A Temporal-Logic Approach
to Binding-Time Analysis

Rowan Davies
Carnegie Mellon University
Computer Science Department
Pittsburgh PA 15213, USA
rowan@cs.cmu.edu

Abstract languages that include binding-time annotations, as for
example by Nielson and Nielson [14] and Gomard and
The Curry-Howard isomorphism identifies proofs with Jones [9]. However, the motivation for the particular typin
typed A-calculus terms, and correspondingly identifies rulesthatare chosen is often not clear. There has been some
propositions with types. We show how this isomorphismwork, for example by Palsberg [15], on modular proofs that
can be extended to relate constructive temporal logic with binding-time analyses generate annotations that allayelar
binding-time analysis. In particular, we show how to extend classes of partial evaluators to specialize correctly. How
the Curry-Howard isomorphism to include thie (“next”) ever this still does not provide a direct motivation for the
operator from linear-time temporal logic. This yields the particular rules used in binding-time type systems.
simply typed\©-calculus which we prove to be equiva-
lent to a multi-level binding-time analysis like those used
partial evaluation for functional programming languages.
Further, we prove that normalization iRC can be done
in an order corresponding to the times in the logic, which
explains why\© is relevant to partial evaluation. We then

In this paper we give a logical construction of a binding-
time type system based on temporal logic. Temporal logicis
an extension of logic to include proofs that formulas aréval
at particular times. The Curry-Howard [11] isomorphism
relates constructive proofs to typgeerms and formulas to
o) o types. Thus, we expect that extending the Curry-Howard
extend\® to a small functional language, Mini-Mg, and isomorphism to constructive temporal logic should yield a

gr:_/e an ope_ratul)nal semf_inncs for Itll F'nlei”y’ Wehpr%_/edt_hat typed A-calculus that expresses that a result of a particular
this operational semantics correctly reflects the binding- type will be available at a particular time. This is exactly

times in the language, a theorem which is the functional what a binding-time type system should capture
programming analog of time-ordered normalization. '
Many different temporal logics and many different tem-

poral operators have been studied, so we need to determine
exactly which are relevant to binding-time analysis. In a
binding-time separated program, one stage in the program
can manipulate as data the code of the following stage. At
Partial evaluation [12] is a method for specializing a pro- the level of types this suggests that at each stage we should
gram given part of the program’s input. The basic technique have a type for code of the next stage. Thus, via the Curry-
is to execute those parts of the program that do not depentHoward isomorphism we are led to consider the temporal
on the unknown data, while constructing a residual programlogic) operator, which denotes truth at the next stage, i.e.
from those parts that do. Offline partial evaluation uses a(0)A is valid if A is valid at the next time. Further, since
binding-time analysis to determine those parts of the pro-temporal logics generally allow an unbounded number of
gram that will not depend on the unknown (dynamic) data, “times”, they should naturally correspond to a bindingdim
regardless of the actual value of the known (static) data. analysis with many levels, such as that studied by Gliick and
Binding-time analyses are usually described via typed Jargensen [8]. The more traditional two-level bindingeim
pa— ” - etedduri i by the AUTBRICS analyses can then be trivially obtained by restriction.oAls
(Basic I;;Vs(:ar\::vr??nmg(?mypﬁtg:psiignc:rggnir\gs(;f tr>1le S:r:ﬁbMRe- n blndlr)g-t_lme _analySIS we have.a Slmple I|r_1ear ordering
search Foundation) in the summer of 1995. Itwas also parfipsrted by Of the binding times, so we consider linear-time temporal
a Hackett Studentship from the University of Western Austra logic, in which each time has a unique time immediately

1. Introduction

following it. Putting this all together naturally suggestat binding-timetype systems used in partial evaluation, sisch
constructive linear-time temporal logic with and a type that of Gomard and Jones [9], allow manipulation of code
system for multi-level binding-time analysis should be im- with free variables. Thus, the original motivation for the
ages of each other under the Curry-Howard isomorphism.present work was to consider how to extend Mini-Mio a
This does not seem to have been observed previously, andystem that is a conservative extension of the binding-time
in this paper we show formally that this is indeed the case. type systems used in partial evaluation. In this paper we
The development is relatively straightforward and our main achieve that goal, though find that we also lose the features
interest is in demonstrating the direct logical relatidgpsh of Mini-ML " beyond ordinary binding-time analysis. Our
between binding-time analysis and temporal logic. conclusion is that the operator in Mini-ML” corresponds
The structure of this paper is then as follows. In the toatype forclosed codewhile theQ) operator in Mini-ML®
following section, we start with a natural deduction formu- corresponds to a type feode with free variablesThus the

lation of intuitionistic linear-time temporal logic with+ two operators are suitable for different purposes, and fwhic
and(). Our system has a similar style to the modal sys- one is preferred depends on the context. This suggests that
tems of Martini and Masini [13]. We then verify that oQy a desirable direction for future work would be the design of

operator is the same as that considered elsewhere by showa type system correctly capturing both closed code and code
ing that adding negation and classical reasoning leads to avith free variables within a single framework.

system equivalent t&©, an axiomatic formulation due to
Stirling [17] for a small classical linear-time temporaglo
including.

We then apply the Curry-Howard isomorphism to the
natural-deduction system, yielding the typs@-calculus
withthe() operator in the types. We give reduction rules for
this calculus, and prove that normalization can be perfdrme |, this section we will show how to extend the curry-
in an order corresponding to the times in the logic. This yoward isomorphism to include th@ (“next”) operator
theorem gives an abstract explanation forwRyisrelevant fom temporal logic. In order to do this, we give a natural-
to partial evaluation. deduction system for an intuitionistic linear-time temglor

In the second part of the paper we consid€t, which |ogic containing only") and—. We then show that ouf)
is essentially theA-calculus fragment of the language operator is the same as the one usually considered in linear-
used in the multi-level binding-time analysis of Gliick and time temporal logics by adding inference rules for negation
Jergensen [8]. We then construct a simple isomorphismand classical reasoning, and then proving equivalence to a
between\™ and \© that preserves typing, thus showing sound and complete axiomatic system given by Stirling [17]
that these languages are equivalent as type systems. Wgyr the fragment of classical linear-time temporal logia€o
also give a correspondence betwgereductions inthe two taining only(), — and—. We then add proof terms to our
languages. This gives some explanation for why languagesoriginal natural deduction system to yield a simply typed
like A™ are relevant to partial evaluation. A-calculus with theD) operator in the types.

Finally, we expand\© to a small temporal functional
language Mini-MI®, which is in many ways similar to a
realistic binding-time type system. We give an operational
semantics for this language, and then give a proof that this
semantics correctly reflects the binding times in the lan-
guage. This theorem is the functional programming analog

of the time-ordered normalization theorem #6?. This subsection presents a simple natural-deduction for-
We conclude by giving example programs in Mini-ML mulation of an intuitionistic linear-time temporal logior-
and discussing some practical concepts from binding-timetaining only O) and —. Our formulation uses a judge-
analysis. ment annotated with a natural numberrepresenting the
This work is similar to work by Davies and Pfenning [5] “time” of the conclusion, and with each assumptidnn
which shows that a typed language Mini-Mlbased on T also annotated by a time. These are just like the “lev-
modal logic captures a powerful form of staged computa- els” in the modal natural-deduction systems of Martini and
tion, including run-time code generation. They also show Masini [13], and in fact our system is exactly the same as
that Mini-ML" is a conservative extension of the two-level their rules for modal K, except that because of linearity we
and (linearly ordered) B-level languages studied by Niel- do not need any restriction on the assumptions used in the
son and Nielson [14]. However, they note that this systemintroduction rule for(). Our rules for the non-temporal
only allows programs that manipulate closed code, while thefragment are completely standard.

2. Atemporal A-calculus

2.1. Intuitionistic Temporal Logic

We are now in a position to prove equivalence to a previ-
ously presented temporal logic. The following axioms and

A% inl v inference rules,.©, for the fragment of classical linear-
r-" A4 time temporal logic containing only), — and— are due to
Stirling [17] (page 516), who shows that they are sound and
AT ™ As complete for unravelled models of this logic. We choose
— =1 this system as our starting point because it appears to be
M+ A]_ — Az

the smallest linear temporal logic containing theoperator
that has been previously considered in the literature.

FE™ A — Ay rE™ A
rE™ A, -k Axioms: L1 Any classical tautology instance
L3 O-A & 04
rentta o, e o4 OF L4 O(A1= 47 — (04— OAg)
rer 04 rE+t g

Inference rules: MP ifi; — A, andA; thenA,

))) RO if Athen(O A
In order to give a proof-theoretic semantics to the

operator we also need to consider a proof reduction rule for Note that in the inference rules, we require that there be
OI immediately followed by £, which reduces trivially proofs from no assumptions.

to the derivation with both inference steps removed. The following theorem shows that oy operator is the
)])] same as the one usually considered in linear-time temporal
2.2. Comparison with a previous temporal logic logic.

We now need to verify that the natural-deduction sys- Theorem 1 We can derive F° A in the extended natural-
tem presented the previous section really does present theeduction system if and only if there is a proof of AL
same()) operator as other linear-time temporal logics. In-
formally, it is not difficult to see how these rules corresgon Proof: (sketch) In one direction, we construct a derivation
to a Kripke semantics with a linear reachability relation. for each axiom and proceed by induction over the inference
However, rather than give a formal proof of soundness andrulesinZ© . For L1 we actually simply notice that removing
completeness with respect to such a semantics, we insteathe rules forQ) yields a standard natural-deduction system
show equivalence to a previously presented temporal logic.for pure classical logic. The other axioms are straightfor-

Unfortunately, intuitionistic temporal logics do no seem ward, and the case for the inference rule RO only requires
to have been considered previously, nor temporal logicsshowingthatincrementing every time annotationin a deriva
without negation. Thus we add classical reasoning and negation yields a derivation.
tion to our natural deduction system to make this compari- We prove the other direction by induction over the struc-
son, even though they are not directly relevant to binding- ture of derivations, strengthening the induction hypathes
time analysis. We thus add the following inference rules to to:

those above: .
if ATt L ADEET A

rA"F"p (p a variable not then O™ Ay — ... = O™ Ay = O"A
Con oA occuring inl" or A) is provable in.©
Cen o4 FEn A Here O™ meansn occurrences of). Only the cases
iy for the— and—- rules are non-trivial. They are solved by
r=" B repeated application of L3, L4 and the converse of L4 (which
is derivable using L3, L4 and a classical tautology) along
M—-A"F" A with a sequence of cuts (which are classical tautologies).

For example, in the case fes /, we have by the induc-

n
re 4 tion hypothesis that
These rules are relatively standard, except for the additio OP AL = ... = O AL — O A1 — O™ Ay
of the time annotations.
Note that by presenting th@) operator using only an We can also deduce that
introduction rule and elimination rule in the original syst
we have separated it from negation and classical reasoning. (O"A1 = Q" A2) = O" (AL — A3)

by repeated application of the converse of L4.

Now, by using the cut-formula (which is a classical tau-

tology)

OrA]—...=0O"A, - O"A1 > Q" A)
= ((O"41— O"42) — O" (41— Ap))
= (OrA] - ... =04, = O"(A1 = Al))

and MP twice, we get the required result.

2.3. Atemporal A-calculus

We now add proof terms to the original intuitionistic
temporal-logic natural-deduction system. This yield3,
a simply typedi-calculus with the)) operator in the types,
by the natural extension of the Curry-Howard isomorphism.

2.3.1 Syntax
Types A = b |A1—A104
Terms M = o |d&tA. M| Mo M
| next M | prev M
Contexts I == . |[az:A?

2.3.2 Typing rules

r="M:A

ExpressionV/ has typed
at timen in contextr.

z A" inl
r="z:A4

MzAYF" M Ay

— 1

r+" Ar:Al. M AL — Ay

FI—”MO:A1—>A2 rl_nM]_:A]_

r+" Mo My : Ay

rertiaea 0 THM:0A

" next M : QA r"tprev M : A

2.3.3 Reduction rules

We have the standar@reduction rule as well as the fol-
lowing temporal reduction rules. The first comes from the
natural-deduction proof-reduction rule, analogouslyhe t
correspondence betweghreduction and the proof reduc-

tion rule for—:

prev(next M) SeNy Y]

— F

OF

We also have the following for elimination followed by
introduction, analogous te-reduction:

next(prev M) SeNy Y]

2.3.4 Time-ordered normalization

Suppose we havet" M : A. Then we say that the typing
derivation associates a time with the subterm/’ of M

if the corresponding sub-derivation of the typing derigati
has the fornT’ " M’ : A’. Note that reduction preserves
the time of subterms. Also, singeredices are sub-terms,
this definition associates a time with each one, and this time
will be the same as that associated with both the body of the
A and the argument.

Now, a fundamental property af° is that we can reduce
(G-redices in the order of their associated time, provided
we reduce all temporal redices betwegmeductions. In
doing so, each reduction cannot lead3oedices with an
earlier time. We refer to this property as “time-ordered
normalization”, and prove it below.

This property explains why© is relevant to partial eval-
uation. If we have a term in©, then we know thap-
reduction can be done in stages corresponding to the times
inthe temporal logic. Thisis very closely related to birgtn
time correctness in a functional language, which we will
discuss in the next section.

Theorem 2 (Time-ordered normalization) Suppose we
havel " M : A, whereM has no temporal redices and no
B-redices with time less tham. Then reducing g-redex
with timen’ and then reducing all temporal redices leads a
term which also has ng-redices with time less thau.

In the proof we make use of the standard notafii/‘]
to indicate the term wher&/’ appears in the context.

Proof: We havelM = C[(Ax:A. Mg) M)

with 7, 2:A% F*" Mg : Ag and " F™ M : Ay,

We reduce to M’ = C[{M1/x}My] and then reduce all
temporal redices.

Suppose there is gredex with time less than’ in the
result. Then we have one of two cases:

1. M= C/[C//[{Ml/l‘}Mo]Mz] with C//[{Ml/l‘}Mo]
reducing to Ay:A. M{ by temporal reductions. But then
" cannot be the identity since then the resultihgedex
has timer’. Nor can it begin with a\, since then there is
B-redex with time less than’ in M. Also, by the typing,
(" cannot begin witmext. Hence, it must begin witprev.
Continuing this argument, we see th@' = prev’. But,
then [Mi/z]Mo = next (M\:A. M{), and the resulting
redex has level’ + i, which is not less than’.

2. [My/z]Mo = C'[C"[M) M2] with C"[M4] reducing
toAy: A. M, by temporal reductions. By an almostidentical
argument to the above, this is impossible. O

3. Equivalence to a binding-time type system 3.3. Equivalence translation

We now demonstrate the relationship betweén and We now give simple translations between well typed
binding-time type systems considered by other authors. Toterms in\™ and\©. The translation from© maps terms
do this we considex!™, a simply typed\-calculus whichis ~ which are in the same equivalence class with respect to
essentially the core of standard binding-time analyzed use temporal reductions to the sam&* term. In the other di-
in offline partial evaluation (see e.g. Gomard and Jones [9]) rection, we always translatd™ terms to a\© terms with
A1 additionally allows more than two binding times inthe no temporal redices, these being unique representatives of
same way as the multi-level binding-time analysis of Gluck the equivalence classes. Note that we can always reduce all
and Jgrgensen [8]. Our formulation’dt! is basically the\- temporal redices, since the number of reductions is bounded
calculus fragment of Gliick and Jgrgensen’s system, thoughby the number ofiext andprev constructors. We then show
it has some important differences. We use separate syntactithat the two translations preserve typing and are inverses o
categories for the types of each level, thus avoiding sideeach other when restricted #° terms with no temporal
conditions regarding well-formedness of types. Further, w redices. This shows that® is isomorphic toA© modulo
do not treat the final level as dynamically typed, but conside the temporal reductions.
the whole program to be statically typed. Finally, we donot The translations are given by the functionlg’ and|| - ||
include “lifting” from one binding time to a later one, but defined as follows:
instead demonstrate later how this can be easily added.

We then give a simple translation betwed®? andA\©. Type Translations
This translation is a bijection on terms and types that pre-

serves typing, modulo reduction of temporal redices. Thus - |bZ|Z = b - .
A and A© are equivalent as type systems, modulo these ' = n:_21|n = | |n-|—_l>r|17-|——21|
trivial reductions. |7 = O
3.1. Syntax lJof|* ="
A1 = A" = [[Ad]|" =" || A2f”
1OAlI" = A+

We use the separate syntactic categorfeso indicate
the type of results which will be available at timeor later.
The time annotations on base typg#sand function types ~ Term Translations
1 =" 72 indicate the time at which the corresponding

values are available. The time annotations on terms irglicat e, Bl = Al |EJP
the time at which the. or @ (application) are reduced, and |Eo@" Ex|™ = | Eo|™ | Ea|”
the corresponding variable substituted for. See Glick and (m>n) |E™|" = next| ™|+
Jorgensen [8] for a semantics of evaluation of multi-level (m < n+ 1) |[E™ "+ = prev|E™|?
terms in multiple stages.

Types ™ u= b | S|t =" = 2"

Tgfms E = z" I /\1”1‘”27"21. |E | Bo @ By [|Az:A. MHZ - /\l=”||;4”|r|l” ||MJ|”

Contexts ¥ = | W, a™r™ (| Mo Ma||™ = || Mol|" @"[| M|

[Inext M|" = [| M|+

3.2. Typing rules [[prev M|+t = [|ar]]?

Here we uses™ as convenient syntax matching all ex-
pressions which have the top constructor annotatedmyith

z¥rminy
tpm_var

Lemma3 |- |* and|| - ||* are inverses on the fragment of
e |- I and]| - | g

AO with nonext-prev redices.

n.._n (11 . n
A A i A

tpm_lam Proof: By a straightforward induction. O
W H /\"x":T".E:ngTZ" . .
Theorem 4 The two translations preserve typing, namely:

WHY By = 5 WHY By .
0.7 T2 1-n tpm_app ° |f~|_mE:T0then~ "0 |M|0:|T0|0

WHY By @ By
0 v o if -0 M 1 Athen. 1M || M| : || Al

Proof: By a straightforward structural induction, strength-
ening appropriately to:

o if WHYM E 77 then|W| " |M | @ 7|
o if T F" M : Athen||l|| F*™ | M]]" @ [|A|I™
O

Lemmab If | M||* = E then M < |E|™ using only
temporal reductions.

Proof: By induction on M. O

We can now defing-reduction in\™ as the image of
B-reduction in\© under the translation, namely:

(A" 27" Bo)@" By — [E1/2")Eo

Then, using the above lemma||it/||” = £ and
£ -2 B thenM 25 M; using only temporal reductions,

and My -5 M’ with [|M'||* = E’. Informally, this means
that3 reductions correspond exactly betweép and ™.

At this stage, we can considéf and \™ to be equiv-
alent except for the temporal reductionsi® which are
hidden by the syntax in™. ThusA© expresses binding-
times in the same way as™. Conversely,A™™! can be
considered as proof terms for our temporal logic, with an
alternative, equivalent syntax for formulas. This jussfie

that the operational semantics is fundamental in that @égiv
meaning to the binding-times. We claim that other methods
for interpreting the binding-times can generally be formu-
lated as binding-time preserving transformations in a lan-
guage like Mini-ML° . For example, the generation of spe-
cialization points in a partial evaluator like Similix (Sgig§

or [12]) can be expressed as adding memoizing functions
to the binding-time separated program. The semantics of
the binding-time analyzed program is then the composition
of these binding-time preserving transformations with-a se
mantics like the one we give.

We could similarly extendA\™ instead ofAC to get
a functional language syntactically very similar to other
binding-time type systems. We choose instead to start with
AO because we would like to have a language which is syn-
tactically suitable for manually programming with binding
times. A language based o™ would require the pro-
grammer to annotate every construct in a program with a
time, which would be very tedious and make programs hard
to read. Normally binding-time type systems are only used
an output language for a binding-time analysis, so ease of
programming isn’tan issue. Mini-M? is suitable for man-
ually programming with binding-times, as the examples at
the end of this section demonstrate. It is interesting to
note thanhextandprev are very similar to the quasi-quoting
mechanism in the popular programming language Lisp, thus
further supporting the claim that they are natural way fer th
programmer to provide binding-time information.

The motivation for supporting manual programming is
to avoid an almost universal problem in automatic partial
evaluation, namely that generation of code is not guardntee
to terminate. By allowing the programmer to have direct
control over binding-times in a language with a well de-

our claim that the core of binding-time type systems are fined semantics, we can place the responsibility of ensuring
the image of a temporal logic under the the Curry-Howard termination on the programmer. Welinder [18] has demon-

isomorphism.

4. A temporal functional language

We now show how to extens® to obtain Mini-ML®, a
small functional language in the style of [3], which inclgde
next, prev and O to allow expression of binding-times.

We give an operational semantics for this language, and

strated that this style of programming, called hand-wgitin
generating extensions, can be very fruitful. Some of the
benefits of automatic binding-time analysis might then be
regained by allowing the temporal term constructors to be
implicit coercions in a system of sub-typing, in the style of
Breazu-Tannemt.al.[2], leading to a refinement type sys-
tem [6] where each refinement of a type is obtained by some
insertions of(). The practicality of this idea has yet to be
properly investigated.

then prove type preservation and value soundness. We also oyr language Mini-ME includes pairs, natural num-

demonstrate that this operational semantics correcthuatsf|
the binding-times.

Often in partial evaluation the binding-time type system
is only used to generate binding-time information which

bers, and fixed-points. We omit polymorphism, but claim
that it can be added with some minor complications to the
proofs that follow. Mini-ML® is explicitly typed, since

we do not treat type inference here, although note that type

guides a specializer, and no operational semantics is giverinference fornext and prev can be handled easily using

directly to the binding-time language. Here we consider

unification.

4.1. Syntax

Types A = nat|A; — Ax| A1 x A2 | OA
Terms e = z|XxiA.e]|ere
| fix 2:A. e
| (e1,€2) |fste | snde
|z|se
| (casee; Of Z= ez | S = e3)
| nexte | prev e

Contexts [= | az:A"

4.2. Typing Rules

In this section we present typing rules for Mini-¥L
The typing judgement has the form:

Terme has typed at timen
in contextr.

FEe: A
A-calculus Fragment

Mao:A"F'e: B
" dxA.e: A— B

A" IinT

tpt_var
r"az: A

tpt_lam

MrM-"e:A— B FE"e1: A
Fl—"eoel:B

tpt_app

Mini-ML Fragment
MaoA"F' e A
M-"fixziA.e: A

tpt_fix

rl—n61:A1 rl—neziAz
re" <617 62> t A1 X Ao

tpt_pair

Fl—"e:Alez Fl—"e:Alez

tpt_fst tpt_snd
FE"fste: A; M+="snde: A,
=" e:nat
— tptz — tpts
=" z:nat I+" s nat
FF"er:nat TH"ex: A [zmnat" Fez: A
tpt_case
" (casees of z=>e2| sz =e3): A
Temporal Fragment
FrEtle: A FrE"e:OA
tpt_next tpt_prev

I " nexte : OA " preve : A

4.3. Operational Semantics

We now present the operational semantics of Mini<RIL
The intuition for this semantics is that parts of the termhwit

time 0, the current time, should be evaluated now, while
those at later times should be delayed until then. This leads
to two rules for each non-temporal constructin the language

The valuesy?, are the standard ones for a Mini-ML like
language, with the addition afext +*, wherev! includes

all expressions with no sub-term at time 0. The operational

semantics allows for manipulation of expressions cormajini
free variables, provided the variables have time greater th

0, and we thus depend on the fact that substitution avoids

variable capture.

The operational semantics faf is similar to the spe-
cialization logic presented by Hatcliff [10] for a two-ldve

binding-time language, and our binding-time correctness

theorem is also somewhat similar to Hatcliff's.

Values
0 = AmiAe | (09,49) | 2| sv0 | next vt
"t = w | ApA ot ottt
| fix z:A. v2+t
| (vptt up Ty | fst ot | snd o Ht
|z |svntt
| (casevi™™ of z= vj ™| sz = v5th
| next v*+2
| prev o™ (n > 0)
LA Expressiore with timen

evaluates to value.

A-calculus Fragment, time 0

ev_lam
ApA. e ‘£> AriA. e

0 0 0
€1 \z.e] ez v [Uz/x]ell S

ev_app

0
€1 €2 — U

A-calculus Fragment, time n+1

ev_var’

&
3
IE

xr

3
¥
AR

(3]

)

ev_lam’

[uN

Az:A. e 7 AziA. v

n+1 n+1
€1 — v1 €2 — U2

ev_app’
n+1
€1 €2 — VU1 U2

Mini-ML Fragment, time O

[fix z. e/x]e S

ev_fix
) 0
fixz.e 5w
0 0
e1 — v1 €2 — U2 .
ev_pair
0
<617 62> — <U1, U2>
0 0
e — (v1, v2) e — (v1,v2)
evfst ———ev.snd
0 0
fste — v snde < vy
0
e v
ev_z —F—F €eV.S
0 0
Z—Z Se — Sv
0 0
€1 “—~>Z7Z €2 — v

ev_casez

0
(caseer 0f Z= e2 | sz = e3) v

0

0
e1 < Svy [vi/2]es = v

ev_case_s
0
(casee1of Z= e2 | sz = e3) = v

Mini-ML Fragment, time n+1

n+1l
e — v

ev_fix’
. ntl .
fixrz.e = fixz. v

n+1 n+1

€1 — v1 €2 — U2 .,
ev_pair
n+1
<617 62> — <U1, U2>
n+l n+1
e —> v , e — v ,
ev fst — ev._snd
n+1 n+1
fste — fstv snde — sndv
n+1
, e — v ,
ev_z ——————€eV.sS
n+1 n+1
Z — Z Se — Sv

n+1l n+1l n+l
€1 — V1 €2 — VU2 €3 — u3
ev_case’

1
(casec; of Z= e2| S = e3) as
(casevi 0f 2= v2 | Sz = v3)

Temporal Fragment

n+1
e — v
ev_next

n
nexte < nextwv
0
e — nextuv
Z_ T " " ev_prev

1
prev e < v

n+1
e — v ’
ev_prev

n+2
preve — prevuv

Theorem 6 (Determinacy)

1. Ife <% v thenv has the form™.

2. Ife & vande < ¢ thenv = ' (modulo renaming
of bound variables).

Proof: By straightforward inductions over the structure of
the derivation of < v. (]

Theorem 7 (Type and Time Preservation)

1. Ife <5 vandl F" ¢ : A with T not containing any
bindings of variables at tim@, thenl" " v : A.

2. Further, if a term constructor ir has timen’ as-
sociated with it by the original typing proof and it
gives rise to a term constructor in(via substitution,
the ruleev_lam, or a rule for time m+1) then that
term constructor has time’ associated with it by the
typing proof forv.

Proof: By a straightforward induction over the structure of

the derivation of < v, using an appropriate substitution
lemma. O

Lemmas8 If ["+ y7+1 : A with I not containing any
bindings of variables at tim8, thenl” +" v™ : A, where
I is obtained fronT” by reducing the time on each variable
binding by one.

Proof: By induction on the structure of the typing deriva-
tion. O

Theorem 9 (Binding-time correctness)If - F% ¢ : OA
and ¢ <% v thenv has the formnext + and - F° ¢’ : A .

Proof: By type preservation,- F° v : (A . But then
next v’ is the only form that the value could take in this
typing derivation. Then, applying the above lemma gives
CFOu AL O

Binding-time correctness in Mini-ME is very closely the variable for variable redices in the result of applying
related to time-ordered normalizationi®’. The binding- to the first argument. This program has no counterpart in
time correctness theorem means that we can evaluate a praMini-ML 7, since it requires evaluation with code contain-
gram in Mini-ML® with type O A4 in n + 1 stages cor- ing free variables, which Mini-ME allows but Mini-ML"
responding to the times in the typing derivation, and if all does not. This illustrates the main reason why MiniMls
stages terminate the result will have tyde Each stage interesting compared to Mini-ML However, note that the
except the last involves evaluating the term to a value of theMini-ML 7 has other features not supported by Mini-¥L
form next v! and then continuing the next stage with namely an operator expressing immediate evaluation of

Now, by the time preservation property, at stagie code, and sharing of code between stages. As an exam-
constructors with time 0 (under the associated typing proof ple of this, the staged inner product example in [5] has no
are images of those with timein the original term, and counterpart in Mini-ML®.
these are the ones for which real evaluation occurs during Abstractly, the reason for these differences is that
the stage. Further, the result of each step except the last haMini-ML ™ only allows manipulation of closed code, thus
the formnext »%, which cannot contain any constructors disallowing some programs, while Mini-Mt. allows ma-
with time 0 and so all evaluation corresponding to sub-terms nipulation of code with free variables, thus making imme-
with time¢ has been done. Thus, our operational semanticsdiate evaluation of code and sharing of code between stages

correctly captures binding-times.
4.4 Examples

We now give some examples of programs in Mini-¥IL
The first is a very common toy example from partial evalua-

unsafe. Even more abstractly, the reason for these differ-
ences is that the Kripke semantics of the modal logic S4
on which Mini-ML" is based is reflexive and transitive,
while the Kripke semantics of the temporal logic on which
Mini-ML © is based is linear.

As another example program in Mini-Mi, we note

tion, namely the power function where the exponent has anthat realistic binding-time analyses include the automati

earlier binding-time than the index. We give two different

insertion of a “lift” operator at least at base types. Th&™li

versions and compare them. In both we assume a functiorpperator is essentially a coercion from one time to a later

times: nat — nat — nat which multiplies two numbers.

power= fix p:nat — O(nat — nat).
An:nat. casen
of z = next(\z:nat. s 2
| sm = next(Az:nat. timesz

(prev (p m) z))

powerz — next (Az:nat. s 2)
power(s 2) < next (Az:nat. timesz ((Az:nat. s 2)x))
power (s (S 2)) — next (Az:nat. timesz
((Az:nat. timesz ((Az:nat. s 2)z))z))

powef = An:nat. next (Az:nat. prev (
(fix p:nat — Onat.
An':nat. casen’
of z = next(s2
| sm = next(timesz

(prev (p m)))) n))

powel z — next (Az:nat. s 2)
power (s z) — next (Az:nat. timesz (S 2))
power (s (s z)) — next (Az:nat. timesz (timesz (S 2)))

one. We now show how to define a functionf with
type nat — (Onat which performs this coercion, exactly
following [5]:

lift hat = fixf:nat — Onat.
Az:nat. caser
ofz =-nextz
| sz’ = next(s(prev (f z')))

A similar term of typeA — (A that returns aexted
copy of its argument will generally exist for each base type,
and inductively for pairs. This justifies the inclusion oéth
lift primitive for base types in binding-time type systems
such as that of Gomard and Jones [9] and, in a more real-
istic version of our language, we would also include it as a
primitive. Note that we also have the following term with
type(OA — OB) —» O(A — B) which allows a form of
lift on functions:

Af: O A — OB. next(Az:A. prev (f (nextz)))

For more discussion on lift coercions in partial evaluation
including sum types, see Danvy [4].

As an example of a more realistic program in an exten-
sion of Standard ML with temporal operators, we show the
regular expression matcher example from [5].

The first version corresponds exactly to the one given Figure 1 shows a version of the regular expression
by Davies and Pfenning [5] for the functional language matcher without temporal operators. It makes use of a con-
Mini-ML © based on the modal logic S4. The second avoids tinuation function that is called with the remaining input

if the current matching succeeds. The code assumes the
following datatype declaration:
(* wval acc : regexp -> (string list -> bool) ->
datatype regexp (string list -> bool) *)
= Empty fun acc (Empty) k s = k s
acc (Plus(r1,r2)) k s = acc rl k s orelse
| Plus of regexp * regexp acc 12 Kk s
| Times of regexp * regexp acc (Times(r1,r2)) k s =

| Star of regexp acc rl (fn ss => acc r2 k ss) s
| Const of string acc (Star(n) k s =

k s orelse
. . . L . acc r (fn ss => if s = ss then false
As in [5], we introduce a local function definition in else acc (Star(r)) k ss) s
the case foacc (Star (r)) so that we can generate | acc (Const(str)) k (x:s) =
specialized code by applying to the first argument. (x = str) andalso k s

Then, we can add in temporal constructors to get the acc (Const(stn) k (nil) = false

staged program in Figure 2 with the following types (using (* val accept : regexp -> (string list -> bool) *)

Ohere to represerid) fun accept r s =
acc r (fn nil => true | (x:l) => false) s

val acc2 : regexp ->
O((string list -> bool) ->
(string list -> bool))
val accept2 : regexp ->
O(string list -> bool)

Figure 1. Unstaged regular expression
matcher

This program is in fact identical to that in [5], except that
here we usé for nextand™ for prev. We can actually do
better than this if\©, by making the continuations static,
and avoiding variable for variable redices, as shownin&gur (« val acc2 : regexp -> O((string list -> bool) ->
3. This code effectively inlines continuations and applies (string list -> bool)) *)
them to code representing the (dynamic) strings, which will fun acc2 (Empty) = “fn k =>fn s => k s

contain free variables | acc2 (Plus(rl,r2)) = * fn k => fn s =>
: “(acc2 rl) k s orelse

“(acc2 r2) k s
acc2 (Times(rl,r2)) = * fn k => fn s =>
“(acc2 rl) (fn ss => “(acc2 r2) k ss) s
acc2 (Star(r)) = * fn k => fn s =>

5. Conclusion

We have demonstrated that the image of a small temporal let fun acc2Star k s =
logic under the Curry-Howard isomorphisify, provides E((a‘zcgrerl)se
a logical construction of a binding-time type system that is (fn ss => if s = ss then false
equivalent to the core of those used in partial evaluation. else acc2Star k ss)
We have shown that normalizationi®’ can be done in the i s
order of the times in the logic, thus giving an explanation acc2Star k s

for why AO is relevant to partial evaluation. end

Further, we have shown how to extek@ to get a small acc2 (Const(str)) = * fn k =>
temporal functional language Mini-M2 which is very sim- (fn (X“S(S)Z zi(lm stiing str)
ilar to a realistic binding-time type system. In particular andalso k ss
Mini-ML © allows programs that manipulate code with free | nil => false)
variables, and we give an operational semantics which re- § .
flects this. This is in contrast to work by Davies and Pfen- (* V&l accept2 : regexp ; .

. .. o (string list -> bool) *)
ning [5] on Mini-ML", a typed language based on modal yn accept2 r = * fn s =>
logic that also expresses a form of binding-times, though “(acc2 r) (fn nil => true | (x:l) => false) s
only allows programs that manipulate closed code.

However, the manipulation of code with free variables
comes at a price. Since Mini-ML. does not express closed
code, it can not be directly extended with a construct like
that in Mini-ML" that expresses immediate evaluation of
generated code. Such a construct is essential in a language

Figure 2. Temporally staged regular expres-
sion matcher

10

(* val acc3 : regexp ->
(O(string list) -> O bool) ->
O(string list) -> O bool
*
)
fun acc3 (Empty) k s = k s
acc3 (Plus(r1,r2)) k s =
‘("(acc3 rl k s) orelse
“(acc3 r2 k s))
acc3 (Times(rl,r2)) k s =
acc3 rl (fn ss => acc3 r2 k ss) s
acc3 (Star(r)) k s =
‘let fun acc3Star s =
“(k ‘s) orelse
“(acc3 r
(fn ss => ‘if s = “ss then false
else “(acc3Star k ss))

s)
in
acc3Star s
end
acc3 (Const(str)) k s =
‘(case “s
of (x:ss) =>
(x = “(lift_string str))
andalso “(k ‘ss)
| nil => false)

(* val accept3 : regexp ->
O(string list -> bool) *)
fun accept3 r =
‘fns =
“(acc3 r
(fn s1 => ‘case “sl of nil => true
| (x:l) => false)
‘s)

Figure 3. Better temporally staged regular ex-
pression matcher

11

that supports general forms of staged computation, and is
the main novel feature of Mini-Mt, so in future work we

will consider how to construct a type system that captures
both closed code and code with free variables.

One possible direction for this work is based on the ob-
servation that manipulation of code with free variables is
allowed in\© because there is only a single successor stage
from any stage, which corresponds to the fact tkfat is
based on a linear-time temporal logic. In Mini-Mlwe
allow each stage to have several successor stages in order to
allow more general forms of staged computation, in partic-
ular run-time code generation and sharing of code between
stages (see [5] for details). This means that when con-
structing code in an arbitrary successor stage we cannot use
variables that are bound further out in a possibly different
successor stage.

This suggests that to design a language which expresses
both closed code and code with free variables we could
explicitly name stages and provide an explicit quantifierov
them, rather than usingext and prev to move between
stages. This is similar to the systems of labelled natural
deduction of Gabbay and de Queiroz [7], which allow many
different logics to be formulated including modal logics,
thoughthis is still a speculative direction for future resd.

We have implemented type checkers for the languages
A© and A™ in the logic programming language Elf (see
Pfenning [16]). Using logic programming variables, the
same programs will also perform type inference. We have
also implemented the translations and proof of equivalence
between these languages in Elf.

6. Acknowledgements

The author gratefully acknowledges discussions with An-
drzej Filinski, Flemming Nielson, Jens Palsberg, and Frank
Pfenning regarding the subject of this paper. The author
would also like to give special thanks to Olivier Danvy for
motivating and inspiring this work.

Finally, | would like to thank BRICS for offering a very
stimulating and pleasant environment during my visit in the
summer of 1995.

References

[1] A. Bondorf and O. Danvy. Automatic autoprojection of
recursive equations with global variables and abstraegyp
Science of Computer Programmirig5:151-195, 1991.

[2] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov.
Inheritance as implicit coerciotnformation and Computa-
tion, 93:172-221, 1991.

[3] D. Clement, J. Despeyroux, T. Despeyroux, and G. Kahn. A
simple applicative language: Mini-ML. IRroceedings of
the 1986 Conference on LISP and Functional Programming
pages 13-27. ACM Press, 1986.

[4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

O. Danvy. Type-directed partial evaluation. Rroceed-
ings of the 23rd Annual ACM Symposium on Principles of
Programming Languagepages 242-257, Jan. 1996.

R. Davies and F. Pfenning. A modal analysis of staged com-
putation. InProceedings of the 23rd Annual ACM Symposium
on Principles of Programming Languaggmges 258-270,
Jan. 1996.

T. Freeman and F. Pfenning. Refinement types for ML. In
Proceedings of the SIGPLAN '91 Symposium on Language
Design and Implementation, Toronto, Ontarjzages 268—
277. ACM Press, June 1991.

D. M. Gabbay and R. J. de Queiroz. Extending the Curry-
Howard interpretation to linear, relevant and other reseur
logics. Journal of Symbolic Logic7:1319-1365, 1992.

R. Gluck and J. Jgrgensen. Efficient multi-level getiata
extensions for program specialization. In S. Swierstra and
M. Hermenegildo, editorsProgramming Languages, Im-
plementations, Logics and Programs (PLILP’9%plume
982 ofLecture Notes in Computer Scienpages 259-278.
Springer-Verlag, Sept. 1995.

C. Gomard and N. D. Jones. A partial evaluator for the un-
typed lambda-calculugournal of Functional Programming
1(1):21-69, January 1991.

J. Hatcliff. Mechanically verifying the correctneskan of-
fline partial evaluator. In S. Swierstra and M. Hermenegildo
editors,Programming Languages, Implementations, Logics
and Programs (PLILP’95)volume 982 ofLecture Notes in
Computer Scienc&pringer-Verlag, Sept. 1995.

W. A. Howard. The formulae-as-types notion of construc
tion. In J. P. Seldin and J. R. Hindley, editofs,H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and For-
malism, 1980pages 479-490. Academic Press, 1980. Hith-
erto unpublished note of 1969, rearranged, corrected, and
annotated by Howard, 1979.

N.D. Jones, C. K. Gomard, and P. SestBftrtial Evaluation
and Automatic Program GeneratiofPrentice Hall Interna-
tional Series in Computer Science. Prentice-Hall, 1993.

S. Martini and A. Masini. A computational interpretati of
modal proofs. In H. Wansing, editd?roof Theory of Modal
Logics Kluwer, 1996. To appear.

F. Nielson and H. R. NielsonTwo-Level Functional Lan-
guages Cambridge University Press, 1992.

J. Palsberg. Correctness of binding time analykisrnal of
Functional Programming3(3):347-363, July 1993.

F. Pfenning. Logic programming in the LF logical frame-
work. In G. Huet and G. Plotkin, editortpogical Frame-
works pages 149-181. Cambridge University Press, 1991.
C. Stirling. Modal and temporal logics. In S. Abramsky,
D. M. Gabby, and T. S. E. Maibaum, editof$andbook of
Logicin Computer Science, Vol.¢hapter5, pages477-563.
Oxford University Press, Oxford, 1992.

M. Welinder. Very efficient conversions. In E. T. Schubhe

P. J. Windley, and J. Alves-Foss, editoT$ie 8th Interna-
tional Workshop on Higher Order Logic Theorem Proving
and Its Applications, Aspen Grove, Utalolume 971 of_ec-
ture Notes in Computer Sciengeages 340-352. Springer
Verlag, September 1995.

12

