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1 Introduction to This Lecture

In this lecture we study some parts of the theory of dynamic logics. We
extend the study of decidability of propositional modal logics to obtain a
decidability result about propositional dynamic logic.

2 Decidability of PDL

Recall propositional dynamic logic (PDL) from lecture 19. What we have
not seen yet is why PDL is decidable. For this, we use filtration arguments
from lecture 21, but we need to take care of the structured multi-modal
operators of PDL. For simplicity we assume that PDL only uses the logical
operators —, V, (-), which can clearly be used to define all other operators
of PDL.

Definition 1 (Fischer-Ladner closure) Let F' be a formula of PDL. The small-
est set S of formulas with the following properties is called Fischer-Ladner clo-
sure of F:

1. Fef

2. -GeSthenGeS

3. (GVH) € SthenG,H € S
4. (a)G € SthenG € S
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L25.2 Theory of Dynamic Logic

5. (THYG € Sthen H € S (and G € S by 4)

6. (¢ UB)G € Sthen (a)G € Sand ()G € S
7. {a; B)G € S then () (8)G € S

8. (a*)G € S then (a){a*)G € S

Definition 2 (Quotient) Let K = (W, p(),v) be a PDL structure and let S be
any set of PDL formulas. We define an equivalence relation ~g on W by

s~gt iff foralFeS: K,s=FiffK,t=F

and consider equivalence classes [s] of states s with respect to ~g. We define the
quotient structure Kg = (Ws, ps(), 7s) as:

o Wg:={[s] : s € Ws} (well-defined because ~g is an equivalence relation)

7s(q) == {[s] : s € 7s(q)} when propositional letter ¢ € S (well-defined
because ~g is an equivalence relation)

o 75(q) is arbitrary when propositional letter ¢ ¢ S

For an atomic program = € Iy, [s]ps(7)[t] iff for all ()G € S

ifK,s = —(m)G then K,t = -G

Lemma 3 (Filtration) Let F' be a formula of PDL and S its Fischer-Ladner clo-
sure. Let K = (W, p(),v) be a PDL structure and Kg = (Wg, ps(), 7s) its quo-
tient structure with respect to ~g. Then for all formulas G € S all programs
acll

1. [s]ps()[t] implies that for all (a)G € S

if K, s = ~(a)G then K,t |= G

2. sp(a)t implies [s]ps(a)[t]
3. K,sl=GiffKg,[s] E G.

Proof: The proof is by simultaneous induction for all cases on the complex-
ity of o and G. The base case of atomic programs is by construction.
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Part 1: Consider induction step for (o; 8)G. Let ([s],[t]) € ps(a;B).
Then there is a u such that ([s], [u]) € ps(e) and ([u], [t]) € ps(B). By induc-
tion hypothesis, we know that for all (o)A € S and all (8)B € S:

if s =-(a)Athenu |=-A (1)

ifu |=—-(8)Bthent = -B (2)
We need to show for any («; 8)C € S that

if s = = (a; B)C then't = -C

Thus assume [s] = —(«; 8)C. By construction of the Fischer-Ladner closure
we have (a)(8)C € S, thus (5)C € S. Consequently, s = —(«a)(5)C implies
u = —(8)C using (4). Thus (2) implies ¢ = ~C.

Now consider the induction step for (a*)G. Let ([s], [t]) € ps(a*). Then
there is a sequence of states s, s1, ..., s, such that [so] = [s], [sn] = [t] and
([si], [si+1]) € ps(«) for all 0 < i < n. By induction hypothesis, we know
that for all (a)A € S and all i:

if s; ): _‘<Oé>A then Si+1 ': -A (3)
We need to show for any (o*)C' € S that
if s = =(a*)C thent E -C

It is easy to see that —(a*)C' <> =C' A —(a)(a*)C is a valid equivalence in
PDL. We show by induction on i that s; = ~(a*)C for 0 < i < n.

0. 7 = 0is what we assumed.

i+1. Assuming s; = ~(a*C), we have that s; = =(a)(a*)C by the above
equivalence. By construction of the Fischer-Ladner closure we know
that —(a)(a*)C € S. Consequently, the induction hypothesis yields

si+1 | ~{a")C.

Thus from s, = —~(a*)C, the above equivalence implies s,, = ~C, which
implies s = ~C, by step 3 (note that G is simpler), because [s] = [sy].
Consider the case for (?H)G, which uses part 3. Let ([s], [t]) € ps(TH).
Then [s] = [t] and [s] = H. Assume s |= ~(?H)A, which directly implies
that s = —H V —A by the PDL semantics. Yet [s] = H implies s = H by
part 3. We want to show ¢ = =A. Now by part 3 (H is simpler), s = -A
implies [s] = A and [t] = =A by [s] = [t]. Thus ¢ = —~A, again by part 3.
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Part2: Let sp(a)t. For proving [s]pgs(c)[t], consider any formula —(a) A €
S with K, s = =(a)A. This directly implies K, ¢ = = A, because sp(«a)t.

Part 3: Consider the most interesting case where G is (a)A. Assume
K,s = (a)A, then thereis at with sp()tand K, ¢t = A. By induction hypoth-
esis, this implies Kg, [t] = A. By part2, we have [s]ps()[t] and K, [s] = (a)A.
Conversely, assume Kg, [s] = (a)A. Then there is a [t] with [s]pgs()[t] and
Kg,[t] = A. By induction hypothesis, this implies K, ¢ = A. Suppose we
had K, s = =(a)A, then part 1 would imply K, ¢ |= - A, which is a contra-
diction. O

Also see [FL79, HKT00, Sch03] for details.
Theorem 4 PDL satisfiability is decidable.

Proof: Consider any PDL formula F'. Let S be the Fischer-Ladner closure
of F. Let n € N be the size of S, which is a finite set, say, of size n. We
show that if I is satisfiable at all, it has a model of at most size 2". Let K
be a PDL structure satisfying F'. Then its quotient structure Kg has at most
2" states and still satisfies F' by Lemma 3. Thus, if F is satisfiable then it is
satisfiable in models of bounded finite size and enumeration can be used
to decide. O

But there is one thing we have forgotten! Why does the Fischer-Ladner
closure always exist and is finite? Or why is Definition 1 actually a defini-
tion? Case 8 seems to demand that we keep on adding new formulas. Does
that continue forever? We consider that next.

3 Fischer-Ladner Tableaux

We consider a tableau construction for the Fischer-Ladner closure. For a
PDL formula I we define its diamond closure $ —*F is the smallest set S of
subformulas of F' such that F' € S and whenever (a)G € S, we also have
Ges.

Definition 5 (Fischer-Ladner tableaux) Let F' be a PDL formula and let the
set O~*F ={Fy,..., F,} be its diamond closure. A Fischer-Ladner tableau is
formed by applying the rules in Fig. 1 from the initial tableau

P kK ... F ... F,

A Fischer-Ladner tableau stops if no more rules are applicable. By FLT(T) we
denote the set of all formulas occurring in T
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-F (aUBF
FLD) - = F FL F GF
(FL2) Fve 1 (FL5) {as ) F
Fi...FpGi...Gnm (@) (BYF (B)F
(FL3) wl (FL6) ﬂ
F...F, (a){a")F

lwhere O *F = {F1,...,F,}and 07*G ={G1,...,Gn}

Figure 1: Fischer-Ladner closure tableaux

Lemma 6 The Fischer-Ladner tableau procedure has the following properties:

1. The Fischer-Ladner tableau procedure terminates for every input F with a
tableau of size < |F|, where | F| is the number of symbols in F.

2. All Fischer-Ladner tableaus (stopped or not) with a node ()G also have a
node G (diamond closure).

3. If T is a stopped Fischer-Ladner tableau then F'LT(T) is the Fischer-Ladner
closure of F.

Proof: 1. In rules FL1 and FL2, the number of propositional operators de-
creases strictly. Rule FL3 turns a modal formula («) F' into formulas F; that
are strictly smaller than «. Rules FL4,FL5,FL6 turn a modal formula (o) F
into a set of formulas (a;) F; for arbitrary F; but strictly smaller «;. Conse-
quently, the number of symbols in the starting formula is an upper bound
on the number of rule applications. Especially, no rules are applicable for
formulas of the form () F with atomic program 7, where the process stops.

2. Proof by induction on the tableau 7. The property easily holds for
the initial tableau by the definition of diamond closures.

FL1 The cases where tableau 7" is obtained from tableau 7" by FL1, FL2,
or FL3 are simple, because the extension is the full diamond closure.

FL4 T’ is obtained from T by FL4. Then the extensions («)F and (5)F
inherit the property from the induction hypothesis for (a« U 3)F, be-
cause the postcondition did not change.

FL5 T’ is obtained from 7' by FL5. The left branch is easy. The sec-
ond branch follows from { ~*(8)F = {*F U {(5) F'} and the fact that
¢ ~*F is on the tableau already by induction hypothesis.
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FL6 T’ is obtained from T by FL6. For the new formula (a)(a*)G we
need to show that O *(a*)F = O~ *F U {(«*) F'} occur on T" already.
Clearly 0 ~*F is in T by induction hypothesis and (a*)F" is the pre-
miss.

3. It is easy to see that F'LT(T) satisfies the conditions for the Fischer-
Ladner closure just by looking at the rules:

1. F' € S: holds from the initial tableau and the fact that I’ € $ —*F.
2. -G e SthenG e S:byFLl1and FF € O™*F.

3. (GVH) e SthenG,H € S:byFL2and F € 0 *F,G € 07*G.

4. (a)G € Sthen G € S: By part 2

5 (7F)G € Sthen F € S:ByFL3and F' € 0"*F.

6. (¢ U )G € Sthen (o)G € Sand (8)G € S: By FL4dand F € O~ *F.
7. (a; B)G € S then (a)(B)G € S: By FL5and F' € O™*F.

8. (o*)G € S then (a)(a*)G € S: By FL6 and F' € O ™*F.

The converse direction is also easy to see: F'LT(T) C S for any set S satis-
tying the conditions of the Fischer-Ladner closure. O

4 Some Dynamic Logic Meta-Theory

Propositional dynamic logic is decidable but of limited expressive power.
We consider first-order dynamic logic from lecture 19 and study a few sim-
ple meta properties. Dynamic logic has a rich theory [HKT00] and practical
applications, e.g., in program verification [HLS™96, BHS07], probabilistic
systems [Koz85], and hybrid systems verification [P1a08].

As one example we show how easy it is to see that dynamic logic does
not have a sound and complete effective calculus. Given that (first-order)
dynamic logic talks about properties of programs, undecidability is not sur-
prising. We show a very simple standalone proof of incompleteness.

Theorem 7 (Incompleteness) (First-order) Dynamic logic has no effective sound
and complete calculus.
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Proof: We first show that the compactness theorem does not hold in DL. It
is easy to see that there is a set of formulas that has no model even though
all finite subsets have a model, consider:

{{(z:= f(2))"; p(x))true} U {-p(f"(z)) : n € N}

Suppose there was an effective sound and complete calculus for DL.
Consider an set ® of formulas that has no model in which all finite subsets
have a model. Then ® F g A —¢ is valid, thus provable by completeness.
But this effective proof can only use finitely many assumptions ®, C ®.
Thus ®g = ¢ A =¢ by soundness. But then the finite set ®; has no model,
which is a contradiction. O

Sound and complete infinitary axiomatizations of DL still exist [HKT00].
Also relative completeness proofs exist and arithmetical completeness has
been shown [HKTO00, Har79].

The set of computation sequences of a regular program is defined as

CS(m) :={n} for atomic program 7
CS5(7¢) = {7¢}
CS(QUB) CS(a)uCS(B)
( B) :={oT : aECS(a),TECS(B)}
a’) = CS(a
neN

Theorem 8 (Completeness of termination in uninterpreted case) In the un-
interpreted case, i.e., in the class of arbitrary Kripke structures, the dynamic logic
calculus is complete for termination assertions with first-order formulas F, G:

FF— ()G if FF— (G

Proof: The calculus needs axiom schemata for instances of all valid PDL
formulas, of all valid first-order formulas, modus ponens and the following
axiom for all first-order formulas ¢:

Soundness is simple. Completeness can be proven by induction on the
structure of o. Consider the case F F' — (o« U 3)G. Let Q be the set of
all computation sequences of o U 3. In an infinitary logic, we could say
that (o« U 3)G is equivalent to the infinitary formula \/__(0)G. Hence
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F F' — (U B)G implies that the following set of DL formulas is unsatis-
fiable:
{F}U{~(0)G : 0 €Q}

For each computation sequence o it is easy to see that there is a first-order
formula ((¢)G)’ that is equivalent to (o)G. Thus the following set of first-
order formulas is unsatisfiable

{FYU{~((0)G) : o €}

Thus compactness of first-order logic implies that there is a finite subset of
Qo C Q such that the finite subset is unsatisfiable

{F}U{~((0)G) : o€}

Thus
FF =\ (0)G)

g€

which can be rewritten in the form
FF— (\/ ()G v \/ ((U)G)b> (4)
ocA ceB

for finite subsets A and B of the computation sequences of o and /3 respec-
tively. By completeness of first-order logic the latter first-order formula is
provable in first-order logic (thus in DL). Because A and B are computation
sequences of o and [ respectively we have

F\ (0)G) = (G and F \/((0)G) — (8)G

c€EA oceB

Thus these simpler formulas are provable by induction hypothesis. Com-
bining this with the provability of (4) gives

FF = ()GV{(B)G
Now the PDL axiom ()G V (8)G < (o U )G yields

FFEF— (aUpB)G
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