution (which is the basis of backward-chaining logic program-
ming languages like Prolog) and hyperresolution (which is the basis of
forward-chaining logic programming languages like Datalog). When deal-
ing with Horn clauses, both of these proof search strategies are partially
correct: they are sound (the finite success of proof search means a proof
exists) and complete (the finite failure of proof search means that no proof
exists).

As long as we restrict logic programming to the Horn-like fragment
where queries Q@w and Q 6@w are only asked of ground atoms Q, both of
these search strategies can be straightforwardly extended to CPL, and their
correctness follows from the correctness of the proof search strategy and by
induction over the accessibility relation.

Forward-chaining logic programming The standard way of implement-
ing forward-chaining logic programming was sketched in the introduction:
to determine the set of propositions that are provable at world w, first use
forward-chaining logic programming to determine the set of propositions
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that are provable at all worlds accessible from w′. If and when this suc-
ceeds, then we can repeatedly derive the immediate consequences of the
set of known facts and the Horn clauses at w until no new facts can be
derived.

The immediate consequence operation takes a premise A ⊃ Q[w], de-
termines if all facts in A are currently true at w, and if so adds Q[w] to the
set of known facts. If A contains a premise Q@w′ for w ≺ w′, then by the
induction hypothesis we know that Q[w′] is provable if and only if Q[w′] is
already in the set of facts provable at w′. Similarly, if A contains a premise
Q 6@w′, that premise is satisfiable if and only if Q[w′] is not one of the facts
already determined to be true at w′.

Backward-chaining logic programming Negation as failure was a con-
cept originally associated with backward-chaining (i.e. “Prolog-style”) logic
programming. Most implementations of backward-chaining logic program-
ming with negation do not analyze for the kind of stratification condition
that forward-chaining logic programs demand and that CPL enforces, but
in the presence of this condition backward-chaining logic programming is
correct with respect to the logic [Cav91].

A CPL logic program can therefore be implemented using backward
chaining by a standard SLDNF interpreter: when proof search encounters
a subgoal Q@w′, proof search for Q can continue at the world w′. If proof
search encounters a subgoalQ 6@w′, proof search can be performed forQ at
w′, leading the subgoal to succeed precisely if proof search at w′ fails. The
correctness of the overall proof search procedure can then be established
by induction over the accessibility relation: the correctness of proof search
at world w is dependent on the correctness of proof search at all worlds
accessible from w.

Combining forward and backward chaining Because of the strong sep-
aration between provability at different worlds in CPL, it is possible to use
different proof search strategies at different worlds. In particular, as long
as “backward-chaining worlds” can access “forward-chaining worlds” but
not vice versa, proof search is entirely unproblematic; saturation can first
take place at all of the forward-chaining worlds, and then queries can be
run at the backward-chaining worlds. Whenever backward-chaining proof
search reaches a subgoal at a forward-chaining world, the set of derivable
facts at that world can be queried for the presence (or absence) of the sub-
goal. This setup is similar to strategies for credential chain discovery in
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the trust-management language RT as described by [LWM03] and imple-
mented in Lollimon [PS06]. In our running example, for instance, it would
be reasonable to set up α, β, and γ as forward-chaining worlds but to have
the world δ where disconnected is defined be a backward-chaining world:
rather than deriving all possible disconnected facts we would simply query
the set of path facts whenever we needed to know if two points were dis-
connected.

It should also be possible to have “backward-chaining worlds” accessi-
ble from “forward-chaining worlds”, though from a practical perspective
this may be difficult or undesirable. In such an extension, the immediate
consequence operation that forms the basis of forward-chaining logic pro-
gramming goes from being an operation that always terminates to an oper-
ation that might fail to return a result due to divergent backward-chaining
proof search at an accessible world. Such a change could, in practice, make
it more difficult to reason about and predict the behavior of logic programs.

4 Conclusion

We have presented the constructive provability logic CPL, a modal logic
that allows a strong form of reasoning about provability and non-provability
at accessible worlds. We developed its metatheory, which we also imple-
mented in Agda, in order to provide a solid basis for the logic, and gave
an account of using CPL as a way to understand and justify constructive
negation in a logic programming setting.

4.1 Future work

Accessible cut We have stated and formally proved the standard cut ad-
missibility statement for CPL. However, another cut admissibility state-
ment can be made regarding cut of hypotheses at accessible worlds.

Conjecture 1 (Admissibility of accessible cut).

• If w ≺ w′, Γ ` A[w′] and Γ, A[w′] ` C[w] then Γ ` C[w]

We have not formalized this theorem, though we believe the difficulties
are mainly due to technical issues of Agda related to the manipulation of
contexts as lists and apparent need for accessibility to be decidable (that
is, for any two worlds w and w′, we must be able to determine whether
w ≺ w′ or w ⊀ w′). However, we believe that the conjecture is provable
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by induction on the second derivation by appropriately using tethered cut
and irrelevance when necessary.

Formalization of logic programming results The discussion in Section 3
was largely informal, though we did attempt an Agda formalization of
some of the results in that section. This formalization was ultimately in-
complete for two reasons. The first was that we did not obtain a result of
the completeness of proof search; such a result would follow quite simply
from the completeness of a a focused [And92] (or weakly focused [PS09])
sequent calculus for CPL.

The primary reason that our Agda formalization of proof search ran
into trouble, however, was that we were not entirely clear as to the best
way to approach the problem. The following are all possibilities:

• Write a (possibly non-terminating) proof search procedure Search
and prove it (partially) correct,

• Write a (possibly non-terminating) certificate-producing proof search
procedure SearchCert,

• Write a terminating certificate-checking procedure CheckCert and prove
it correct, or

• Prove that SearchCert always produces a witness accepted by Check-
Cert.

The power of Agda’s dependent types suggests the first option: writing
a function Search which, if it terminates, will return either a derivation of
Γ ` A[w] of the desired sequent or a function (Γ ` A[w]⇒ 0) that generates
a contradiction if given such a derivation. The derivation that Agda returns
may include embedded computations (and certainly this is the case if the
sequent is unprovable!), so this procedure, while witness-producing, does
not produce a certificate that can be easily analyzed, stored, or transmitted
as data.

Therefore, we approached the problem from the perspective of writing
SearchCert and CheckCert. Writing a not-necessarily-correct program like
SearchCert is not really the intended use of Agda, however, so this pro-
cess was occasionally awkward and, in any case, fraught with all the nat-
ural perils of programming without formal guarantees. A better approach
would probably be to write Search, then CheckCert, and then finally to
write SearchCert by modifying Search to return proof terms.
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Other logic programming paradigms Because we have presented a gen-
eral logic with a modality for constructive negation, it seems possible to
use this logic to justify the support of negation in other logic programming
formalisms. For instance, as long as negated propositions only end up as
goals and never as assumptions, it would seem unproblematic to use CPL
to justify negation in a higher-order logic programming language such as
λProlog.

Additionally, we believe that the logic programming language Bed-
wyr’s use of inductive definitions can be interpreted through CPL. While
we have only considered the use of Q@w or Q 6@w as a goal, it seems like a
higher-order goal formula A⇒ B in Bedwyr could be explained in CPL as
(A@w0 ⊃ B) @w1, where w1 ≺ w0 — in this case, A@w0[w1] ends up as a
premise, a possibility we did not consider in our discussion of proof search
in CPL. We did not have time to investigate this in detail, however.

A framework for combining and reflecting on logics We presented CPL
as an extremely uniform system - the connectives act the same at every
world. But this is not the only way in which we could have defined a logic
that reflects over other logics.

Because the soundness of CPL is established independently at every
level, we could use the modal logic we defined to reason about other, com-
pletely different logics — potentially even allowing user-defined logics to
be analyzed. We could define a sound version of CPL logic with three “ac-
cessible” logics: intuitionistic logic, classical logic, and an unsound logic
where any proposition is provable. Then, ♦(A ∨ (A ⊃ ⊥)) would be true
(since the formula is provable in classical logic and the unsound logic), as
would ♦⊥ (since falsehood is provable in the unsound logic). However, the
logic would be unable to prove �(A ∨ (A ⊃ ⊥)) in general due to the fact
that this formula is not, in general, true in intuitionistic logic, one of the
three accessible logics.
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Platzer must be acknowledged for teaching us everything we know about

PROJECT REPORT MAY 9, 2010



24 Logic Programming in Constructive Provability Logic
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