Lecture Notes on Completeness and Canonical Models

15-816: Modal Logic André Platzer

> Lecture 20 April 6, 2010

1 Introduction to This Lecture

In this lecture, we study completeness of (Hilbert-style) proof systems for propositional modal logics. The device of canonical models gives a rich and systematic framework for understanding completeness questions and other advanced properties. Also see [HC96, Sch03].

2 Normal Modal Logics

In this lecture we consider a logic as the set of its tautologies. The following definition captures the closure properties that the we expect from this set of tautologies:

Definition 1 (Normal modal logic) A set L of formulas is called a normal modal logic *if*:

- 1. L contains all propositional tautologies
- 2. $\Box(p \to q) \to (\Box p \to \Box q) \in L$ for all propositional letters p, q
- 3. $A \in L, (A \rightarrow B) \in L$ implies $B \in L$ (closed under modus ponens)
- 4. $A \in L$ implies $\Box A \in L$ (Gödel)
- 5. $A \in L$ implies $A' \in L$ for all instances A' of A (closed under instantiation). An instance results by substituting any number of propositional letters by arbitrary propositional modal formulas.

LECTURE NOTES

Definition 2 (Normal modal logic proof system) A proof system **S** of modal logic is called a normal modal logic proof system, if

- 1. S can derive all propositional tautologies
- 2. $\Box(p \to q) \to (\Box p \to \Box q)$ is an axiom of **S**
- 3. Modus ponens and Gödel generalization are proof rules of S.

The set $\{A : \vdash_{\mathbf{S}} A\}$ of all formulas provable in a normal modal logic proof systems is a normal modal logic. The proof systems for **K**, **T** and **S4** that we have seen before are normal.

Other properties that we have seen before can also be shown easily to hold in normal modal logics.

Lemma 3 Let L be a normal modal logic. Then for any formulas A, B, C:

- 1. $\Box(A \land B) \leftrightarrow (\Box A \land \Box B) \in L$
- 2. $(A \to B) \in L$ implies $(\Box A \to \Box B) \in L$
- 3. $(A \leftrightarrow B) \in L$ implies $(C \leftrightarrow D) \in L$ where D results from C by replacing subformula A by B

3 Consistency

Definition 4 (Consistency) Let L be a normal modal logic. A set S of formulas of propositional modal logic is called L-consistent iff there are no formulas $A_1, \ldots, A_n \in S$ with

$$(A_1 \wedge \dots \wedge A_n \rightarrow false) \in L$$

Otherwise *S* is called *L*-inconsistent. A consistent set *S* of propositional modal formulas is called maximally consistent iff, for every formula *A* either $A \in S$ or $\neg A \in S$.

We assume normal modal logics L to be consistent.

Lemma 5 Let L be a normal modal logic and S maximally L-consistent, then

- 1. For every formula A exactly one of the following cases holds, either $A \in S$ or $\neg A \in S$.
- 2. $A \in S, (A \rightarrow B) \in S$ then $B \in S$ (closed under modus ponens).

LECTURE NOTES

April 6, 2010

3.
$$(A \land B) \in S$$
 iff $A \in S$ and $B \in S$

4.
$$(A \lor B) \in S$$
 iff $A \in S$ or $B \in S$

5. $L \subseteq S$

- **Proof:** 1. One of *A* or $\neg A$ must be in *S*, which is maximally consistent. If both were in *S* then *S* would be inconsistent, because the propositional tautology $(A \land \neg A \rightarrow false) \in L$.
 - 2. Let $A \in S, (A \to B) \in S$ but $B \notin S$. By maximal consistency, $\neg B \in S$. Consider tautology $(A \land (A \to B) \land \neg B \to false) \in L$. This contradicts the consistency of S.
 - 3. Similar to the next case.
 - 4. Let us prove the direction from left to right. Let $(A \lor B) \in S$ and $A \notin S, B \notin S$. Hence, by maximal consistency, $\neg A \in S, \neg B \in S$. Also the tautology $(\neg A \land \neg B \land (A \lor B) \rightarrow false) \in L$. That contradicts the consistency of *S*.

Conversely, let $A \in S$, $(A \lor B) \notin S$. Then maximal consistency shows $\neg(A \lor B) \in S$. But the tautology $(A \land (A \lor B) \rightarrow false) \in L$ contradicts the consistency of *F*.

5. Let $A \in L$. Then $\{\neg A\}$ is *L*-inconsistent. Thus $\neg A \notin S$. By maximal consistency, $A \in S$.

Lemma 6 For every consistent set S there is a maximally consistent superset M.

Proof: Fix an ordering $A_0, A_1, A_2, \ldots, A_n, \ldots$ of all propositional model formulas ordered. Define an ascending chain of sets of formulas $S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n \subseteq \ldots$ by:

$$\begin{split} S_0 &:= S\\ S_{n+1} &:= \begin{cases} S_n \cup \{A_n\} & \text{ if this set is consistent}\\ S_n \cup \{\neg A_n\} & \text{ otherwise} \end{cases} \end{split}$$

We prove by induction on n that S_n is consistent. The case n = 0 follows from the fact that F was assumed consistent. Suppose S_{n+1} was inconsistent. By construction $S_n \cup \{A_n\}$ and $S_n \cup \{\neg A_n\}$ are both inconsistent then.

LECTURE NOTES

April 6, 2010

Hence there are formulas $B_1, \ldots, B_k, C_1, \ldots, C_l \in S_n$:

$$(B_1 \wedge \dots \wedge B_k \wedge A_n \to false) \in L$$
$$(C_1 \wedge \dots \wedge C_l \wedge \neg A_n \to false) \in L$$

Now *L* contains all propositional tautologies and is closed under modus ponens (Lemma 5), thus the above lines imply

$$(B_1 \wedge \dots \wedge B_k \wedge C_1 \wedge \dots \wedge C_l \to false) \in L$$

which contradicts the induction hypothesis that S_n is consistent. Define $M := \bigcup_{n=0}^{\infty} S_n$. Then

- *M* is consistent: otherwise there is an *F_n* in which the inconsistency witness lies, but *F_n* is consistent.
- *M* is maximally consistent: because, for each formula A_i , S_i contains either A_i or $\neg A_i$, hence so does the union *M*.
- $S \subseteq M$

Lemma 7 Let S be a consistent set of formulas and $\neg \Box A \in S$, then $\Box^- S \cup \{\neg A\}$ is consistent where $\Box^- S := \{A : \Box A \in S\}.$

Proof: Suppose $\Box^- S \cup \{\neg A\}$ is inconsistent then there are $A_1, \ldots, A_n \in \Box^- S$ such that

$$(A_1 \wedge \dots \wedge A_n \wedge \neg A \to false) \in L$$

Note that we can assume $\neg A$ to occur in this inconsistency witness because $(X \rightarrow false) \in L$ implies $(X \land \neg A \rightarrow false) \in L$. Now propositional reasoning implies

$$(A_1 \wedge \dots \wedge A_n \to A) \in L$$

Hence the monotonicity property (Lemma 32 of normal modal logics implies

$$(\Box(A_1 \wedge \dots \wedge A_n) \to \Box A) \in L$$

Now the property of conjunctive distributitivity (Lemma 31) with the substitution property (Lemma 33) of normal modal logics imply

$$(\Box A_1 \land \dots \land \Box A_n \to \Box A) \in L$$

LECTURE NOTES

April 6, 2010

Propositional reasoning implies the following witness of the inconsistency of *F*:

$$(\Box A_1 \land \dots \land \Box A_n \land \neg \Box A \to false) \in L$$

Beware that the consistency of *S* does not imply that \Box^-S is consistent. For the trivial Kripke structure with empty accessibility relation and only one world *s*, *S* := {*A* : *K*, *s* \models *A*} is maximally **K**-consistent. Especially $\Box A$, $\Box \neg A \in S$ for any formula *A*. But that means that \Box^-S is inconsistent.

4 Canonical Kripke Structure

Let *L* be a normal propositional modal logic, considered as the set of its tautologies.

Theorem 8 (Canonical Kripke Structure) For a normal propositional modal logic L, let $K_L = (W_L, \rho_L, v_L)$ be the canonical Kripke structure of L, *i.e.*:

- W_L is the set of all maximally L-consistent sets of propositional modal formulas (built from the vocabulary);
- $S\rho_L T$ iff $\Box^- S \subseteq T$ where $\Box^- S := \{A : \Box A \in S\};$
- $v_L(S)(q) := \begin{cases} 1 & \text{if } q \in S \\ 0 & \text{if } q \notin S \end{cases}$

Then for any world $S \in W_L$ *and any formula* A*:*

$$K_L, S \models A \quad iff \quad A \in S$$

Proof: The proof is by induction on *A*.

- 0. The case where *A* is a propositional letter is by definition.
- 1. If *A* is of the form $A_1 \wedge A_2$ then by Lemma 5 and by induction hypothesis we have that

$$K_L, S \models A_1 \land A_2$$

iff $K_L, S \models A_1$ and $K_L, S \models A_2$
iff $A_1 \in S$ and $A_2 \in S$
iff $(A_1 \land A_2) \in S$

LECTURE NOTES

April 6, 2010

2. If *A* is of the form $\Box B$ then we reason by cases. First assume $\Box B \in S$. Consider any world $T \in W_L$ with $S\rho_L T$. That is $\Box^- S \subseteq T$, hence $B \in T$. Thus, by induction hypothesis, $K_L, T \models B$, which implies $K_L, S \models \Box B$, because *T* was arbitrary.

Now assume $\Box B \notin S$. Thus $\neg \Box B \in S$ by maxi-consistency. Hence by Lemma 7 the set $\Box^- S \cup \{\neg B\}$ is consistent and, by Lemma 6 there is a (maximally consistent extension) world $T \in W_L$ with $T \supseteq \Box^- S \cup \{\neg B\}$. Especially, $S\rho_L T$. By induction hypothesis, $\neg B \in T$ yields $K_L, T \models \neg B$, which implies $K_L, S \models \neg \Box B$.

Corollary 9 Let K_L be the canonical Kripke structure of normal modal logic L, then:

$$A \in L$$
 iff $K_L \models A$

Proof: By Lemma 5, *L* is a subset of every world $S \in W_L$. Thus the direction from left to right follows from Theorem 8.

Conversely let $K_L \models A$, i.e., $K_L, S \models A$ for all $S \in W_L$. Suppose $A \notin L$. But then $L \cup \{\neg A\}$ would be consistent: otherwise there were $A_1, \ldots, A_n \in L$ with $(A_1 \land \ldots \land A_n \land \neg A \rightarrow false) \in L$ which would imply $A \in L$ for the logic. Since $L \cup \{\neg A\}$ is consistent, there, thus, is a (maximally consistent extension) world $T \in W_L$ with $T \supseteq L \cup \{\neg A\}$. In particular, $\neg A \in T$, such that Theorem 8 implies $K_L, T \models \neg A$, which would contradict $K_L \models A$. \Box

This implies a kind of completeness, but is surprising in that it connects provability in a system with validity, not in all, but only in one Kripke structure.

Corollary 10 Let $\vdash_{\mathbf{S}}$ be a provability relation for a normal modal logic proof system and K_L the canonical Kripke structure for the logic $L := \{A : \vdash_{\mathbf{S}} A\}$, then

$$\vdash_{\mathbf{S}} A \quad iff \quad K_L \models A$$

Proof: Consider $L := \{A : \vdash_{\mathbf{S}} A\}$ in the last corollary.

This corollary is a starting point for proving full completeness.

Proposition 11 (Completeness for K) For every modal logic formula A

$$\vdash_{\mathbf{K}} A \quad iff \models_{\mathbf{K}} A \quad iff \quad K \models A \quad for every Kripke structure K$$

LECTURE NOTES

April 6, 2010

Proof: If $K \models A$ for every Kripke structure K, then also for the canonical Kripke structure, thus Corollary 10 implies $\vdash_{\mathbf{K}} A$.

The converse direction is soundness that every axiom of \mathbf{K} holds in all Kripke structures and every proof rule of \mathbf{K} preserves validity (see Lecture 7).

Proposition 12 (Completeness for T) For every modal logic formula A

 $\vdash_{\mathbf{K}} A$ iff $\models_{\mathbf{T}} A$ iff $K \models A$ for every reflexive Kripke structure K

Proof: The only new part is the need to show that the T-axiom is true in all reflexive Kripke structures (which follows from Lecture 7), and that the canonical Kripke structure for **T** is reflexive. Consider a maximal **T**-consistent set *S*. We have to show that $\Box^-S \subseteq S$. Consider any $\Box A \in S$. By Lemma 5.5 the T-instance $\Box A \rightarrow A$ is an element of *S*, thus $A \in S$ by Lemma 5.2.

In a similar way, completeness can be shown for the modal logics S4 and S5 [HC96].

Theorem 13 (Strong completeness) Let **S** be the normal modal logic (Hilbert) proof system **K** or **T** (or **S4** or **S5**) and let Γ be a set of (propositional) modal formulas and A a modal formula. Then the global consequence relation $\models_{\mathbf{S}}^{g}$ of **S** and its provability relation $\vdash_{\mathbf{S}}$ coincide:

 $\Gamma \vdash_{\mathbf{S}} A \quad iff \quad \Gamma \vDash_{\mathbf{S}}^{g} A$

Proof: The soundness direction is as usual. For the completeness direction, it is easy to see that $L := \{A : \Gamma \vdash_{\mathbf{S}} A\}$ is a normal modal logic. Let K_L be the canonical Kripke structure for L. Assume $\Gamma \vDash_{\mathbf{S}}^g A$. Now the fact that $\Gamma \subseteq L$ implies that $K_L \models \Gamma$. Thus $K_L \models A$. Now Corollary 9 implies that $A \in L$, i.e., $\Gamma \vdash_{\mathbf{S}} A$.

LECTURE NOTES

References

- [HC96] G.E. Hughes and M.J. Cresswell. *A New Introduction to Modal Logic*. Routledge, 1996.
- [Sch03] Peter H. Schmitt. Nichtklassische Logiken. Vorlesungsskriptum Fakultät für Informatik , Universität Karlsruhe, 2003.