Lecture Notes on First-Order Modal Logic

15-816: Modal Logic André Platzer

Lecture 12 February 25, 2010

1 Introduction to This Lecture

In this lecture, we will introduce first-order modal logic and start considering its relationship to classical first-order logic.

2 Quantified Modal Logic

In this section, we define the syntax and semantics of quantified modal logic [Car46, Kri63]. An excellent source on first-order modal logic, its various variations and pitfalls is the book by Fitting and Mendelsohn [FM99].

We fix a set Σ of function symbols and predicate symbols, with arities associated (number of arguments) and a set of logical variables. Terms are defined as in first-order logic. The syntax of classical first-order modal logic is defined as follows:

Definition 1 (First-order modal formulas) *The set* $\operatorname{Fml}_{FOML}(\Sigma)$ *of* formulas of classical quantified modal logic a.k.a. first-order modal logic is the smallest set with:

- If $p \in \Sigma$ is a predicate symbol of arity n and $\theta_1, \ldots, \theta_n$ are terms then $p(\theta_1, \ldots, \theta_n) \in \operatorname{Fml}_{FOML}(\Sigma)$.
- If $\phi, \psi \in \text{Fml}_{FOML}(\Sigma)$, then $\neg \phi, (\phi \land \psi), (\phi \lor \psi), (\phi \to \psi) \in \text{Fml}_{FOML}(\Sigma)$.
- If $\phi \in \operatorname{Fml}_{FOML}(\Sigma)$ and x is a logical variable, then $(\forall x \, \phi) \in \operatorname{Fml}_{FOML}(\Sigma)$ and $(\exists x \, \phi) \in \operatorname{Fml}_{FOML}(\Sigma)$.

LECTURE NOTES

• If $\phi \in \operatorname{Fml}_{FOML}(\Sigma)$ and $x \in V$, then $(\Box \phi), (\Diamond \phi) \in \operatorname{Fml}_{FOML}(\Sigma)$.

There are several variations for the definition of semantics for quantified modal logic. Here is one variant:

Definition 2 (Kripke structure) A Kripke structure $K = (W, \rho, M)$ consists of Kripke frame (W, ρ) and a mapping M that assigns first-order structures M(s) to each world s such that, for each $s, t \in W$ with $s\rho t$, the structure M(s) is a substructure of M(t), i.e.:

- the universe of M(s) is a subset of the universe of M(t) (monotonicity), and
- the structures M(s) and M(t) agree on the interpretation of all function symbols on the (smaller) universe of M(s).

Another common case in the semantics is that of *constant domain*, where all worlds in a Kripke structure are required to share the same universe.

Definition 3 (Interpretation of quantified modal formulas) *Given a Kripke* structure $K = (W, \rho, M)$, the interpretation \models of modal formulas in a world s is defined as

- 1. $K, s \models p(\theta_1, \dots, \theta_n) \text{ iff } M(s) \models p(\theta_1, \dots, \theta_n).$
- 2. $K, s \models \phi \land \psi \text{ iff } K, s \models \phi \text{ and } K, s \models \psi.$
- 3. $K, s \models \phi \lor \psi \text{ iff } K, s \models \phi \text{ or } K, s \models \psi.$
- 4. $K, s \models \neg \phi$ iff it is not the case that $K, s \models \phi$.
- 5. $K, s \models \forall x \phi(x)$ iff $K, s \models \phi(d)$ for all d in the universe of s
- 6. $K, s \models \exists x \, \phi(x) \text{ iff } K, s \models \phi(d) \text{ for some } d \text{ in the universe of } s$
- 7. $K, s \models \Box \phi$ iff $K, t \models \phi$ for all worlds t with $s \rho t$.
- 8. $K, s \models \Diamond \phi \text{ iff } K, t \models \phi \text{ for some world } t \text{ with } s \rho t.$

When K is clear from the context, we sometimes abbreviate $K, s \models \phi$ by $s \models \phi$.

In constant domain semantics, quantifiers refer to the same set of objects in all worlds. In varying domain semantics, quantifiers may possibly refer to a different set of objects, depending on the world.

Exercises

Exercise 1 Recall Definition 3 of interpretation of quantified modal formulas. The definition is imprecise at some points. What is the problem, why is it a problem, and what can be done to fix it?

References

- [Car46] Rudolf Carnap. Modalities and quantification. *J. Symb. Log.*, 11(2):33–64, 1946.
- [FM99] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic. Kluwer, Norwell, MA, USA, 1999.
- [Kri63] Saul A. Kripke. Semantical considerations on modal logic. *Acta Philosophica Fennica*, 16:83–94, 1963.