
A Temporal-Logic Approach
to Binding-Time Analysis

Rowan Davies�
Carnegie Mellon University

Computer Science Department
Pittsburgh PA 15213, USA

rowan@cs.cmu.edu

Abstract

The Curry-Howard isomorphism identifies proofs with
typed �-calculus terms, and correspondingly identifies
propositions with types. We show how this isomorphism
can be extended to relate constructive temporal logic with
binding-timeanalysis. In particular, we show how to extend
the Curry-Howard isomorphism to include the
 (“next”)
operator from linear-time temporal logic. This yields the
simply typed�
-calculus which we prove to be equiva-
lent to a multi-level binding-time analysis like those usedin
partial evaluation for functional programming languages.
Further, we prove that normalization in�
 can be done
in an order corresponding to the times in the logic, which
explains why�
 is relevant to partial evaluation. We then
extend�
 to a small functional language, Mini-ML
, and
give an operational semantics for it. Finally, we prove that
this operational semantics correctly reflects the binding-
times in the language, a theorem which is the functional
programming analog of time-ordered normalization.

1. Introduction

Partial evaluation [12] is a method for specializing a pro-
gram given part of the program’s input. The basic technique
is to execute those parts of the program that do not depend
on the unknown data, while constructing a residual program
from those parts that do. Offline partial evaluation uses a
binding-time analysis to determine those parts of the pro-
gram that will not depend on the unknown (dynamic) data,
regardless of the actual value of the known (static) data.

Binding-time analyses are usually described via typed�This work was mostly completed during a visit by the author toBRICS
(Basic Research in Computer Science, Centre of the Danish National Re-
search Foundation) in the summer of 1995. It was also partly supported by
a Hackett Studentship from the University of Western Australia

languages that include binding-time annotations, as for
example by Nielson and Nielson [14] and Gomard and
Jones [9]. However, the motivation for the particular typing
rules that are chosen is often not clear. There has been some
work, for example by Palsberg [15], on modular proofs that
binding-time analyses generate annotations that allow large
classes of partial evaluators to specialize correctly. How-
ever this still does not provide a direct motivation for the
particular rules used in binding-time type systems.

In this paper we give a logical construction of a binding-
time type system based on temporal logic. Temporal logic is
an extension of logic to include proofs that formulas are valid
at particular times. The Curry-Howard [11] isomorphism
relates constructive proofs to typed�-terms and formulas to
types. Thus, we expect that extending the Curry-Howard
isomorphism to constructive temporal logic should yield a
typed�-calculus that expresses that a result of a particular
type will be available at a particular time. This is exactly
what a binding-time type system should capture.

Many different temporal logics and many different tem-
poral operators have been studied, so we need to determine
exactly which are relevant to binding-time analysis. In a
binding-time separated program, one stage in the program
can manipulate as data the code of the following stage. At
the level of types this suggests that at each stage we should
have a type for code of the next stage. Thus, via the Curry-
Howard isomorphism we are led to consider the temporal
logic
 operator, which denotes truth at the next stage, i.e.
A is valid if A is valid at the next time. Further, since
temporal logics generally allow an unbounded number of
“times”, they should naturally correspond to a binding-time
analysis with many levels, such as that studied by Glück and
Jørgensen [8]. The more traditional two-level binding-time
analyses can then be trivially obtained by restriction. Also,
in binding-time analysis we have a simple linear ordering
of the binding times, so we consider linear-time temporal
logic, in which each time has a unique time immediately

following it. Putting this all together naturally suggeststhat
constructive linear-time temporal logic with
 and a type
system for multi-level binding-time analysis should be im-
ages of each other under the Curry-Howard isomorphism.
This does not seem to have been observed previously, and
in this paper we show formally that this is indeed the case.
The development is relatively straightforward and our main
interest is in demonstrating the direct logical relationship
between binding-time analysis and temporal logic.

The structure of this paper is then as follows. In the
following section, we start with a natural deduction formu-
lation of intuitionistic linear-time temporal logic with!
and
. Our system has a similar style to the modal sys-
tems of Martini and Masini [13]. We then verify that our

operator is the same as that considered elsewhere by show-
ing that adding negation and classical reasoning leads to a
system equivalent toL
, an axiomatic formulation due to
Stirling [17] for a small classical linear-time temporal logic
including
.

We then apply the Curry-Howard isomorphism to the
natural-deduction system, yielding the typed�
-calculus
with the
 operator in the types. We give reduction rules for
this calculus, and prove that normalization can be performed
in an order corresponding to the times in the logic. This
theorem gives an abstract explanation for why�
 is relevant
to partial evaluation.

In the second part of the paper we consider�m, which
is essentially the�-calculus fragment of the language
used in the multi-level binding-time analysis of Glück and
Jørgensen [8]. We then construct a simple isomorphism
between�m and�
 that preserves typing, thus showing
that these languages are equivalent as type systems. We
also give a correspondence between�-reductions in the two
languages. This gives some explanation for why languages
like �m are relevant to partial evaluation.

Finally, we expand�
 to a small temporal functional
language Mini-ML
, which is in many ways similar to a
realistic binding-time type system. We give an operational
semantics for this language, and then give a proof that this
semantics correctly reflects the binding times in the lan-
guage. This theorem is the functional programming analog
of the time-ordered normalization theorem for�
.

We conclude by giving example programs in Mini-ML

and discussing some practical concepts from binding-time
analysis.

This work is similar to work by Davies and Pfenning [5]
which shows that a typed language Mini-ML2 based on
modal logic captures a powerful form of staged computa-
tion, including run-time code generation. They also show
that Mini-ML2 is a conservative extension of the two-level
and (linearly ordered) B-level languages studied by Niel-
son and Nielson [14]. However, they note that this system
only allows programs that manipulate closed code, while the

binding-timetype systems used in partial evaluation, suchas
that of Gomard and Jones [9], allow manipulation of code
with free variables. Thus, the original motivation for the
present work was to consider how to extend Mini-ML2 to a
system that is a conservative extension of the binding-time
type systems used in partial evaluation. In this paper we
achieve that goal, though find that we also lose the features
of Mini-ML 2 beyond ordinary binding-time analysis. Our
conclusion is that the2 operator in Mini-ML2 corresponds
to a type forclosed code, while the
operator in Mini-ML

corresponds to a type forcode with free variables. Thus the
two operators are suitable for different purposes, and which
one is preferred depends on the context. This suggests that
a desirable direction for future work would be the design of
a type system correctly capturing both closed code and code
with free variables within a single framework.

2. A temporal �-calculus

In this section we will show how to extend the Curry-
Howard isomorphism to include the
 (“next”) operator
from temporal logic. In order to do this, we give a natural-
deduction system for an intuitionistic linear-time temporal
logic containing only
 and!. We then show that our

operator is the same as the one usually considered in linear-
time temporal logics by adding inference rules for negation
and classical reasoning, and then proving equivalence to a
sound and complete axiomatic system given by Stirling [17]
for the fragment of classical linear-time temporal logic con-
taining only
,! and:. We then add proof terms to our
original natural deduction system to yield a simply typed�-calculus with the
 operator in the types.

2.1. Intuitionistic Temporal Logic

This subsection presents a simple natural-deduction for-
mulation of an intuitionistic linear-time temporal logic con-
taining only
 and!. Our formulation uses a judge-
ment annotated with a natural numbern, representing the
“time” of the conclusion, and with each assumptionA in
Γ also annotated by a timen. These are just like the “lev-
els” in the modal natural-deduction systems of Martini and
Masini [13], and in fact our system is exactly the same as
their rules for modal K, except that because of linearity we
do not need any restriction on the assumptions used in the
introduction rule for
. Our rules for the non-temporal
fragment are completely standard.

2

An in Γ V
Γ `n A

Γ; An
1 `n A2 ! I

Γ `n A1 ! A2

Γ `n A1 ! A2 Γ `n A1 ! E
Γ `n A2

Γ `n+1 A
I
Γ `n
A Γ `n
A
E

Γ `n+1 A
In order to give a proof-theoretic semantics to the

operator we also need to consider a proof reduction rule for
I immediately followed by
E, which reduces trivially
to the derivation with both inference steps removed.

2.2. Comparison with a previous temporal logic

We now need to verify that the natural-deduction sys-
tem presented the previous section really does present the
same
 operator as other linear-time temporal logics. In-
formally, it is not difficult to see how these rules correspond
to a Kripke semantics with a linear reachability relation.
However, rather than give a formal proof of soundness and
completeness with respect to such a semantics, we instead
show equivalence to a previously presented temporal logic.

Unfortunately, intuitionistic temporal logics do no seem
to have been considered previously, nor temporal logics
without negation. Thus we add classical reasoning and nega-
tion to our natural deduction system to make this compari-
son, even though they are not directly relevant to binding-
time analysis. We thus add the following inference rules to
those above:

Γ; An `n p :Ip
Γ `n :A (p a variable not

occuring inΓ orA)

Γ `n A Γ `n :A :E
Γ `n0 B

Γ;:An `n A
C

Γ `n A
These rules are relatively standard, except for the addition

of the time annotations.
Note that by presenting the
 operator using only an

introduction rule and elimination rule in the original system
we have separated it from negation and classical reasoning.

We are now in a position to prove equivalence to a previ-
ously presented temporal logic. The following axioms and
inference rules,L
, for the fragment of classical linear-
time temporal logic containing only
,! and: are due to
Stirling [17] (page 516), who shows that they are sound and
complete for unravelled models of this logic. We choose
this system as our starting point because it appears to be
the smallest linear temporal logic containing the
 operator
that has been previously considered in the literature.

Axioms: L1 Any classical tautology instance
L3
:A $:
A
L4
(A1 ! A2) ! (
A1 !
A2)

Inference rules: MP ifA1 ! A2 andA1 thenA2

RO if A then
A
Note that in the inference rules, we require that there be

proofs from no assumptions.
The following theorem shows that our
 operator is the

same as the one usually considered in linear-time temporal
logic.

Theorem 1 We can derive� `0 A in the extended natural-
deduction system if and only if there is a proof of A inL
.

Proof: (sketch) In one direction, we construct a derivation
for each axiom and proceed by induction over the inference
rules inL
. For L1 we actually simply notice that removing
the rules for
 yields a standard natural-deduction system
for pure classical logic. The other axioms are straightfor-
ward, and the case for the inference rule RO only requires
showing that incrementing every time annotation in a deriva-
tion yields a derivation.

We prove the other direction by induction over the struc-
ture of derivations, strengthening the induction hypothesis
to:

if An1
1 ; : : : ; Ankk `n A

then
n1 A1 ! : : :!
nkAk !
nA
is provable inL

Here
n meansn occurrences of
. Only the cases
for the! and: rules are non-trivial. They are solved by
repeated application of L3, L4 and theconverse of L4 (which
is derivable using L3, L4 and a classical tautology) along
with a sequence of cuts (which are classical tautologies).

For example, in the case for! I, we have by the induc-
tion hypothesis that
nA01 ! : : :!
nA0m !
nA1 !
nA2

We can also deduce that(
nA1 !
nA2)!
n(A1 ! A2)
3

by repeated application of the converse of L4.
Now, by using the cut-formula (which is a classical tau-

tology)(
nA01 ! : : :!
nA0m !
nA1 !
nA2)! ((
nA1 !
nA2) !
n(A1 ! A2))! (
nA01 ! : : :!
nA0m !
n(A1 ! A2))
and MP twice, we get the required result.

2.3. A temporal�-calculus

We now add proof terms to the original intuitionistic
temporal-logic natural-deduction system. This yields�
,
a simply typed�-calculus with the
 operator in the types,
by the natural extension of the Curry-Howard isomorphism.

2.3.1 Syntax

Types A ::= b j A1 ! A2 j
A
Terms M ::= x j �x:A: M jM0M1j next M j prev M
Contexts Γ ::= � j Γ; x:An

2.3.2 Typing rules

Γ `n M : A ExpressionM has typeA
at timen in contextΓ.x:An in Γ V

Γ `n x : A
Γ; x:An

1 `n M : A2 ! I
Γ `n �x:A1: M : A1 ! A2

Γ `n M0 : A1 ! A2 Γ `n M1 : A1 ! E
Γ `n M0 M1 : A2

Γ `n+1 M : A
I
Γ `n next M :
A Γ `n M :
A
E

Γ `n+1 prev M : A
2.3.3 Reduction rules

We have the standard�-reduction rule as well as the fol-
lowing temporal reduction rules. The first comes from the
natural-deduction proof-reduction rule, analogously to the
correspondence between�-reduction and the proof reduc-
tion rule for!:

prev(next M)
�!M

We also have the following for elimination followed by
introduction, analogous to�-reduction:

next(prev M)
�!M
2.3.4 Time-ordered normalization

Suppose we haveΓ `n M : A. Then we say that the typing
derivation associates a timen0 with the subtermM 0 of M
if the corresponding sub-derivation of the typing derivation
has the formΓ0 `n0 M 0 : A0. Note that reduction preserves
the time of subterms. Also, since�-redices are sub-terms,
this definition associates a time with each one, and this time
will be the same as that associated with both the body of the� and the argument.

Now, a fundamental property of�
 is that we can reduce�-redices in the order of their associated time, provided
we reduce all temporal redices between�-reductions. In
doing so, each reduction cannot lead to�-redices with an
earlier time. We refer to this property as “time-ordered
normalization”, and prove it below.

This property explains why�
 is relevant to partial eval-
uation. If we have a term in�
, then we know that�-
reduction can be done in stages corresponding to the times
in the temporal logic. This is very closely related to binding-
time correctness in a functional language, which we will
discuss in the next section.

Theorem 2 (Time-ordered normalization) Suppose we
haveΓ `n M : A, whereM has no temporal redices and no�-redices with time less thann0. Then reducing a�-redex
with timen0 and then reducing all temporal redices leads a
term which also has no�-redices with time less thann0.

In the proof we make use of the standard notationC[M 0]
to indicate the term whereM 0 appears in the contextC.

Proof: We haveM � C[(�x:A: M0)M1]
with Γ0; x:An0 `n0 M0 : A0 and Γ0 `n0 M1 : A1.
We reduce toM 0 � C[fM1=xgM0] and then reduce all
temporal redices.

Suppose there is a�-redex with time less thann0 in the
result. Then we have one of two cases:

1. M 0 � C0[C00[fM1=xgM0]M2] with C00[fM1=xgM0]
reducing to �y:A: M 0

0 by temporal reductions. But thenC00 cannot be the identity since then the resulting�-redex
has timen0. Nor can it begin with a�, since then there is�-redex with time less thann0 in M . Also, by the typing,C00 cannot begin withnext. Hence, it must begin withprev.
Continuing this argument, we see thatC 00 � previ. But,
then [M1=x]M0 � nexti(�t:A: M 0

0), and the resulting
redex has leveln0 + i, which is not less thann0.

2. [M1=x]M0 � C 0[C00[M1]M2] with C 00[M1] reducing
to�y:A: M 0

1 by temporal reductions. By an almost identical
argument to the above, this is impossible.

4

3. Equivalence to a binding-time type system

We now demonstrate the relationship between�
 and
binding-time type systems considered by other authors. To
do this we consider�m, a simply typed�-calculus which is
essentially the core of standard binding-time analyzes used
in offline partial evaluation (see e.g. Gomard and Jones [9]).�m additionally allows more than two binding times in the
same way as the multi-level binding-time analysis of Glück
and Jørgensen [8]. Our formulation of�m is basically the�-
calculus fragment of Glück and Jørgensen’s system, though
it has some important differences. We use separate syntactic
categories for the types of each level, thus avoiding side
conditions regarding well-formedness of types. Further, we
do not treat the final level as dynamically typed, but consider
the whole program to be statically typed. Finally, we do not
include “lifting” from one binding time to a later one, but
instead demonstrate later how this can be easily added.

We then give a simple translation between�m and�
.
This translation is a bijection on terms and types that pre-
serves typing, modulo reduction of temporal redices. Thus�m and�
 are equivalent as type systems, modulo these
trivial reductions.

3.1. Syntax

We use the separate syntactic categories�n to indicate
the type of results which will be available at timen or later.
The time annotations on base typesbn and function types�n1 !n �n2 indicate the time at which the corresponding
values are available. The time annotations on terms indicate
the time at which the� or @ (application) are reduced, and
the corresponding variable substituted for. See Glück and
Jørgensen [8] for a semantics of evaluation of multi-level
terms in multiple stages.

Types �n ::= bn j �n1 n! �n2 j �n+1

Terms E ::= xn j �nxn:�n: E j E0 @n E1

Contexts Ψ ::= � j Ψ; xn:�n
3.2. Typing rulesxn:�n in Ψ

tpm var
Ψ m̀ xn : �n

Ψ; xn:�n1 m̀ E : �n2
tpm lam

Ψ m̀ �nxn:�n: E : �n1 n! �n2
Ψ m̀ E0 : �n1 n! �n2 Ψ m̀ E1 : �n1

tpm app
Ψ m̀ E0 @n E1 : �n2

3.3. Equivalence translation

We now give simple translations between well typed
terms in�m and�
. The translation from�
 maps terms
which are in the same equivalence class with respect to
temporal reductions to the same�m term. In the other di-
rection, we always translate�m terms to a�
 terms with
no temporal redices, these being unique representatives of
the equivalence classes. Note that we can always reduce all
temporal redices, since the number of reductions is bounded
by the number ofnext andprev constructors. We then show
that the two translations preserve typing and are inverses of
each other when restricted to�
 terms with no temporal
redices. This shows that�m is isomorphic to�
 modulo
the temporal reductions.

The translations are given by the functionsj � jn andk �kn
defined as follows:

Type Translations jbnjn = bj�n1 !n �n2 jn = j�n1 jn ! j�n2 jnj�n+1jn =
j�n+1jn+1kbkn = bnkA1 ! A2kn = kA1kn !n kA2knk
Akn = kAkn+1

Term Translations jxnjn = xj�nxn:�n: Ejn = �x:j�njn: jEjnjE0@nE1jn = jE0jn jE1jn(m > n) jEmjn = nextjEmjn+1(m < n+ 1) jEmjn+1 = prevjEmjnkxkn = xnk�x:A: Mkn = �xn:kAnkn: kMknkM0 M1kn = kM0kn@nkM1knknext Mkn = kMkn+1kprev Mkn+1 = kMkn
Here we useEm as convenient syntax matching all ex-

pressions which have the top constructor annotated withm.

Lemma 3 j � jn andk � kn are inverses on the fragment of�
 with nonext-prev redices.

Proof: By a straightforward induction.

Theorem 4 The two translations preserve typing, namely:� if � `m E : � 0 then� `0 jM j0 : j� 0j0� if � `0 M : A then� `m kMk0 : kAk0

5

Proof: By a straightforward structural induction, strength-
ening appropriately to:� if Ψ m̀ E : �n thenjΨj `n jM jn : j� jn� if Γ `n M : A thenkΓk m̀ kMkn : kAkn
Lemma 5 If kMkn = E thenM
�! jEjn using only
temporal reductions.

Proof: By induction on M.

We can now define�-reduction in�m as the image of�-reduction in�
 under the translation, namely:(�nxn:�n: E0)@nE1
��! [E1=xn]E0

Then, using the above lemma, ifkMkn = E andE ��! E0 thenM
�!M1 using only temporal reductions,

andM1
��!M 0 with kM 0kn = E0. Informally, this means

that� reductions correspond exactly between�
 and�m.

At this stage, we can consider�
 and�m to be equiv-
alent except for the temporal reductions in�
 which are
hidden by the syntax in�m. Thus�
 expresses binding-
times in the same way as�m. Conversely,�m can be
considered as proof terms for our temporal logic, with an
alternative, equivalent syntax for formulas. This justifies
our claim that the core of binding-time type systems are
the image of a temporal logic under the the Curry-Howard
isomorphism.

4. A temporal functional language

We now show how to extend�
 to obtain Mini-ML
, a
small functional language in the style of [3], which includes
next, prev and
 to allow expression of binding-times.
We give an operational semantics for this language, and
then prove type preservation and value soundness. We also
demonstrate that this operational semantics correctly reflects
the binding-times.

Often in partial evaluation the binding-time type system
is only used to generate binding-time information which
guides a specializer, and no operational semantics is given
directly to the binding-time language. Here we consider

that the operational semantics is fundamental in that it gives
meaning to the binding-times. We claim that other methods
for interpreting the binding-times can generally be formu-
lated as binding-time preserving transformations in a lan-
guage like Mini-ML
. For example, the generation of spe-
cialization points in a partial evaluator like Similix (see[1]
or [12]) can be expressed as adding memoizing functions
to the binding-time separated program. The semantics of
the binding-time analyzed program is then the composition
of these binding-time preserving transformations with a se-
mantics like the one we give.

We could similarly extend�m instead of�
 to get
a functional language syntactically very similar to other
binding-time type systems. We choose instead to start with�
 because we would like to have a language which is syn-
tactically suitable for manually programming with binding-
times. A language based on�m would require the pro-
grammer to annotate every construct in a program with a
time, which would be very tedious and make programs hard
to read. Normally binding-time type systems are only used
an output language for a binding-time analysis, so ease of
programming isn’t an issue. Mini-ML
 is suitable for man-
ually programming with binding-times, as the examples at
the end of this section demonstrate. It is interesting to
note thatnextandprev are very similar to the quasi-quoting
mechanism in the popular programming language Lisp, thus
further supporting the claim that they are natural way for the
programmer to provide binding-time information.

The motivation for supporting manual programming is
to avoid an almost universal problem in automatic partial
evaluation, namely that generation of code is not guaranteed
to terminate. By allowing the programmer to have direct
control over binding-times in a language with a well de-
fined semantics, we can place the responsibility of ensuring
termination on the programmer. Welinder [18] has demon-
strated that this style of programming, called hand-writing
generating extensions, can be very fruitful. Some of the
benefits of automatic binding-time analysis might then be
regained by allowing the temporal term constructors to be
implicit coercions in a system of sub-typing, in the style of
Breazu-Tannenet.al. [2], leading to a refinement type sys-
tem [6] where each refinement of a type is obtained by some
insertions of
. The practicality of this idea has yet to be
properly investigated.

Our language Mini-ML
 includes pairs, natural num-
bers, and fixed-points. We omit polymorphism, but claim
that it can be added with some minor complications to the
proofs that follow. Mini-ML
 is explicitly typed, since
we do not treat type inference here, although note that type
inference fornext and prev can be handled easily using
unification.

6

4.1. Syntax

Types A ::= nat j A1 ! A2 j A1 � A2 j
A
Terms e ::= x j �x:A: e j e1 e2j fix x:A: ej he1; e2i j fst e j snd ej z j s ej (casee1 of z) e2 | sx) e3)j next e j prev e
Contexts Γ ::= � j Γ; x:An

4.2. Typing Rules

In this section we present typing rules for Mini-ML
.
The typing judgement has the form:

Γ `n e : A Terme has typeA at timen
in contextΓ.�-calculus Fragmentx:An in Γ

tpt var
Γ `n x : A Γ; x:An `n e : B

tpt lam
Γ `n �x:A: e : A! B

Γ `n e0 : A! B Γ `n e1 : A
tpt app

Γ `n e0 e1 : B
Mini-ML Fragment

Γ; x:An `n e : A tpt �x
Γ `n fix x:A: e : A

Γ `n e1 : A1 Γ `n e2 : A2 tpt pair
Γ `n he1; e2i : A1 � A2

Γ `n e : A1 �A2 tpt fst
Γ `n fst e : A1

Γ `n e : A1 �A2 tpt snd
Γ `n snd e : A2tpt z

Γ `n z : nat

Γ `n e : nat tpt s
Γ `n se : nat

Γ `n e1 : nat Γ `n e2 : A Γ; x:natn `n e3 : A tpt case
Γ `n (casee1 of z) e2 | s x) e3) : A

Temporal Fragment

Γ `n+1 e : A
tpt next

Γ `n nexte :
A Γ `n e :
A
tpt prev

Γ `n+1 prev e : A

4.3. Operational Semantics

We now present the operational semantics of Mini-ML
.
The intuition for this semantics is that parts of the term with
time 0, the current time, should be evaluated now, while
those at later times should be delayed until then. This leads
to two rules for each non-temporal construct in the language.
The values,v0, are the standard ones for a Mini-ML like
language, with the addition ofnext v1, wherev1 includes
all expressions with no sub-term at time 0. The operational
semantics allows for manipulationof expressions containing
free variables, provided the variables have time greater than
0, and we thus depend on the fact that substitution avoids
variable capture.

The operational semantics for�
 is similar to the spe-
cialization logic presented by Hatcliff [10] for a two-level
binding-time language, and our binding-time correctness
theorem is also somewhat similar to Hatcliff’s.

Valuesv0 ::= �x:A: e j hv0
1; v0

2i j z j s v0 j next v1vn+1 ::= x j �x:A: vn+1 j vn+1
1 vn+1

2j fix x:A: vn+1j hvn+1
1 ; vn+1

2 i j fst vn+1 j snd vn+1j z j s vn+1j (casevn+1
1 of z) vn+1

2 | sx) vn+1
3)j next vn+2j prev vn (n > 0)e n,! v Expressione with timen

evaluates to valuev.�-calculus Fragment, time 0

ev lam�x:A: e 0,! �x:A: ee1
0,! �x: e01 e2

0,! v2 [v2=x]e01 0,! v
ev appe1 e2

0,! v�-calculus Fragment, time n+1

ev var0x n+1,! xe n+1,! v
ev lam0�x:A: e n+1,! �x:A: ve1

n+1,! v1 e2
n+1,! v2

ev app0e1 e2
n+1,! v1 v2

7

Mini-ML Fragment, time 0[fix x: e=x]e 0,! v
ev fix

fix x: e 0,! ve1
0,! v1 e2

0,! v2
ev pairhe1; e2i 0,! hv1; v2ie 0,! hv1; v2i

ev fst
fst e 0,! v1

e 0,! hv1; v2i
ev snd

snd e 0,! v2

ev z

z
0,! z

e 0,! v
ev s

s e 0,! s ve1
0,! z e2

0,! v
ev case z(casee1 of z) e2 | sx) e3) 0,! ve1

0,! s v01 [v01=x]e3
0,! v

ev case s(casee1 of z) e2 | sx) e3) 0,! v
Mini-ML Fragment, time n+1e n+1,! v

ev fix0
fix x: e n+1,! fix x: ve1
n+1,! v1 e2

n+1,! v2
ev pair0he1; e2i n+1,! hv1; v2ie n+1,! v

ev fst0
fst e n+1,! fst v e n+1,! v

ev snd0
snde n+1,! sndv

ev z0
z
n+1,! z

e n+1,! v
ev s0

s e n+1,! s ve1
n+1,! v1 e2

n+1,! v2 e3
n+1,! v3

ev case0(casee1 of z) e2 | sx) e3) n+1,!(casev1 of z) v2 | sx) v3)

Temporal Fragmente n+1,! v
ev next

next e n,! next ve 0,! next v
ev prev

prev e 1,! ve n+1,! v
ev prev0

prev e n+2,! prev v
Theorem 6 (Determinacy)

1. If e n,! v thenv has the formvn.

2. If e n,! v ande n,! v0 thenv = v0 (modulo renaming
of bound variables).

Proof: By straightforward inductions over the structure of
the derivation ofe n,! v.

Theorem 7 (Type and Time Preservation)

1. If e n,! v andΓ `n e : A with Γ not containing any
bindings of variables at time0, thenΓ `n v : A.

2. Further, if a term constructor ine has timen0 as-
sociated with it by the original typing proof and it
gives rise to a term constructor inv (via substitution,
the ruleev lam, or a rule for time m+1) then that
term constructor has timen0 associated with it by the
typing proof forv.

Proof: By a straightforward induction over the structure of
the derivation ofe n,! v, using an appropriate substitution
lemma.

Lemma 8 If Γ `n+1 vn+1 : A with Γ not containing any
bindings of variables at time0, thenΓ0 `n vn : A, where
Γ0 is obtained fromΓ by reducing the time on each variable
binding by one.

Proof: By induction on the structure of the typing deriva-
tion.

Theorem 9 (Binding-time correctness) If � `0 e :
A
and e 0,! v thenv has the formnext v0 and � `0 v0 : A .

Proof: By type preservation, � `0 v :
A . But then
next v0 is the only form that the valuev could take in this
typing derivation. Then, applying the above lemma gives� `0 v0 : A.

8

Binding-time correctness in Mini-ML
 is very closely
related to time-ordered normalization in�
. The binding-
time correctness theorem means that we can evaluate a pro-
gram in Mini-ML
 with type
nA in n + 1 stages cor-
responding to the times in the typing derivation, and if all
stages terminate the result will have typeA. Each stage
except the last involves evaluating the term to a value of the
form next v1 and then continuing the next stage withv1.

Now, by the time preservation property, at stagei the
constructors with time 0 (under the associated typing proof)
are images of those with timei in the original term, and
these are the ones for which real evaluation occurs during
the stage. Further, the result of each step except the last has
the form next v1, which cannot contain any constructors
with time 0 and so all evaluation corresponding to sub-terms
with time i has been done. Thus, our operational semantics
correctly captures binding-times.

4.4 Examples

We now give some examples of programs in Mini-ML
.
The first is a very common toy example from partial evalua-
tion, namely the power function where the exponent has an
earlier binding-time than the index. We give two different
versions and compare them. In both we assume a function
times: nat ! nat ! nat which multiplies two numbers.

power� fix p:nat !
(nat ! nat):�n:nat: casen
of z) next (�x:nat: s z)
| sm) next (�x:nat: timesx(prev (p m) x))

powerz ,! next (�x:nat: s z)
power(s z) ,! next (�x:nat: timesx ((�x:nat: s z)x))

power(s (s z)) ,! next (�x:nat: timesx((�x:nat: timesx ((�x:nat: s z)x))x))
power0 � �n:nat: next (�x:nat: prev ((fix p:nat !
nat:�n0:nat: casen0

of z) next (s z)
| sm) next (timesx(prev (p m)))) n))

power0 z ,! next (�x:nat: s z)
power0 (s z) ,! next (�x:nat: timesx (s z))

power0 (s (s z)) ,! next (�x:nat: timesx (timesx (s z)))
The first version corresponds exactly to the one given

by Davies and Pfenning [5] for the functional language
Mini-ML 2 based on the modal logic S4. The second avoids

the variable for variable redices in the result of applying
to the first argument. This program has no counterpart in
Mini-ML 2, since it requires evaluation with code contain-
ing free variables, which Mini-ML
 allows but Mini-ML2
does not. This illustrates the main reason why Mini-ML
 is
interesting compared to Mini-ML2. However, note that the
Mini-ML 2 has other features not supported by Mini-ML
,
namely an operator expressing immediate evaluation of
code, and sharing of code between stages. As an exam-
ple of this, the staged inner product example in [5] has no
counterpart in Mini-ML
.

Abstractly, the reason for these differences is that
Mini-ML 2 only allows manipulation of closed code, thus
disallowing some programs, while Mini-ML
 allows ma-
nipulation of code with free variables, thus making imme-
diate evaluation of code and sharing of code between stages
unsafe. Even more abstractly, the reason for these differ-
ences is that the Kripke semantics of the modal logic S4
on which Mini-ML2 is based is reflexive and transitive,
while the Kripke semantics of the temporal logic on which
Mini-ML
 is based is linear.

As another example program in Mini-ML
, we note
that realistic binding-time analyses include the automatic
insertion of a “lift” operator at least at base types. The “lift”
operator is essentially a coercion from one time to a later
one. We now show how to define a function in�
 with
type nat !
nat which performs this coercion, exactly
following [5]:

liftnat � fixf :nat !
nat:�x:nat: casex
of z) next z
| sx0) next (s (prev (f x0)))

A similar term of typeA !
A that returns anext’ed
copy of its argument will generally exist for each base type,
and inductively for pairs. This justifies the inclusion of the
lift primitive for base types in binding-time type systems
such as that of Gomard and Jones [9] and, in a more real-
istic version of our language, we would also include it as a
primitive. Note that we also have the following term with
type(
A!
B) !
(A! B) which allows a form of
lift on functions:�f :
A!
B: next (�x:A: prev (f (next x)))

For morediscussion on lift coercions in partial evaluation,
including sum types, see Danvy [4].

As an example of a more realistic program in an exten-
sion of Standard ML with temporal operators, we show the
regular expression matcher example from [5].

Figure 1 shows a version of the regular expression
matcher without temporal operators. It makes use of a con-
tinuation function that is called with the remaining input

9

if the current matching succeeds. The code assumes the
following datatype declaration:

datatype regexp
= Empty
| Plus of regexp * regexp
| Times of regexp * regexp
| Star of regexp
| Const of string

As in [5], we introduce a local function definition in
the case foracc (Star (r)) so that we can generate
specialized code by applying to the first argument.

Then, we can add in temporal constructors to get the
staged program in Figure 2 with the following types (using
Ohere to represent
)

val acc2 : regexp ->
O((string list -> bool) ->

(string list -> bool))
val accept2 : regexp ->

O(string list -> bool)

This program is in fact identical to that in [5], except that
here we use‘ for next andˆ for prev. We can actually do
better than this in�
, by making the continuations static,
and avoiding variable for variable redices, as shown in figure
3. This code effectively inlines continuations and applies
them to code representing the (dynamic) strings, which will
contain free variables.

5. Conclusion

We have demonstrated that the image of a small temporal
logic under the Curry-Howard isomorphism,�
, provides
a logical construction of a binding-time type system that is
equivalent to the core of those used in partial evaluation.
We have shown that normalization in�
 can be done in the
order of the times in the logic, thus giving an explanation
for why�
 is relevant to partial evaluation.

Further, we have shown how to extend�
 to get a small
temporal functional language Mini-ML
 which is very sim-
ilar to a realistic binding-time type system. In particular,
Mini-ML
 allows programs that manipulate code with free
variables, and we give an operational semantics which re-
flects this. This is in contrast to work by Davies and Pfen-
ning [5] on Mini-ML2, a typed language based on modal
logic that also expresses a form of binding-times, though
only allows programs that manipulate closed code.

However, the manipulation of code with free variables
comes at a price. Since Mini-ML
 does not express closed
code, it can not be directly extended with a construct like
that in Mini-ML2 that expresses immediate evaluation of
generated code. Such a construct is essential in a language

(* val acc : regexp -> (string list -> bool) ->
(string list -> bool) *)

fun acc (Empty) k s = k s
| acc (Plus(r1,r2)) k s = acc r1 k s orelse

acc r2 k s
| acc (Times(r1,r2)) k s =

acc r1 (fn ss => acc r2 k ss) s
| acc (Star(r)) k s =

k s orelse
acc r (fn ss => if s = ss then false

else acc (Star(r)) k ss) s
| acc (Const(str)) k (x::s) =

(x = str) andalso k s
| acc (Const(str)) k (nil) = false

(* val accept : regexp -> (string list -> bool) *)
fun accept r s =

acc r (fn nil => true | (x::l) => false) s

Figure 1. Unstaged regular expression
matcher

(* val acc2 : regexp -> O((string list -> bool) ->
(string list -> bool)) *)

fun acc2 (Empty) = ‘ fn k => fn s => k s
| acc2 (Plus(r1,r2)) = ‘ fn k => fn s =>

ˆ(acc2 r1) k s orelse
ˆ(acc2 r2) k s

| acc2 (Times(r1,r2)) = ‘ fn k => fn s =>
ˆ(acc2 r1) (fn ss => ˆ(acc2 r2) k ss) s

| acc2 (Star(r)) = ‘ fn k => fn s =>
let fun acc2Star k s =

k s orelse
ˆ(acc2 r)

(fn ss => if s = ss then false
else acc2Star k ss)

s
in

acc2Star k s
end

| acc2 (Const(str)) = ‘ fn k =>
(fn (x::ss) =>

(x = ˆ(lift_string str))
andalso k ss

| nil => false)

(* val accept2 : regexp ->
O(string list -> bool) *)

fun accept2 r = ‘ fn s =>
ˆ(acc2 r) (fn nil => true | (x::l) => false) s

Figure 2. Temporally staged regular expres-
sion matcher

10

(* val acc3 : regexp ->
(O(string list) -> O bool) ->
O(string list) -> O bool

*)
fun acc3 (Empty) k s = k s

| acc3 (Plus(r1,r2)) k s =
‘(ˆ(acc3 r1 k s) orelse

ˆ(acc3 r2 k s))
| acc3 (Times(r1,r2)) k s =

acc3 r1 (fn ss => acc3 r2 k ss) s
| acc3 (Star(r)) k s =

‘let fun acc3Star s =
ˆ(k ‘s) orelse
ˆ(acc3 r

(fn ss => ‘if s = ˆss then false
else ˆ(acc3Star k ss))

s)
in

acc3Star s
end

| acc3 (Const(str)) k s =
‘(case ˆs

of (x::ss) =>
(x = ˆ(lift_string str))
andalso ˆ(k ‘ss)

| nil => false)

(* val accept3 : regexp ->
O(string list -> bool) *)

fun accept3 r =
‘ fn s =>

ˆ(acc3 r
(fn s1 => ‘case ˆs1 of nil => true

| (x::l) => false)
‘s)

Figure 3. Better temporally staged regular ex-
pression matcher

that supports general forms of staged computation, and is
the main novel feature of Mini-ML2, so in future work we
will consider how to construct a type system that captures
both closed code and code with free variables.

One possible direction for this work is based on the ob-
servation that manipulation of code with free variables is
allowed in�
 because there is only a single successor stage
from any stage, which corresponds to the fact that�
 is
based on a linear-time temporal logic. In Mini-ML2 we
allow each stage to have several successor stages in order to
allow more general forms of staged computation, in partic-
ular run-time code generation and sharing of code between
stages (see [5] for details). This means that when con-
structing code in an arbitrary successor stage we cannot use
variables that are bound further out in a possibly different
successor stage.

This suggests that to design a language which expresses
both closed code and code with free variables we could
explicitlyname stages and provide an explicit quantifier over
them, rather than usingnext and prev to move between
stages. This is similar to the systems of labelled natural
deduction of Gabbay and de Queiroz [7], which allow many
different logics to be formulated including modal logics,
though this is still a speculative direction for future research.

We have implemented type checkers for the languages�
 and �m in the logic programming language Elf (see
Pfenning [16]). Using logic programming variables, the
same programs will also perform type inference. We have
also implemented the translations and proof of equivalence
between these languages in Elf.

6. Acknowledgements

The author gratefully acknowledges discussions with An-
drzej Filinski, Flemming Nielson, Jens Palsberg, and Frank
Pfenning regarding the subject of this paper. The author
would also like to give special thanks to Olivier Danvy for
motivating and inspiring this work.

Finally, I would like to thank BRICS for offering a very
stimulating and pleasant environment during my visit in the
summer of 1995.

References

[1] A. Bondorf and O. Danvy. Automatic autoprojection of
recursive equations with global variables and abstract types.
Science of Computer Programming, 16:151–195, 1991.

[2] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov.
Inheritance as implicit coercion.Information and Computa-
tion, 93:172–221, 1991.

[3] D. Clément, J. Despeyroux, T. Despeyroux, and G. Kahn. A
simple applicative language: Mini-ML. InProceedings of
the 1986 Conference on LISP and Functional Programming,
pages 13–27. ACM Press, 1986.

11

[4] O. Danvy. Type-directed partial evaluation. InProceed-
ings of the 23rd Annual ACM Symposium on Principles of
Programming Languages, pages 242–257, Jan. 1996.

[5] R. Davies and F. Pfenning. A modal analysis of staged com-
putation. InProceedings of the 23rd Annual ACM Symposium
on Principles of Programming Languages, pages 258–270,
Jan. 1996.

[6] T. Freeman and F. Pfenning. Refinement types for ML. In
Proceedings of the SIGPLAN ’91 Symposium on Language
Design and Implementation, Toronto, Ontario, pages 268–
277. ACM Press, June 1991.

[7] D. M. Gabbay and R. J. de Queiroz. Extending the Curry-
Howard interpretation to linear, relevant and other resource
logics. Journal of Symbolic Logic, 57:1319–1365, 1992.

[8] R. Glück and J. Jørgensen. Efficient multi-level generating
extensions for program specialization. In S. Swierstra and
M. Hermenegildo, editors,Programming Languages, Im-
plementations, Logics and Programs (PLILP’95), volume
982 ofLecture Notes in Computer Science, pages 259–278.
Springer-Verlag, Sept. 1995.

[9] C. Gomard and N. D. Jones. A partial evaluator for the un-
typed lambda-calculus.Journal of Functional Programming,
1(1):21–69, January 1991.

[10] J. Hatcliff. Mechanically verifying the correctness of an of-
fline partial evaluator. In S. Swierstra and M. Hermenegildo,
editors,Programming Languages, Implementations, Logics
and Programs (PLILP’95), volume 982 ofLecture Notes in
Computer Science. Springer-Verlag, Sept. 1995.

[11] W. A. Howard. The formulae-as-types notion of construc-
tion. In J. P. Seldin and J. R. Hindley, editors,To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and For-
malism, 1980, pages 479–490. Academic Press, 1980. Hith-
erto unpublished note of 1969, rearranged, corrected, and
annotated by Howard, 1979.

[12] N. D. Jones,C. K. Gomard, and P. Sestoft.Partial Evaluation
and Automatic Program Generation. Prentice Hall Interna-
tional Series in Computer Science. Prentice-Hall, 1993.

[13] S. Martini and A. Masini. A computational interpretation of
modal proofs. In H. Wansing, editor,Proof Theory of Modal
Logics. Kluwer, 1996. To appear.

[14] F. Nielson and H. R. Nielson.Two-Level Functional Lan-
guages. Cambridge University Press, 1992.

[15] J. Palsberg. Correctness of binding time analysis.Journal of
Functional Programming, 3(3):347–363, July 1993.

[16] F. Pfenning. Logic programming in the LF logical frame-
work. In G. Huet and G. Plotkin, editors,Logical Frame-
works, pages 149–181. Cambridge University Press, 1991.

[17] C. Stirling. Modal and temporal logics. In S. Abramsky,
D. M. Gabby, and T. S. E. Maibaum, editors,Handbook of
Logic in Computer Science,Vol. 2, chapter5, pages477–563.
Oxford University Press, Oxford, 1992.

[18] M. Welinder. Very efficient conversions. In E. T. Schubert,
P. J. Windley, and J. Alves-Foss, editors,The 8th Interna-
tional Workshop on Higher Order Logic Theorem Proving
and Its Applications, Aspen Grove, Utah, volume 971 ofLec-
ture Notes in Computer Science, pages 340–352. Springer
Verlag, September 1995.

12

