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1 Introduction

In this lecture we investigate a computational interpretation of intuition-
istic proofs and relate it to functional programming. On the propositional
fragment of logic this is called the Curry-Howard isomorphism [How80].
From the very outset of the development of constructive logic and math-
ematics, a central idea has been that proofs ought to represent construc-
tions. The Curry-Howard isomorphism is only a particularly poignant and
beautiful realization of this idea. In a highly influential subsequent pa-
per, Martin-Lof [ML80] developed it further into a more expressive calculus
called type theory.

The computational interpretation of intuitionistic logic and type theory
underlies many of the applications of intuitionistic modal logic in computer
science. In the context of this course it therefore important to gain a good
working knowledge of the interpretation of proofs as programs.

2 Propositions as Types

In order to illustrate the relationship between proofs and programs we in-
troduce a new judgment:

M:A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We
will also interpret M : A as “M is a program of type A”. These dual inter-
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L2.2 Proofs as Programs

pretations of the same judgment is the core of the Curry-Howard isomor-
phism. We either think of M as a term that represents the proof of A true, or
we think of A as the type of the program M. As we discuss each connective,
we give both readings of the rules to emphasize the analogy.

We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should corre-
spond to a deduction of A true with an identical structure and vice versa.
In other words we annotate the inference rules of natural deduction with
proof terms. The property above should then be obvious.

Conjunction. Constructively, we think of a proof of A A B true as a pair
of proofs: one for A true and one for B true.

M:A N:B
(M,N): AANB

The elimination rules correspond to the projections from a pair to its
tirst and second elements.
M:ANB M:ANB

ANE ———— AF
mM:A L T M : B R’

Hence conjunction A A B corresponds to the product type A x B.

Truth. Constructively, we think of a proof of T true as a unit element that
carries now information.

—— 11

(): T
Hence T corresponds to the unit type 1 with one element. There is no
elimination rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A D B true as a func-
tion which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a func-
tion f of a variable x by writing f(z) = ... where the right-hand side “...”
depends on z. For example, we might write f(z) = 2% +z — 1. In functional
programming, we can instead write f = A\z.x2 +z — 1, that is, we explicitly
form a functional object by A-abstraction of a variable (z, in the example).
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Proofs as Programs L2.3

We now use the notation of A-abstraction to annotate the rule of impli-
cation introduction with proof terms. In the official syntax, we label the ab-
straction with a proposition (writing Au:A) in order to specify the domain
of a function unambiguously. In practice we will often omit the label to
make expressions shorter—usually (but not always!) it can be determined
from the context.

U
u: A
M : B 5
M:A.M:ADB

u

The hypothesis label u acts as a variable, and any use of the hypothesis
labeled u in the proof of B corresponds to an occurrence of u in M.
As a concrete example, consider the (trivial) proof of A D A true:

u
A true

)
AD A true

If we annotate the deduction with proof terms, we obtain

U
u: A

D)
(Aw:A.u): ADA

IU

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = v or id = (Au:A. u).

The rule for implication elimination corresponds to function applica-
tion. Following the convention in functional programming, we write M N
for the application of the function M to argument N, rather than the more
verbose M (N).

M:A>DB N:A
MN : B

DF

What is the meaning of AD B as a type? From the discussion above it
should be clear that it can be interpreted as a function type A — B. The
introduction and elimination rules for implication can also be viewed as
formation rules for functional abstraction Au:A. M and application M N.

Note that we obtain the usual introduction and elimination rules for
implication if we erase the proof terms. This will continue to be true for
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L2.4 Proofs as Programs

all rules in the remainder of this section and is immediate evidence for the
soundness of the proof term calculus, that is, if M : A then A true.
As a second example we consider a proof of (A A B) D(B A A) true.

—_— U —_— U
ANDBt ANDBt
A rue NEp A rue NEL
B true A true N
B A A true

D)
(AANB)D(BAA) true

u

When we annotate this derivation with proof terms, we obtain a function
which takes a pair (M, N) and returns the reverse pair (N, M).

_— _—
:ANDB :ANB
uraARZ ANERr uanb AET,
mou: B mu:A
(mou,mu): BAA

v (mat, ) - (AAB)S(BAA) ~

vl

u

Disjunction. Constructively, we think of a proof of A V B true as either
a proof of A true or B true. Disjunction therefore corresponds to a disjoint
sum type A+ B, and the two introduction rules correspond to the left and
right injection into a sum type.

M:A Iy N:B vin
inl” M : Av B int" N: AV B

In the official syntax, we have annotated the injections inl and inr with
propositions B and A, again so that a (valid) proof term has an unambigu-
ous type. In writing actual programs we usually omit this annotation. The
elimination rule corresponds to a case construct which discriminates be-
tween a left and right injection into a sum types.

u — W

u: A w: B

M:AvVB N:C O:C
case M of inlu = N |intw = O : C

Vv Bww

Recall that the hypothesis labeled u is available only in the proof of the
second premise and the hypothesis labeled w only in the proof of the third
premise. This means that the scope of the variable u is N, while the scope
of the variable w is O.
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Proofs as Programs L2.5

Falsehood. There is no introduction rule for falsehood (). We can there-
fore view it as the empty type 0. The corresponding elimination rule allows
a term of L to stand for an expression of any type when wrapped with
abort. However, there is no computation rule for it, which means during
computation of a valid program we will never try to evaluate a term of the
form abort M.

M: L

— 1F
abort® M : C

As before, the annotation C' which disambiguates the type of abort M will
often be omitted.

This completes our assignment of proof terms to the logical inference
rules. Now we can interpret the interaction laws we introduced early as
programming exercises. Consider the following distributivity law:

(L11a) (AD(BAC))D(ADB)AN(ADC) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs
of type B A C, returns two functions: one which maps A to B
and one which maps A to C.

This is satisfied by the following function:
Au. {(Aw. 1 (uww)), (Av. w3 (uv)))

The following deduction provides the evidence:

U w u v
u: AD(BAC) w: A u: AD(BAC) v:A
OF OF
uw: BANC uv:BAC
——  NEL — AEp
1 (uw): B o (uv) : C

w v

>
Av.mg (uv): ADC
i

M. (uw): ADB -
(M. (uw)), (Av.ma (uv))): (ADB)A(ADC)
Au. (Aw. 1 (uw)), (Av.m2 (uv))) : (AD(BAC))D(ADB)A(ADCQ))

DI

Programs in constructive propositional logic are somewhat uninterest-
ing in that they do not manipulate basic data types such as natural num-
bers, integers, lists, trees, etc. These can be added, most elegantly in the
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L2.6 Proofs as Programs

context of a type theory where we allow arbitrary inductive types. This ex-
tension is somewhat orthogonal to the main aims of this course on modal
logic so we will not treat it formally, but use it freely in examples.

To close this section we recall the guiding principles behind the assign-
ment of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction
of M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms A and deductions of A true
is a bijection.

3 Reduction

In the preceding section, we have introduced the assignment of proof terms
to natural deductions. If proofs are programs then we need to explain how
proofs are to be executed, and which results may be returned by a compu-
tation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M = M’, read “ M reduces
to M'”. A computation then proceeds by a sequence of reductions M =g
My =R M. .., according to a fixed strategy, until we reach a value which
is the result of the computation. In this section we cover reduction; we may
return to reduction strategies in a later lecture.

As in the development of propositional logic, we discuss each of the
connectives separately, taking care to make sure the explanations are inde-
pendent. This means we can consider various sublanguages and we can
later extend our logic or programming language without invalidating the
results from this section. Furthermore, it greatly simplifies the analysis of
properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduc-
tion rules as the constructors and the proof terms corresponding to the elim-
ination rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.
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Truth. The constructor just forms the unit element, (). Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by A-abstraction, while the
destructor applies the function to an argument. In general, the application
of a function to an argument is computed by substitution. As a simple ex-
ample from mathematics, consider the following equivalent definitions

fx)=2?+2-1 f=X .2’ +x—1
and the computation
fB)=Az.22+2-1)B)=[3/2)](z?+2x—-1)=32+3-1=11

In the second step, we substitute 3 for occurrences of z in 22 + 2 — 1, the
body of the \-expression. We write [3/z](z? + 2 — 1) =32+ 3 — 1.

In general, the notation for the substitution of NV for occurrences of u in
M is [N/u]M. We therefore write the reduction rule as

(A:A.M)N =g [N/ulM

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in NV should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation
which clearly does not change the meaning of a proof term. A more formal
definition is presented in Section 8.

Disjunction. The constructors inject into a sum types; the destructor dis-
tinguishes cases. We need to use substitution again.

caseinl®? M of inlu = N |inrw = O =g [M/ulN
caseint® M of inlu = N |intw = O =g [M/w]O

Falsehood. Since there is no constructor for the empty type there is no
reduction rule for falsehood.
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L2.8 Proofs as Programs

This concludes the definition of the reduction judgment. In the next sec-
tion we will prove some of its properties.
As an example we consider a simple program for the composition of
two functions. It takes a pair of two functions, one from A to B and one
from B to C and returns their composition which maps A directly to C.

comp : ((ADB)A(BDC))D(ADC)

We transform the following implicit definition into our notation step-by-
step:
comp (f,g) (w) = g(f(w))
comp(f,g) = Aw.g(f(w))
compu = Aw.(mau) ((m u)(w))
comp = Au. A \w. (meu) ((m u)w)

The final definition represents a correct proof term, as witnessed by the
following deduction.

w: (ASB)A(BSC)

u ANEp, ——w
u:(ADB)AN(BDC) mu:ADB w: A
AER OF
mou:BDC (mpu)w: B
DF
(mou) ((mu)w): C
DIY
Aw. (mau) (mpu)w) : ADC
DI

(Au. Aw. (meu) ((mu)w)) : (ADB)A(BDC))D(ADC)

We now verify that the composition of two identity functions reduces again
to the identity function. First, we verify the typing of this application.

(Au. Aw. (meu) ((m1u) w)) (Az. x), (A\y.y)) : ADA

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(Au. Aw. (o u) ((m1 u) w)) (Az. x), (Ay. y))
=r Aw. (m2 ((Az.2), Ay ) (T {((Az. 2), (Ay. y))) w)
—r Aw. (Ay.y) (m (Az. z), (Ay. y))) w)
—r Aw. (My.y) (Az. z) w)
=r A\w.(A\y.y)w
=R \w.w
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Proofs as Programs L2.9

We see that we may need to apply reduction steps to subterms in order
to reduce a proof term to a form in which it can no longer be reduced. We
postpone a more detailed discussion of this until we discuss the operational
semantics in full.

4 Expansion

We saw in the previous section that proof reductions that witness local
soundness form the basis for the computational interpretation of proofs.
Less relevant to computation are the local expansions. What they tell us,
for example, is that if we need to return a pair from a function, we can al-
ways construct it as (M, N) for some M and N. Another example would
be that whenever we need to return a function, we can always construct it
as Au. M for some M.

We can derive what the local expansion must be by annotating the de-
ductions witnessing local expansions from Lecture 1 with proof terms. We
leave this as an exercise to the reader. The left-hand side of each expan-
sion has the form M : A, where M is an arbitrary term and A is a logical
connective or constant applied to arbitrary propositions. On the right hand
side we have to apply a destructor to M and then reconstruct a term of the
original type. The resulting rules can be found in Figure 3.

5 Summary of Proof Terms

Judgments.
M:A M is a proof term for proposition A, see Figure 1
M =pr M’ M reduces to M’, see Figure 2

M: A= M M expands to M’, see Figure 3

6 Hypothetical Judgments in Localized Form

The isomorphism between proofs and programs seems obvious, but it is
nonetheless a useful exercise to rigorously prove this relationship as a prop-
erty of the deductive systems we have developed. When we proceed to a
certain level of formality in our analysis, it is beneficial to write hypotheti-
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L2.10 Proofs as Programs

Constructors Destructors
M:AANB
—— AEL,
M:A N:B/\I mM:A
(M,N): AANB
M:ANB
——— AFEjg
m M : B
— 7117
(): T no destructor for T
u
u: A
M:B M:A>DB N:A
oI OF
M:A.M:ADB MN : B
U —w
Mo A u‘A w::B
253 : :
intf® M: AV B M:AVB N:C O:C
Vv Eww
case M of inlu = N |intrw = O : C
N:B
—— Vg
inf® N: AV B
M: 1
— 1F
no constructor for L abort® M : C

Figure 1: Proof term assignment for natural deduction
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L2.11

71 (M, N)
o (M, N)

no reduction for ()
(Au:A. M) N

caseinl? M of inlu = N | inrw = O
caseinr M of inlu = N |inrw = O

:ANB
:ADB

:AV B

SREERE
_{

LECTURE NOTES

no reduction for abort

:>R
:>R

:>R

:>R
:>R

Figure 2: Proof term reductions

—E
=—E
—E
—E
—E

<7T1M7772M>

Au:A. My for unot free in M

()

case M of inlu = inl® u | inrw = inr? w

abort™ M

Figure 3: Proof term expansions
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L2.12 Proofs as Programs

cal judgments
Jo Ty

in their localized form
Ji,o. o E

When we try to recast the two-dimensional rules, however, some ambigui-
ties in the two-dimensional notation need to be clarified.

The first ambiguity can be seen from considering the question of how
many verifications of P D P D P there are. Clearly, there should be two: one
using the first assumption and one using the second assumption. Indeed,
after a few steps we arrive at the following situation

u —w
Pl Pl
P

D)
PoP]
e ———D
PH>P>HP]

I’UJ

u

Now we can use the | T rule with the hypothesis labeled u or the hypothesis
labeled w. If we look at the hypothetical judgment that we still have to
prove and write it as

P|,P|FP7

then it is not clear if or how we should distinguish the two occurrences of

P|. We can do this by labeling them in the local notation for hypothetical

judgments. But we have already gone through this exercise before, when

introducing proof terms! We therefore forego a general analysis of how to

disambiguate hypothetical judgments and just work with proof terms.
The localized version of this judgment has the form

T1:A1, . A E M C
T

where we abbreviate the collection of assumptions by I'. We often refer to
I" as the context for the judgment M : C'. Following general convention and
their use in the proof term M, we now use variables z, y, z for labels of
hypotheses. The turnstile ‘-’ is the universal symbol indicating a hypothet-
ical judgment, with the hypotheses on the left and the conclusion on the
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Proofs as Programs L2.13

right. Since the goal is to have an unambiguous representation of proofs,
we require all variables z1,...,x, to be distinct. Of course, some of the
propositions Ay, ..., A, may be the same, as they would be in the proof
of ADAD A. We write *- for an empty collection of hypotheses when we
want to emphasize that there are no assumptions.

The definition of the notion of hypothetical judgment was as an incom-
plete proof. This means we can always substitute an actual proof for the
missing one. That is, any time we use the turnstile () symbol, we mean
that it must satisfy the following principle, now written in localized form.

Substitution, v.1: If I'1,2:A,T's - N : Cand I's = M : A then
Fl,FQ,F3 F [M/J}}N : C.

A second important principle which is implicit in the two-dimensional
notation for hypothetical judgments is that hypotheses need not be used.
For example, in the proof

x
xAy:BFx: A
A Ay.x: BDA
D)
‘F(Az.\y.xz): ADBDA

DIY

€T

we find the judgment x:A4,y:B + z : A where y is not used. In two-
dimensional notation, this would just be written as

x
z: A

which would just be 2:A I z : A since there is no natural place to display

y:B. Moreover, it might be used later in the context of a larger proof where

other assumptions become available, which would also not be shown.
What emerges is a general principle of weakening.

Weakening: If I';, 'y - N : C then 'y, 2:A, 'y - N : C.

It is implicit here that 2 does not already occur in I'y and I'y, which is nec-
essary so that the new context I't, x: A, I'; is well-formed.

We also have the principle of contraction, whose justification can be seen
by going back to the original definition of hypothetical judgments. Does
the hypothetical proof

A N B true A N B true
—————— ANEFp ——— AEL,
B true A true AT
B A A true
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L2.14 Proofs as Programs

correspond to AA B true = BA A true or AN Btrue, AN\ B true = BA A true?
Depending on the situation in which we use this, both are possible. For
example, during the proof of A A B> B A A we would be taking the first
interpretation, while the second might come out of a proof of AA B> A A
B> BAA.

In general, we can always contract two assumptions by identifying the
variables that label them: we simply replace any use by either z or y by z.

Contraction: If I'1, 2:A, 9, y: A, I's = N : CthenT'y,z:A, 15, 's -
[z/x,z/y|N : C.

Again, it is implicit that z be chosen distinct from the variables in I'y, I'2, I's.
Finally, we may note that the order of the hypotheses in I is irrelevant.

Exchange: If I';, x: A, y:B,I's = N : CthenT'y,y:B,x:A, 'y - N :
C.

We will have occasion to consider systems where some of the principles
of weakening, contraction, or exchange are violated. For example, in linear
logic, weakening and contraction are restricted to specific circumstances,
in ordered logic exchange is also repudiated. Also, in dependent type theory
we have dependencies between assumptions so that some cannot be ex-
changed, even if weakening and contraction do hold.

The one invariant, however, is the substitution principle since we view
is as the defining property of hypothetical judgments.However, even the
substitution principle has different forms, depending on how we employ it.
Consider the local reduction of (Az:A. N) M =g [M/x]N. We would like
to demonstrate that if the left-hand side is a valid proof term, then the right-
hand side is as well. This property is called subject reduction. It verifies that
the local reduction, when written on proof terms, really is a proper local
reduction when considered as an operation on proofs. By inspection of
the rules (which we will develop below), we see that if I" = (Az:A. N) M
CthenT'zz A F N : Cand I' F M : A. Now the assumptions of the
substitution principle above do not quite apply, so it is convenient to have
an alternative formulation that matches this particular use.

Substitution, v.2: If I';, 2:A, T - N : Cand I'y - M : A then
I,y [M/z]N : C.

This now matches the property we need for I'; = (-). Under the right

circumstances, the two versions of the substitution principle coincide (see
Exercise 5).
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7 Natural Deduction in Localized Form

We now revisit the rules for natural deduction, using the local form of hy-
pothetical judgments, thereby making the contexts of each judgment ex-
plicit. We read these rules from the conclusion to the premises. For ex-
ample (eliding proof terms), in order to prove I' - A A B true we have to
prove I' - A and I' + B, making all current assumptions I' available for
both subproofs. The rules in this form are summarized in Figure 4. There
is an alternative possibility, reading the rules from premises to conclusion
which is pursued in Exercise 6.

The rules DI and VE that introduce new hypotheses, are now usually
no longer labeled, because we track the assumption and its name locally,
in the context. We have to be careful to maintain the assumption that
all variables in a context are distinct. For example, would we consider
FAr:A. Av:B.z : AD B D B to be a correct judgment? It appears we might
be stuck at the point

A x:B.x : BDOB

but we are not, because we can always silently rename bound variables. In
this case, this is indistinguishable from

A y:B.y: BDB
which is now easily checked.

We also see that we acquired one new rule when writing the judgment
in its localized form which makes the use of a hypothesis explicit:

h
Fl,a}:A,Fg Fz: A P

which could also be written as

vAel b
-z:A yP

This rule is not connected to any particular logical connective, but is de-
rived from the nature of the hypothetical judgment. We often refer to such
rules as judgmental rules because they are concerned with judgments rather
than any specific propositions.
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Proofs as Programs

Constructors

I'~M:A T'FN:B
I'H(M,N):AAB

IW—():TTI

I'©:AF-M: B

oI
'FXz:AM:ADB

I'EM: A
Vg,
F-inlf® M: Av B
I'N:B
VIg

F'Fint®N: AV B

no constructor for L

hyp

F1,$:A,F2 Fz: A

Destructors

'-M:AANB

AET
FI—TrlM:A

'-M:AANB

AER
I'FnoM: B

no destructor for T

I'M:A>DB T'H-N:A

'FM:AvB T,z:AFN:C

I'FMN:B

DF

IyBFO:C

I'tM: L
I I abort® M : C

1FE

I'Fcase M ofinlz = N |inry = O : C

Figure 4: Proof term assignment for natural deduction with contexts
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8 Subject Reduction

We would like to prove that local reduction, as expressed on proof terms,
preserves types. In some sense the idea is already contained in the display
of local reduction on proofs themselves, since the judgment A true remains
unchanged. Now we reexamine this in a more formal setting, where proof
terms are explicit and hypotheses are listed explicitly as part of hypotheti-
cal judgments.

The reduction for implication, (Az:A. N) N = [M/z]N, suggests that
we will first need a property of substitution, already stated in Section 6.
We take for granted the property of weakening, which just adds an unused
hypothesis but otherwise leaves the proof unchanged. Before we undertake
the proof, we should formally define the substitution as an operation on
terms. For that we define the notion of a free variable in a term. We say x is
free in M if x occurs in M outside the scope of a binder for x. Note that if
I' = M : A then any free variable in M must be declared in I'. The point of
the terminology is to be able to define certain operations without requiring
terms to be a priori well-typed or carrying around explicit contexts at all
times.

[M/zx]z = M

[M/z]y =y forz #y

[M/2]((N1, N2)) = ([M/x]N1) ([M/2]N2)

[M/z](m1 N) = i ([M/z]N)

[M /2] (72 N) = my ([M/x]N)

[M/z](()) = 0

[M/z](Ay:A.N) = Xy:A.[M/x]N provided z # y and y not free in M
[M/z](N1 N2) = ([M/2]N1) ([M/x]Ns)

[M/z)(inl? N) = inl® ([M/z]N)

[M/z](int? N) = inr? ((M/z]N)

[M/x](case N1 of inly = Ny | inrz = N3)
= case ([M/z]Ny) of inly = ([M/z|N2) | inr z = ([M/x]N3)
provided = # y, x # =
and y and z not free in M

[M/z](abort® N) = abort® ([M/z]N)

We call the definition of substitution compositional because it pushes the
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L2.18 Proofs as Programs

substitution through to all subterms and recomposes the results with the
same constructor or destructor. This is a key observation, because it tells
us that the definition is modular: if we add a new logical connective or
operator to the language, substitution is always extended compositionally.
This should have been clear from the beginning, given the intuitive picture
of replacing an unproven assumption in a proof with an actualy proof.

We also say that the definition of [M/z]N is by induction on the struc-
ture of IV, because on the right-hand side the substitution is always applied
to subterms. Since we also have a clause for every possible case, this guar-
antees that substitution is always defined. To see this we just have to ob-
serve that the provisos on the clauses that bind variables (A and case) can
always be satisfied by renaming, which we do silently.

Theorem 1 (Substitution) If ' - M : Aand T',x:A,T" - N : C then T',T" -
[M/z]N : C

Proof: By induction on N. This is suggested by the fact that the substitu-
tion operation itself is defined by induction on N. We show a few repre-
sentative cases.

Case: N = z.
IoAT'EFx: C Given
A=C By inversion, since var. decls. are unique
'-M:A Given
LT'EM:A By weakening
T E[M/z)x: A Since [M /z|x = M
T [M/z)x: C Since A =C

Case: N =y fory # x.

'-M:A Given
DA Fy:C Given
y:C € (I,T) By inversion and y # x
L[VEy:C By rule hyp

Case: N = Ny Ns.

F,a::A,F’ F N1 N2 :C Given
I'z:A,T' - Ny : C3DC and
[z AT F Ny : Cy By inversion
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I I [M/z]Ny : Co D C By i.h. on Ny
LI [M/2]Ns : Cy By i.h. on N
DI E ([M/z]Ny) ([M/z]N2) - C By rule DE
I E [M/z](N1 N2) - C By defn. of [M/z](Ny N2)

Case: N = (A\y. Vy).

LA T F (Ay.Ny): C Given
I, x:A TV, y:Co = Ny : Cp and

C = (O3 D (4 for some C1, Cy By inversion
F,F/,y:CQ F [M/.CE]Nl : Cl by i.h. on N1
[T F Ay:Cy. [M /x| Ny : Cy By rule DI
[T F [M/z](Ay:Ca. N1) : Cy By definition of [M/z](Ay:Cs. Ny)

In this last case worth verifying that the provisos in the definition of
[M/x](Ay:Cs. Ny ) are satisfied to see thatitis equal to Ay:Cs. [M/x]Nj.
When we applied inversion, we formed I', z:A, I, y:C5, possibly ap-
plying some implicit renaming to make sure y was different from x
and any variable in I and I". Since the free variables of M are con-
tained in I', the proviso must be satisfied.

O

Now we return to subject reduction proper. We only prove it for a top-
level (local) reduction. It should be clear by a simple additional argument
that if the reduction takes place anywhere inside a term, the type of the
overall term also is preserved.

Theorem 2 (Subject Reduction) IfI' - M : Aand M = M' then T +
M A

Proof: By cases on M = M’, using inversion on the typing derivation
in each case. We show a few cases.

Case: 7'('1<.7\417 M2> —R Ml.

P|—7T1<M1,M2> t A Given
'+ (M, Ms) : AN B for some B By inversion
'EM;:AandT'F M5 : B By inversion

Case: my(M;, M) = Ms. Symmetric to the previous case.
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Case: (>\$2A2.M1) My =g [M2/$]M1.

'k ()\.’L’AQ Ml) M2 tA Given

' Az:Ay. My - Ay D Aand

'k Msy: As By inversion

Iax:AsH M : A By inversion

'k [My/x]M; : A By substitution (Theorem 1)
O

An analogous theorem holds for local expansion; see Exercise 11.

The material so far is rather abstract, in that it does not commit to
whether we are primarily interested in logical reasoning or programming.
If we want to take this further, the two views which are perfectly unified
at this point, will start to drift apart. From the logical point of view, we
need to investigate how to prove global soundness and completeness as
introduced at the end of Lecture 1.

From a programming language perspective, we are interested in defin-
ing an operational semantics which applies local reductions in a precisely
specified manner to subterms. With respect to such a semantics we can
prove progress (either we have a value, or we can perform a reduction step)
on well-typed program and totality (all well-typed programs have a value).
Some progress has been made to understand the choices that still remain in
the definition of the operational semantics from a logical point of view, but
in the end the interpretation of proofs as programs remains as an impor-
tant guide to the design of the type structure of a language, but is not the
final word. We will often return to these questions of the operational se-
mantics, because much of our investigation of various intuitionistic modal
logics and their computational interpretations will be at this interface.
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Exercises

Exercise 1 Write proof terms for each direction of the interaction laws (L13),
(L19), and (L20). Abuse the type inference engine of your favorite functional pro-
gramming language (ML, Haskell, . . .) to check the correctness of your proof terms.

Exercise 2 Two types A and B are isomorphic if there are functions M : AD B
and N : B D Asuch that their compositions A\x:A. N (M x) : AD Aand \y:B. M (N y) :
B D B are both identity functions.

For example, A\ B and B N\ A are isomorphic, because

Ay:ANB. (my,my): (ANB)D(BAA)

and
Az:BNA. (mey,my): (BANA)D(AAB)

and
Az (Ay. (T2 y, 1 y)) (Az. (T2 2,1 2)) )
=z, (\y. (moy,m y)) (max, ™ T)
= \z. (my (max, m x), ™ (T2 T, T X))
= \z. (m x,m (o x, ™ T))
= A\z. (m x,To )
=\r.x

and symmetrically for the other direction. Here we used the congruence (=) gener-
ated by reductions and expansions, used in either direction and applied to arbitrary
subterms.

Check which among, (L13), (L19), and (L20) are type isomorphisms, using
only local reductions and expansions, in either direction, on any subterm, in order
to show that the compositions are the identity.

For those that fail, is it the case that the types are simply not isomorphic, or
does the failure suggest additional equivalences between proof terms that might be
justified?

Exercise 3 Proceed as in Exercises 1 and 2, but for laws (L4) and (L6).

Exercise 4 We could try to add a second rule for uses of falsehood, namely

Give arguments for an against such a rule, using examples and counterexamples.
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Exercise 5 Carefully state the relationship between the two versions of the substi-
tution principle and prove that it is satisfied.

Exercise 6 We can write a system with localized hypotheses where each rule is
naturally read from the premises to the conclusion and only records hypotheses
that are actually used. For example, we can rewrite NI and hyp as
I'TFM:A T9FN:B ;
/\ -
ry,'o(M,N): ANB Az A

hyp

(i) Complete the system of rules.
(ii) State the precise relationship with the system in Figure 4.

(iii) Prove that relationship.

Exercise 7 Show the cases concerning pairs in the proof of the substitution prop-
erty (Theorem 1).

Exercise 8 Show the cases concerning disjunction in the proof of the substitution
property (Theorem 1).

Exercise 9 As pragmatists, we can define a new connective AQ B by the following
elimination rule.

u w
A true B true

A ® B true C true
C true

Eww

(i) Write down corresponding introduction rules.

(ii) Show local reductions to verify local soundness.
(iii) Show local expansion to verify local completeness.
(iv) Define verifications and uses of A @ B.

(v) Devise a notation for proof terms and show versions of the rules with local
hypotheses and proof terms.

(vi) Reiterate local reduction and expansions on proof terms.

(vii) Extend the definition of substitution to include the new terms.
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(viii) Extend the proof of the substitution property to encompass the new terms.
(ix) Show the new cases in subject reduction.

(x) Can we express A ® B as an equivalent proposition in variables A and B
using only conjunction, implication, disjunction, truth, and falsehood? If
so, prove the logical equivalence. If not, explain why not.

(xi) Can you relate the proof terms for A® B to constructs in existing functional
languages such as Haskell or ML?

Exercise 10 As verificationists, we can define a new connective A Ay, B with the
following introduction rule.

u
A true

U

A true B true A
A AN, B true

(1) Write down the corresponding elimination rules.

(ii)—(xi) as in Exercise 9, where in part (x), try to define A A, B in terms of the
existing connectives.

Exercise 11 Prove subject expansion: If '+ M : Aand M : A =g M’ then
L= M: A
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