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Abstract

Possible world semantics underlies many of the applications of modal logic in

computer science and philosophy. The standard theory arises from interpreting the

semantic definitions in the ordinary meta-theory of informal classical mathematics.

If, however, the same semantic definitions are interpreted in an intuitionistic meta-

theory then the induced modal logics no longer satisfy certain intuitionistically

invalid principles. This thesis investigates the intuitionistic modal logics that arise

in this way.

Natural deduction systems for various intuitionistic modal logics are presented.

From one point of view, these systems are self-justifying in that a possible world

interpretation of the modalities can be read off directly from the inference rules. A

technical justification is given by the faithfulness of translations into intuitionistic

first-order logic. It is also established that, in many cases, the natural deduction

systems induce well-known intuitionistic modal logics, previously given by Hilbert-

style axiomatizations.

The main benefit of the natural deduction systems over axiomatizations is their

susceptibility to proof-theoretic techniques. Strong normalization (and confluence)

results are proved for all of the systems. Normalization is then used to establish

the completeness of cut-free sequent calculi for all of the systems, and decidability

for some of the systems.

Lastly, techniques developed throughout the thesis are used to establish that

those intuitionistic modal logics proved decidable also satisfy the finite model

property. For the logics considered, decidability and the finite model property

presented open problems.
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Chapter 1

Introduction

1.1 Motivation

Classical modal logics are extensions of classical logic with new operators (modal-

ities) whose operation is intensional (i.e. non truth-functional). Originally, modal

logics were used by philosophers to model intensional notions such as necessity,

possibility, belief, knowledge, obligation, etc. However, there was a great deal

of controversy amongst philosophers, some of whom doubted whether the whole

enterprise was even meaningful. The consolidation of modal logic came in the late

1950s and early 1960s with the development of an intuitive semantics based on

‘possible worlds’ by Kripke (after whom the semantics is often named), Kanger

and Hintikka (see, e.g., [50,47,44]). In philosophy, possible world semantics has

been used in support of elaborate metaphysical arguments (see, e.g., Kripke [52]);

however, the philosophical controversy over modal logic is far from settled. Yet the

development of possible world semantics has enabled modal logic to escape to other

fields. First, the semantics is mathematically natural. Thus the model theory of

modal logic has become an interesting subfield of mathematical logic in its own

right (see, e.g., van Bentham [6]). Second, the semantics enabled modal logic to

be applied to interesting mathematical problems such as Solovay’s Completeness

Theorem [72]. Lastly, possible world models are closely related to the transition

systems of computer science. This connection has led to many applications of

1



Chapter 1. Introduction 2

modal logic in computer science such as dynamic logic [49] and Hennessy-Milner

logic [42]. For a general introduction to modal logic see Hughes and Cresswell [46].

Intuitionism arose as a school of mathematics founded by the Dutch mathem-

atician L. E. J. Brouwer. He rejected mathematical methods whose justification

required appeal to an abstract concept of ‘truth’ interpreted in some mysterious

Platonic realm of mathematical entities. Rather, Brouwer believed that math-

ematical meaning originates in the human act of ‘doing’ mathematics. Thus, for

Brouwer, a mathematical object must be given by a (mental) construction, and

there is no abstract sense in which a statement may be true unless we have a

proof of it (or the means to find one). Furthermore, the steps taken in any proof

must be legitimate according to this rigid interpretation of mathematics. As is

well known, such considerations led Brouwer to reject various classical principles

such as, most notoriously, the law of the excluded middle: that A ∨ ¬A holds for

any proposition A.

In the 1930s, Heyting developed intuitionistic logic, a logic embodying the un-

derlying principles of intuitionistic reasoning. Intuitionistic logic has been enorm-

ously successful. First, it is widely accepted as having achieved its original goal of

isolating the intuitionistically acceptable methods of proof. Second, in providing a

foundation for the metamathematical investigation of intuitionistic mathematics,

it has revealed intuitionistic mathematics as being a field of remarkable coherence

and mathematical beauty, whether or not one accepts its underlying philosoph-

ical tenets. Third, there are deep connections with computation theory that have

recently been exploited in computer science (see Martin-Löf [54] and Scott [69]

for two very different applications). The proof theory of intuitionistic logic has

also found recent philosophical application. Dummett has argued that the proof

theory justifies intuitionistic logic as the underlying logic of an anti-realist philo-

sophy [17]. His argument gives an account of intuitionism which is substantially

different from Brouwer’s and which applies to non-mathematical reasoning as well

as to mathematical reasoning. For a general introduction to both the philosophy

and mathematics of intuitionism and intuitionistic logic see Dummett [16].

In this thesis we study various intuitionistic modal logics obtained by extending
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intuitionistic logic with intensional operators. We give three reasons for consid-

ering such logics. First, it is mathematically natural to combine the two forms

of logic. Second, there are promising computer science applications for intuition-

istic modal logic. Third, for an intuitionistic philosopher, there is a self evident

desire to have an intuitionistic account of the different intensional operators (par-

ticularly if one accepts Dummett’s arguments and applies intuitionistic logic in

non-mathematical contexts).

Most of the previous work on intuitionistic modal logics (we shall give a sur-

vey in Section 3.3) seems to have been motivated by the first reason. Although

there is probably some underlying philosophical intuition, much work describes

formal systems obtained by combining intuitionistic logic with an apparently ad

hoc choice of modal axioms and rules. Without philosophical guidance, there are

a bewildering number of inequivalent such choices that can be made.

In the applications of intuitionistic modal logic to computer science (a survey is

again given in Section 3.3) the methodology is somewhat different. Typically, one

defines a modal logic over a model based on some computational situation. For

certain forms of model (with an in-built partial order) and certain definitions of

logical satisfaction, the modal logics so-induced are intuitionistic rather than clas-

sical. Thus the parameters are the notion of model and definition of satisfaction.

The resulting modal logic is then forced.

In contrast, the interesting problem of giving an account of intuitionistic modal

logic accessible to an intuitionistic philosopher has been largely ignored. (The

closest approach is that of Ewald in his thesis [19], discussed further in Sections

3.3 and 3.4.) Indeed, it seems to us that many of the intuitionistic modal logics

previously considered can not be so justified, for the condition of being compatible

with an intuitionistic philosophy is rather a stringent requirement to place on a

logic.

In this thesis, we attempt to provide such an intuitionistic account of intuition-

istic modal logic. Our approach is based on the standard account of (classical)

modal logics in terms of possible world models. However, we interpret the usual

semantics from the viewpoint of an intuitionistic meta-theory. Thus the semantics
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no longer validates any intuitionistically invalid principles. Consequently, the in-

duced logics are intuitionistic modal logics rather than classical ones.

One problem with the above outlined approach is the reliance upon an intu-

itionistic meta-theory to arrive at intuitionistic modal logic. (Other, more tech-

nical, problems will be raised in Section 3.4.) Although the desired account of

intuitionistic modal logic must make sense intuitionistically, we should like it to

also make sense classically. That is, we would like to describe intuitionistic modal

logic from a philosophically neutral stance. We achieve this desire in two different

ways.

One way is via a proof-theoretic definition of intuitionistic modal logic. We

give a natural deduction system in which the possible world interpretation of the

modalities is built into the inference rules. Following Dummett’s proof-theoretic

justification of intuitionism, we thereby arrive at a proof system embodying the

above account of intuitionistic modal logic. Then we can study intuitionistic modal

logic by studying the proof system, and this can be done using either intuitionistic

or classical mathematics.

The second way is via a formalized meta-theory. We circumscribe the intu-

itionistic reasoning allowed in the meta-theory by restricting it to intuitionistic

first-order logic. Then we induce the intuitionistic modal logic as those modal for-

mulae whose validity is provable in the formal meta-theory. Again, this definition

of an intuitionistic modal logic can be understood equally well from either an in-

tuitionistic or classical (informal) meta-theory. A routine, but important, result of

the thesis is that the formalized meta-theory yields the same intuitionistic modal

logic as the natural deduction system.

It turns out that many of the intuitionistic modal logics we induce occur already

in work of Ewald [20], Fisher Servi [24] and Plotkin and Stirling [64]. However,

their original definitions were semantic and not intuitionistically motivated. Fur-

ther, despite being well known, it was an open question whether the logics were

decidable. (A flawed proof of decidability was given by Ewald [20]. We discuss

this in detail in Chapter 8.) Our natural deduction system enables us to prove the

decidability of a number of the logics using proof normalization. The techniques
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used to prove decidability also allow us to establish the finite model property for

the same class of intuitionistic modal logics relative to the models considered in

the work of Ewald et al.

In summary, our intention is to provide an intuitionistic account of intuitionistic

modal logic. To this end we give two different definitions of intuitionistic modal

logic based on an intuitionistic interpretation of the standard possible world se-

mantics. These definitions can be understood either intuitionistically or classically.

We prove the equivalence of the two definitions and establish important properties

of the induced modal logics including decidability.

Despite our good intentions, we resort to classical metamathematics in order

to prove many of the results (including the equivalence of the two definitions of

intuitionistic modal logic). This is largely a matter of convenience, for none of

the important results is classical reasoning actually necessary (although intuition-

istically acceptable proofs would often require different techniques). However, for

some of the completeness results (not mentioned above) classical reasoning is ne-

cessary. To placate the intuitionist reader, we shall discuss, in appropriate places,

what classical principles we are using and how proofs would have to be modified

in order to avoid them. In such comments, we shall use ‘intuitionistic’ in a narrow

sense to mean reasoning acceptable to any constructivist (except an ultra-finitist).

(The reason we do not use the adjective ‘constructive’ is that it has a common

alternative use to describe classical arguments in which additional information is

provided.) We shall make explicit any further assumptions, e.g., if we require any

of the classically invalid principles of Brouwer’s intuitionism. For full accounts of

the different ‘constructive’ viewpoints see Troelstra and van Dalen [79]. In their

terminology our default is ‘Bishop constructivism’, although none of our ‘intuition-

istic’ proofs will require dependent choice. In fact, all our ‘intuitionistic’ proofs

could be carried out in the internal logic of the free topos with natural numbers

object [53].

Although we shall not concentrate on applications to computer science, some

discussion of the applicability of the work is in order. We do not know if the

particular intuitionistic modal logics discussed in this thesis are appropriate for
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applications to computer science. But we do believe that we present convincing

arguments that the intuitionistic modal logics we consider are, in some sense, the

true intuitionistic analogues of their corresponding classical modal logics. Perhaps

their very naturalness is sufficient reason to believe in their applicability. Fur-

ther, the arguments we give open the door to many philosophical applications; for

example, in epistemic logic. Thus we expect the logics to be of use in artificial

intelligence. However, even if the logics are not themselves applicable, we strongly

believe that some of the techniques we use will nonetheless have computer science

applications. One concrete proposal along these lines is given in Chapter 9.

Lastly, a remark on emphasis. The main achievements of the thesis are meth-

odological (the approach to intuitionistic modal logic) and technical (especially the

proofs of decidability and the finite model property). Despite the philosophical

motivation guiding the methodology, the thesis does not provide the necessary ar-

guments to properly justify any philosophical applications of the logics considered.

However, we believe that the thesis does lay the technical foundations on which

such arguments can be built.

1.2 Synopsis

In Chapter 2 we give basic results concerning three aspects of intuitionistic first-

order (and propositional) logic. The first is the proof theoretical analysis of natural

deduction for intuitionistic logic. The second is its Kripke semantics. The third

concerns some basic properties of so-called ‘geometric’ theories in intuitionistic

logic, including a novel proof-theoretical analysis of such theories. These three

aspects of intuitionistic logic underlie much of the work in the thesis.

In Chapter 3 we introduce intuitionistic modal logic. First, we give a short sur-

vey of classical modal logic. Then we discuss the question: What is intuitionistic

modal logic? The previous work in the field is then surveyed, in the light of the

preceding discussion. Lastly, we introduce our approach to intuitionistic modal

logic.
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In Chapter 4 we present our natural deduction systems for intuitionistic modal

logics. There is a basic system, giving the rules for the connectives and modalities,

which induces the intuitionistic analogue of the modal logic K. This system can

be extended, in a principled way, with rules expressing conditions on the semantic

‘visibility’ relation to induce intuitionistic analogues of modal logics extending K.

We define the consequence relations induced by the natural deduction systems and

prove soundness relative to the standard interpretation in possible world models,

using only intuitionistic reasoning. Lastly, we discuss the relationship with other

work on proof systems for modal logics.

In Chapter 5 we prove that the intuitionistic modal logics induced by the nat-

ural deduction systems are the same as the modal logics induced via a translation

into intuitionistic first-order logic. This amounts to the equivalence of the two

methods, discussed above, of defining intuitionistic modal logics.

In Chapter 6 we derive complete Hilbert-style axiomatizations for many of the

intuitionistic modal logics induced by the natural deduction systems. However,

for some intuitionistic modal logics the natural axiomatizations are incomplete,

and we do not know of any alternatives that work.

In Chapter 7 we give normalization results for the natural deduction systems.

For all systems, strong normalization and confluence are proved via translations

into intuitionistic first-order natural deduction. We use the normalization results

to establish the completeness of induced cut-free sequent calculi. The sequent

calculi are then used to prove the decidability of a number of the logics.

In Chapter 8 we consider a semantic framework due to Ewald [20], Fischer

Servi [23] and Plotkin and Stirling [64]. We prove the finite model property for

those logics proved decidable in the Chapter 7. (This fact gives an alternative,

but more complicated, proof of decidability.)

In Chapter 9 we summarize the work in the thesis, and describe possible dir-

ections for future research.

There are two appendices.
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Appendix A provides proofs of strong normalization and confluence for the

proof system for geometric theories introduced in Chapter 2.

Appendix B reformulates the basic natural deduction system for intuitionistic

modal logic of Chapter 4 in order to ease comparison with related work.



Chapter 2

Intuitionistic logic

In this chapter we present those aspects of intuitionistic first-order (and proposi-

tional) logic that we shall use later. In Section 2.1 we review natural deduction for

intuitionistic first-order logic and mention some of its applications, both technical

and philosophical. In Section 2.2 we review Kripke’s semantics of intuitionistic

logic. Lastly, in Section 2.3, we present some aspects of geometric theories in

intuitionistic logic, including a novel proof-theoretical account of such theories.

2.1 Natural deduction for intuitionistic logic

2.1.1 The natural deduction system

The natural deduction system for intuitionistic first-order logic was introduced

by Gentzen in his classic 1935 paper [36]. This system provides a very attract-

ive formalization of intuitionistic logic for three intimately related reasons. First,

it formalizes ordinary intuitive (intuitionistic) reasoning very closely. Second, it

has an elegant meta-theory in which natural deduction derivations are treated as

objects of mathematical interest in their own right. Third, one can view the in-

ference rules themselves as providing the logical connectives and quantifiers with

their meaning. From his paper, it seems that Gentzen’s main motivation in intro-

ducing natural deduction was the first consideration. For meta-theoretical ana-

lysis, Gentzen formulated his sequent calculus, which was better able to deal with

9
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classical logic. As regards the third consideration, Gentzen did make the highly

influential remark that one can read off the meanings of the connectives from their

natural deduction inference rules. However, there was no technical framework then

in place within which this insight could be developed.

We now give a comprehensive, but informal, overview of Gentzen’s natural

deduction system for intuitionistic first-order logic without equality. Henceforth,

we write IL for intuitionistic first-order logic, and NIL for its natural deduction

system. The reader is referred to the works of Prawitz [65,66] for a more thorough

treatment of natural deduction for IL. We assume given some first-order signature.

We use: x, y . . . to range over variables; t, . . . to range over terms; a, b, . . . to range

over atomic formulae; and φ, ψ, . . . to range over formulae, which are given by the

grammar:

φ ::= a | ⊥ | φ ∧ ψ | ψ ∨ ψ | φ ⊃ ψ | ∀x. φ | ∃x. φ.

Thus we have as primitive: an absurdity constant, ⊥; conjunction, ∧; disjunction,

∨; implication, ⊃; the universal quantifier, ∀; and the existential quantifier, ∃. We

shall use the term logical constants to refer collectively to these connectives and

quantifiers. It is well known that no one of the above logical constants is definable

from the others in intuitionistic logic (see, e.g., van Dalen [14, p. 271]). We define:

negation by ¬φ = φ ⊃ ⊥; logical equivalence by φ ↔ ψ = (φ ⊃ ψ) ∧ (ψ ⊃ φ);

and a truth constant by > = ⊥ ⊃ ⊥. We do not distinguish between formulae

differing only in the names of their bound variables. We write φ[t/x] for the

formula obtained by substituting the term t for all free occurrences of x in φ. A

sentence is a formula with no free variables. The notion of subformula is defined

inductively by: φ is a subformula of itself; if one of φ ∨ ψ, φ ∧ ψ and φ ⊃ ψ is a

subformula of θ then so are φ and ψ; and, if either ∀x. φ or ∃x. φ is a subformula

of ψ then so is φ[t/x], for any term t.

A prederivation is a tree of formulae together with a partial function, its dis-

charge information, as specified below. The formulae occurring at leaves of the

prederivation are called assumptions, and the root is called the conclusion. The

discharge information is a partial function from the leaves of the tree (assumption
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⊥
φ

(⊥E)

φ ψ
φ ∧ ψ

(∧I)
φ ∧ ψ

φ
(∧E1)

φ ∧ ψ
ψ

(∧E2)

φ

φ ∨ ψ
(∨I1)

ψ

φ ∨ ψ
(∨I2)

φ ∨ ψ

[φ]....
θ

[ψ]....
θ

θ
(∨E)

[φ]....
ψ

φ ⊃ ψ
(⊃I)

φ ⊃ ψ φ

ψ
(⊃E)

φ
∀x. φ

(∀I)∗
∀x. φ

φ[t/x]
(∀E)

φ[t/x]
∃x. φ

(∃I)
∃x. φ

[φ]....
ψ

ψ
(∃E)†

∗Restriction on (∀I): x must not occur free in any open assumption.

†Restriction on (∃E): x may neither occur free in ψ nor in any open assumption

upon which ψ depends other than in the distinguished occurrences of φ.

Figure 2–1: Natural deduction for intuitionistic predicate logic.
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occurrences) to nodes of the tree such that each leaf in the domain of the function

is mapped to a node below it in the tree. Such an assumption occurrence is said

to be discharged (at the node). An assumption occurrence which is not discharged

is said to be open.

A derivation is a prederivation generated by the rules in Figure 2–1 from

(trivial) derivations consisting of a single open assumption. The discharge of

assumptions is prescribed by applications of the (∨E), (⊃I), and (∃E) rules. Each

of these rules applies to premises in whose derivations a set of open assumption

occurrences is distinguished. These distinguished assumption occurrences are then

discharged at the conclusion of the rule application. This discharge of assump-

tions may be vacuous in that the set of distinguished assumption occurrences may

be empty. Further, the set is not required to contain all open occurrences of

the appropriate assumptions (except when so demanded by the side-condition on

(∃E)). We shall mark discharged assumption occurrences by enclosing them in

square brackets. When we wish to make clear the rule at which an assumption

occurrence is discharged we shall mark the occurrence and its rule with identical

numerical superscripts.

We shall use Σ, Σ′, . . . to range over derivations in NIL. When we wish to note

that the conclusion of Σ is φ we write Σ
φ . We write

φ
Σ to distinguish a (possibly

empty) set of occurrences of the open assumption φ in Σ.

A derivation shows that its conclusion follows logically from the open assump-

tions. The induced consequence relation, S `IL φ, between sets of formulae, S,

and formulae, φ, is defined by: S `IL φ if there exists a derivation, Σ
φ , in which

all open assumptions are contained in the set S. We also say that Σ is a derivation

of S `IL φ. A formula, φ, is said to be a theorem (of IL) if ∅ `IL φ, in which case

we just write `IL φ. We shall adopt other standard notational conventions, such

as using commas for set union in the antecedent of consequences, without further

comment.

We call the variable x in the (∀I) and (∃E) rules the eigenvariable of the

rule (Prawitz writes ‘proper parameter’). We say that the eigenvariable in an

application of (∀I) is closed by the conclusion of the rule. The eigenvariable in
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an application of (∃E) is said to be closed by the right-hand premise of the rule

as written in Figure 2–1 (its so-called minor premise). An occurrence of a free

variable, x, in a formula occurrence, φ, in Σ is said to be closed in Σ if it is closed

by some formula occurring beneath φ in Σ. If x is not closed, it is said to be open.

We define two notions of substitution on derivations. One is a substitution of

terms for variables. The derivation Σ[t/x] is defined by: first, renaming the closed

variables in Σ so that they are disjoint from the set of variables in t; and second,

substituting t for all open occurrences of x in the renamed derivation. The second

notion of substitution is one of derivations for assumptions. Given two derivations

φ
Σ and Σ′

φ , we write
Σ′
φ
Σ

for the derivation obtained by: first, renaming the

closed variables in Σ so that they are disjoint from set of open variables in Σ′;

and second, replacing each distinguished occurrence of the open assumption φ in

the renamed derivation with the derivation Σ′. In both notions of substitution,

the renaming of closed variables ensures that the side-conditions on the quantifier

rules remain satisfied in the resulting derivation.

Henceforth, we shall not distinguish between two derivations differing only in

the names of their closed variables. Both notions of substitution above define

unique derivations up to this equivalence.

It is worth remarking that the system NIL has a straightforward representation

in the Edinburgh Logical Framework (LF) of Harper et al [41]. When encoded in

LF, the side-conditions on the quantifier rules are handled very naturally by the

binding mechanisms of the LF type theory. Also, the renaming of closed variables

(which correspond to bound variables in LF) and the equivalence on derivations

are subsumed by alpha conversion between lambda terms.

2.1.2 Normalization

Note how each logical constant has a finite set of introduction rules (suffixed by

‘I’) and a finite set of elimination rules (suffixed by ‘E’). The introduction rules

conclude with a formula whose outermost logical constant is the appropriate one;
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Σ1
φ

Σ2
ψ

φ ∧ ψ
φ

=⇒ Σ1
φ

Σ1
φ

Σ2
ψ

φ ∧ ψ
ψ

=⇒ Σ2
ψ

Σ
φ

φ ∨ ψ

[φ]
Σ1
θ

[ψ]
Σ2
θ

θ

=⇒
Σ
φ
Σ1
θ

Σ
ψ

φ ∨ ψ

[φ]
Σ1
θ

[ψ]
Σ2
θ

θ

=⇒
Σ
ψ
Σ2
θ

[φ]
Σ1
ψ

φ ⊃ ψ
Σ2
φ

ψ

=⇒
Σ2
φ
Σ1
ψ

Σ
φ

∀x. φ
φ[t/x]

=⇒ Σ[t/x]
φ[t/x]

Σ1
φ[t/x]
∃x. φ

[φ]
Σ2
ψ

ψ

=⇒
Σ1

φ[t/x]
Σ2[t/x]
ψ

Figure 2–2: Proper reductions.

Σ
⊥
φ Ξ

ψ
(r)

=⇒
Σ
⊥
ψ

Σ
φ ∨ ψ

[φ]
Σ1
θ

[ψ]
Σ2
θ

θ Ξ
θ′

(r)
=⇒ Σ

φ ∨ ψ

[φ]
Σ1
θ Ξ

θ′
(r)

[ψ]
Σ2
θ Ξ

θ′
(r)

θ′

Σ1
∃x. φ

[φ]
Σ2
ψ

ψ Ξ
θ

(r)

=⇒ Σ1
∃x. φ

[φ]
Σ2
ψ Ξ

θ
(r)

θ

Figure 2–3: Permutative reductions.
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moreover, the conclusion is built out of the premises of the rule, using the constant

in question. The elimination rules contain a premise (the major premise) whose

outermost logical constant is the appropriate one; moreover, the conclusion of the

elimination rule either consists of or is inferred from subformulas of the major

premise. (The other premises of an elimination rule are called minor premises.)

The major contribution of Prawitz was to realize that the duality between in-

troduction and elimination rules provides the basis for a meta-theoretical analysis

of the natural deduction system. Prawitz [65, p. 33] formulated his inversion

principle that if a formula is derived by means of an introduction rule only to be

eliminated by means of the associated elimination rule then the derivation must

already implicitly contain a derivation of its conclusion not involving the detour

through the formula in question. To show that the natural deduction system sat-

isfies the inversion principle, Prawitz defined a simple rewrite operation to remove

any such unnecessary detour from a proof. By repeated rewriting, any derivation

can be rewritten to one in which no detours occur. The resulting derivation is said

to be in normal form.

The simplest form of detour in a derivation is given by a formula occurrence

that is both the conclusion of an introduction rule and the major premise of an

elimination rule. We call such a formula occurrence a maximum formula.

The rewrite operation removing maximum formulae, which we call proper re-

duction, is defined in Figure 2–2 (using the notation for substitution in derivations

introduced on page 13). In the presentation of the rewrite rules, the maximum

formula removed by each rewrite is highlighted in bold. For convenience, we have

omitted to include the lower parts of the derivations being rewritten. The rewrites

can, of course, be applied to a maximum formula anywhere in a derivation, that

part of the derivation not given in Figure 2–2 remaining unchanged.

The notion of maximum formula does not, however, identify all unnecessary

detours in derivations. Problems are caused by the (⊥E), (∨E) and (∃E) rules.

For example, each of the three derivations:
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⊥
φ ∧ ψ

φ

θ ∨ θ′
φ ψ

φ ∧ ψ

φ ψ

φ ∧ ψ
φ ∧ ψ

φ

∃x. φ

φ ψ

φ ∧ ψ
φ ∧ ψ

φ

has no maximum formula, but none satisfies the subformula property (that every

formula occurring in the derivation is either a subformula of the conclusion or of

some open assumption). Further, in the second and third examples, the formula

φ ∧ ψ is ‘morally’ a maximum formula — it is introduced by an introduction only

to be eliminated by an elimination. But the introduction-elimination sequence is

interrupted by an intermediate elimination so no proper reduction applies.

In the derivations above one could identify the problem in the first case as

being the application of the (⊥E) rule to derive a non-atomic formula, and in the

second and third cases as the vacuous applications of the (∨E) and (∃E) rules (in

that no assumptions are discharged). Indeed such considerations are among those

highlighted by Prawitz in his treatments of normalization [65,66]. However, these

observations obscure a more elegant account of why the subformula property fails.

In each of the examples above, the conclusion of the troublesome elimination is

itself the major premise of another elimination. In the case of (⊥E) this clearly

leads to problems in general. In the cases of (∨E) and (∃E) it leads to problems

because, as in the derivations above, the (∨E) and (∃E) rules might interrupt an

introduction-elimination sequence that uninterrupted would produce a maximum

formula. A good discussion of the issues is given by Girard in [37, Ch. 10].

In order to address the problem we identify other combinations of inferences

that can be removed from derivations. Let us call the three problematic rules,

(⊥E), (∨E) and (∃E), indirect rules. An occurrence of a formula in a derivation is

said to be permutable if it is both the conclusion of an indirect rule and the major

premise of an elimination. Thus in each of the three examples above, the lowest

occurrence of φ ∧ ψ is a permutable formula.

Again, permutable formulae are eliminated from derivations through the ap-

plication of rewrite rules. This time the rewrite rules in question are the so-called

permutative reductions (we use the terminology of Prawitz [66], Girard writes
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‘commuting conversions’ [37]). As there are 7 elimination rules and 3 indirect

rules, there are 21 cases to be eliminated by permutative reductions (although the

symmetry between (∧E1) and (∧E2) means that there are only 18 essentially dis-

tinct cases). For conciseness, we represent the reductions schematically, giving one

schema for each indirect rule. The schematic reductions are presented in Figure

2–3, where the permutable formulae removed are highlighted in bold. In the rules,

we write:
φ Ξ

ψ
(r)

for an application of an elimination rule (r) with major premise φ, where Ξ repres-

ents the finite sequence (of length 0, 1 or 2) of derivations of the minor premises

of the rule.

We write =⇒ for the rewrite relation on derivations given by a single applica-

tion of either a proper or a permutative reduction. We write =⇒+ for its transitive

closure, and =⇒∗ for its transitive-reflexive closure. The full force of the inversion

principle is brought out by Prawitz’ various normalization theorems. The most

basic normalization theorem removes all maximum formulae and permutable for-

mulae from a derivation by repeated applications of the rewrite relation. We say a

derivation is in normal form if it contains no maximum formula and no permutable

formula. Clearly a derivation is in normal form if and only if =⇒ is not applicable.

We say that =⇒ is weakly normalizing if any derivation can be rewritten to one

in normal form by repeated applications of =⇒.

Theorem 2.1.1 (Prawitz [65]) The relation =⇒ is weakly normalizing.

The proof is by a straightforward induction based on showing that the application

of an appropriate rewrite always reduces a suitable complexity measure on deriv-

ations. Later Prawitz made two improvements to his result. The first is that the

relation =⇒ is strongly normalizing, i.e., for any derivation Σ, there is a natural

number, d, such that every sequence of applications of =⇒ starting from Σ is

finite with length at most d. We call the smallest such d the reduction depth of

Σ. (Classically, by König’s Lemma, the above definition of strongly normalizing

is equivalent to the usual one that every sequence of applications of =⇒ is finite.
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However, intuitionistically, it is appropriate to adopt the stated definition assert-

ing the existence of a reduction depth.) The second improvement of Prawitz is

that the relation =⇒ is confluent, i.e. if Σ =⇒∗ Σ1 and Σ =⇒∗ Σ2 then there

exists a derivation Σ′ such that Σ1 =⇒∗ Σ′ and Σ2 =⇒∗ Σ′.

Theorem 2.1.2 (Prawitz [66]) The relation =⇒ is strongly-normalizing and

confluent.

An important corollary (of confluence and weak normalization) is that every deriv-

ation rewrites to a unique weak normal form. The proof of strong normalization is

by a complicated argument based on Tait’s ‘computability’ method (called ‘strong

validity’ in [66]). Once strong normalization is established, confluence is proved by

verifying the easily checked property of weak confluence (see Klop [48]). Strictly

speaking, the theorems above are not the ones proved by Prawitz. He had more

complex (but very similar) notions of reduction. The permutative reductions for

(∨E) and (∃E) presented above are mentioned in passing by Prawitz [66, p.253],

who attributes them to Martin-Löf. The application of the same methods to (⊥E)

is taken from Girard [37, Chapter 10], where it is remarked that the proof tech-

niques of Prawitz are applicable. In Appendix A we prove a result (Theorem 2.3.2)

that implies Theorem 2.1.2 as stated.

There are stronger notions of normal form obtained by considering further

rewrites such as the ‘simplifications’ and ‘expansions’ of Prawitz [66, §II 3.3.2–

3.3.3]. These are important if one wants to consider the equational theory of the

corresponding functional calculus obtained via the Curry-Howard isomorphism

[45]. In this context, the proper reductions correspond to ‘beta reductions’ on

terms and proof expansions correspond to ‘eta expansions’. However, for our

purposes, the above notions of reduction and normal form suffice.

The applications of normalization are similar to the applications of Gentzen’s

cut-elimination theorem for his sequent calculus [36]. Two applications particular

to intuitionistic logic are:
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Proposition 2.1.3

1. If `IL φ ∨ ψ then either `IL φ or `IL ψ.

2. If `IL ∃x. φ then `IL φ[t/x] for some term t.

Statement 1 is known as the disjunction property and statement 2 is known as

the existence property. For proofs (of more general results) see [65, Corollary 6, p.

55] and [65, Corollary 7 (ii), p. 56] respectively. Some other standard applications

are: the subformula property [65, Corollary 1, p. 53], the interpolation theorem

[65, Corollary 5, p. 55], and the independence of the intuitionistic connectives [65,

Corollary 9, p. 59]. All these results follow from the weak normalization theorem.

I do not know of any interesting applications of strong normalization, other than

in obtaining a simple proof of confluence via weak confluence. But it is a pleasant

fact to know that any reduction sequence terminates.

It is not surprising that the applications of (weak) normalization and cut-

elimination are similar as Prawitz showed that either result can be derived from

the other [65, Appendix A]. (The proof that cut-elimination follows from normal-

ization can be seen as another application of weak normalization, as the proof of

Theorem 2.1.1 is, in some ways, easier than a direct proof of cut-elimination.) The

major advantage of natural deduction over sequent calculus is that it provides a

formalization of the intuitive notion of proof. Prawitz’ analysis of natural deduc-

tion derivations can therefore be seen as a mathematical analysis of the informal

notion of proof. Although sequent calculus is perhaps more convenient for cer-

tain applications, Prawitz argues that it is a system of derived rules whereas the

natural deduction rules are primitive [65, Appendix A].

The analysis of the intuitive notion of proof using normalization provides a

mathematical foundation to the idea that the meaning of a logical constant is

given by its inference rules. In order to specify the meaning of an arbitrary logical

constant it is enough, so the argument goes, to give it a set of introduction and

elimination rules. The introduction rules explain under what circumstances it is

legitimate to assert a sentence formed using the constant. The elimination rules
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explain what may legitimately be inferred from the assertion of such a sentence.

However, the introduction and elimination rules cannot be arbitrary, as arbitrary

rules could lead to a meaningless formalism. In Dummett’s terminology, they must

be in harmony with one another. In order to read off an intelligible meaning from

the inference rules, we must know that the elimination rules do not allow us to

infer more than permitted according to the meaning already invested in the logical

constant through its introduction rules. In short, the inversion principle must

apply. Indeed, Dummett argues that proof normalization in natural deduction

both justifies the philosophy that the meaning of a logical constant is given by

its inference rules and is a prerequisite for the philosophy to apply [17]. See

Sundholm’s survey article, [76], for a general discussion of this argument and for

further references.

When we come to modal logic, we shall be interested in propositional modal

logic. Accordingly, we briefly review intuitionistic propositional logic (which we

call IPL). Let Props be a countably infinite set of propositional constants. We use

α, β, . . . to range over Props; and A, B, . . . to range over propositional formulae,

which are given by the grammar:

A ::= α | ⊥ | A ∧ B | A ∨ B | A ⊃ B.

A natural deduction system for IPL is obtained by taking the evident subsystem

of NIL. Normalization results for the system for IPL follow from the analogous

results for IL. A further consequence of normalization for IPL is the decidability

of theoremhood (cf. Dummett [16, p. 146]).

2.2 The semantics of intuitionistic logic

The semantics we shall use for intuitionistic first-order logic was introduced by

Kripke in [51], and was inspired by his earlier semantics for modal logic (which we

shall discuss in Section 3.1). Kripke motivated the semantics as giving an intuitive

account of the intuitionistic connectives. However, the completeness theorem for
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the semantics requires classical reasoning, so the resulting account of intuitionistic

logic makes sense only from a classical viewpoint.

For simplicity, we assume a first-order language with no constants or function

symbols. We use P, Q, R, . . . to range over the predicate symbols. An IL-model is

a structure of the form (W, ≤, {Dw}w∈W , {Pw}w∈W ) where:

1. W is a nonempty set (of ‘worlds’) partially ordered by ≤.

2. {Dw}w∈W is a W -indexed family of nonempty sets such that w ≤ w′ implies

Dw ⊆ Dw′ .

3. For each n-ary predicate symbol P , the W -indexed family, {Pw}w∈W , consists

of n-ary relations Pw ⊆ Dw
n such that w ≤ w′ implies Pw ⊆ Pw′ .

IL-models are usually called ‘Kripke models’. However, we shall be using also

‘Kripke models’ of modal logic, as well as various hybrid models of intuitionistic

modal logics in which aspects of the Kripke models of modal and intuitionistic

logics are combined. So, to avoid confusion, each kind of model will be named,

in some appropriate way, according either to the logic it is intended to model or

according to some distinguishing feature of its structure.

Let K be an arbitrary IL-model, (W, ≤, {Dw}w∈W , {Pw}w∈W ). For any w ∈ W ,

a w-environment in K is a function, ρ, from variables to Dw. Clearly any such ρ

is also a w′-environment for any w′ ≥ w. If d ∈ Dw then we write ρ[x := d] for

the w-environment mapping the variable x to d and agreeing with ρ on all other

variables. A satisfaction relation, w 
ρK φ, between elements w ∈ W , formulae, φ,

and w-environments, ρ, is defined inductively on the structure of φ by (we omit

the subscript, K):
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w 
ρ P (x1, . . . , xn) iff Pw(ρ(x1), . . . , ρ(xn))

w 6
ρ ⊥
w 
ρ φ ∧ ψ iff w 
ρ φ and w 
ρ ψ

w 
ρ φ ∨ ψ iff w 
ρ φ or w 
ρ ψ

w 
ρ φ ⊃ ψ iff for all w′ ≥ w, w′ 
ρ φ implies w′ 
ρ ψ

w 
ρ ∀x. φ iff for all w′ ≥ w, for all d ∈ Dw′ , w′ 
ρ[x:=d] φ

w 
ρ ∃x. φ iff there exists d ∈ Dw such that w 
ρ[x:=d] φ

For any set of formulae, S, we write w 
ρ S to mean that, for all φ ∈ S, w 
ρ φ.

If S consists only of sentences then the relation w 
ρ S is independent of ρ so we

omit the environment superscript. For such an S we write K |=IL S to mean, for

all w ∈ W , w 
K S. When K |=IL S we say that K is an IL-model of S.

Intuitively, one thinks of the worlds as states of knowledge ordered by their

information content. This is justified by the following important lemma, proved

by a straightforward induction on the structure of φ.

Lemma 2.2.1 (Monotonicity) If w ≤ w′ and w 
ρ φ then w′ 
ρ φ.

So, as one ascends the order, new facts may accumulate but no previously accepted

fact may ever be refuted. Thinking of the partial order as an information ordering

also gives an intuitive reading to the logical constants. For example, we accept

φ ⊃ ψ at our current state of knowledge if ψ holds at any possible enlarged state of

knowledge at which φ holds. Similar interpretations of the other logical constants

can be read off from their satisfaction clauses too.

The soundness and completeness of intuitionistic first-order logic is given by:

Theorem 2.2.2 (Kripke, [51]) Let T be a set of sentences and S a set of for-

mulae. The following are equivalent.

1. T , S `IL φ.

2. For all models K such that K |=IL T , for all worlds w in K, for all w-

environments ρ, if w 
ρK S then w 
ρK φ.
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Soundness (1 =⇒ 2) is proved by the usual induction on derivations. The proof is

perfectly intuitionistically acceptable. Completeness (2 =⇒ 1) is proved by show-

ing the contrapositive via a standard Henkin-style construction of a model refuting

underivable consequences. The completeness theorem is not intuitionistically valid

as it both requires and implies Markov’s Principle (cf. Dummett [16, Theorem 5,

p. 245]).

We shall also be interested in models of intuitionistic propositional logic. An

IPL-model is a structure of the form K = (W, ≤, V ) where W is a non-empty set

partially ordered by ≤ and V is a monotone function from (W, ≤) to (℘(Props), ⊆).

We say that K is a finite model if W is finite. The satisfaction relation w 
K A is

defined by:

w 
K α iff α ∈ V (w),

for atomic formulae; and, for compound propositional formulae, by the evident

inductive clauses taken from the definition of satisfaction in IL-models. As well

as being sound and complete, IPL has the following important property: if A is

not a theorem of IPL then there is a finite model K such that K 6|= A (see van

Dalen [14, Theorem 4.2, p. 268]). We say that IPL has the finite model property.

The finite model property implies decidability as it gives a way of enumerating

the non-theorems of IPL [14, Theorem 4.3, p. 268].

We should say that there are many other forms of semantics for intuitionistic

logic, e.g., topological semantics, algebraic semantics, Beth semantics and realiz-

ability semantics. For a good survey of these, as well as a thorough discussion of

Kripke semantics, see van Dalen [14].
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2.3 Geometric theories in intuitionistic logic

In this section we consider some properties of so-called geometric theories in intu-

itionistic logic. Geometric theories have played an important part in topos theory

(see Vickers [80] for an introduction and references). However, we shall be inter-

ested in them for proof-theoretical reasons. It turns out that geometric theories

are exactly the theories expressible by natural deduction rules in a certain simple

form in which only atomic formulae play a critical part. We shall use such rules

later in our natural deduction systems for intuitionistic modal logics.

A first-order formula is said to be geometric if it is built out of atomic formulae

using only ⊥, ∧, ∨ and ∃. A geometric sequent is a first-order sentence of the form

∀x. φ ⊃ ψ where x is a (possibly empty) vector of variables and φ and ψ are

geometric formulae. A theory is a set of sentences (thus we do not assume theories

to be closed under logical consequence). A geometric theory is a set of geometric

sequents.

The natural deduction rules will be given for certain geometric sequents built

out of atomic formulae in a particularly simple way. A basic geometric sequent is

one in the form (recall that a, b, . . . range over atomic formulae):

∀x. ((a1 ∧ . . . ∧ an) ⊃ ∃y.
m∨
i=1

(bi1 ∧ . . . ∧ bini))

where m, n ≥ 0 and n1, . . . , nm ≥ 1. (An empty conjunction is taken to be >, an

empty disjunction to be ⊥.) A basic geometric theory is a set of basic geometric

sequents. By exploiting some elementary intuitionistic equivalences, it is easy

to see that any geometric theory is equivalent to a basic geometric theory (in

the sense that, for every geometric theory, there exists a basic geometric theory

with the same consequences in IL). Therefore, it is no loss to restrict attention

to basic geometric theories. We shall also be interested in restricted classes of

basic geometric sequents. A Horn clause is a basic geometric sequent in which y

is empty, m = 1 and n1 = 1. A Horn clause theory is a set of Horn clauses.
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With each basic geometric sequent, χ, in the format above, we associate the

natural deduction rule:

a1[t/x] . . . an[t/x]

[b11[t/x]] . . . [b1n1[t/x]]....
φ . . .

[bm1[t/x]] . . . [bmnm[t/x]]....
φ

φ
(Rχ)

where: t is any vector of terms of the same length as x; none of the variables in y

appear in any of the terms in t; and the variables in y neither appear free in φ nor

in any open assumptions upon which any subsidiary derivation of φ depends other

than in the distinguished occurrences of bij[t/x]. (Again, these side-conditions

would be catered for naturally if (Rχ) were represented in the Edinburgh Logical

Framework [41], cf. the discussion on page 13.) Although it is not an elimination

rule, we refer to a1[t/x], . . . , an[t/x] as the major premises of (Rχ) and the others

as the minor premises.

Let T be any basic geometric theory. The natural deduction system NIL(T ) is

obtained by extending NIL with the set of rules {(Rχ) | χ ∈ T }. We write S `TIL φ

to mean that there is a derivation of φ from open assumptions in S in the system

NIL(T ).

Proposition 2.3.1 The following are equivalent:

1. S `TIL φ.

2. T , S `IL φ.

Proof. Let χ be any basic geometric sequent, ∀x. (ψ ⊃ ∃y.
∨m
i=1 ψi), where ψ

is a1 ∧ . . . ∧ an and ψi is bi1 ∧ . . . ∧ bini . In Figure 2–4 we show how to derive χ

using the rule (Rχ) (for convenience, we bunch multiple applications of the same

rule into one). Conversely, in Figure 2–5 we show how to derive (Rχ) using χ.

Note how the side-conditions we gave on (Rχ) are exactly those required by the

existential elimination in Figure 2–5. It is now a straightforward matter to give

rigorous proofs of both implications by induction on the structure of derivations.

�
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a1 . . .
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Figure 2–4: Derivation of χ from (Rχ).
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Figure 2–5: Derivation of (Rχ) from χ.

Σ1

a1[t/x] . . .
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φ . . .
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Σ′m
φ

φ Ξ
ψ

(r)
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a1[t/x] . . .

Σn

an[t/x]

[b11[t/x]] . . . [b1n1[t/x]]
Σ′1
φ Ξ

ψ
(r)

. . .
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Σ′m
φ Ξ

ψ
(r)

ψ

Figure 2–6: Permutative reduction for (Rχ).
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The interest in representing geometric theories by a set of rules of the form

(Rχ) is that, in such rules, only atomic formulae play an interesting rôle. Prawitz

considered extensions of NIL with rules whose premises and conclusion are atomic

formulae [66, §1.5, p. 242], which he called atomic systems. Although not atomic

systems in his sense (the conclusion of (Rχ) need not be an atomic formula),

due to their manipulation of atomic formulae, our rules are in much the same

spirit. Prawitz does not precisely delineate the scope of atomic systems, but

they certainly include the evident rules for representing Horn clauses. Prawitz

[66, Corollary 3.5.4, p. 256] shows that atomic systems satisfy the disjunction

and existence properties (recall Proposition 2.1.3), neither of which are satisfied

by arbitrary geometric theories (see below). So our rules can certainly express

theories inexpressible by atomic systems. However, the theories expressible by

atomic systems in their full generality are incomparable with geometric theories.

Consider the atomic rule:
a(x)

b

with the restriction that x does not occur free in b or in any open assumption.

This is equivalent to

(∀x. a(x)) ⊃ b,

which is not equivalent to any geometric theory (as can be shown using The-

orem 2.3.4 below). Although one could imagine a still more general class of rules

subsuming the two, the format of (Rχ) does seem rather natural. Indeed, we be-

lieve it to be an original observation that geometric theories can be characterized

by a class of natural deduction rules manipulating only atomic formulae. We do

not know how much light this sheds on geometric logic. Nevertheless, just as Praw-

itz was able to extend his normalization results for NIL to atomic systems [66], we

shall show that analogous normalization results obtain also for our systems.

First, we extend the treatment of eigenvariables to cover the new rules. The

eigenvariables of (Rχ) are the variables occurring in y. We say that the eigen-

variables in an application of (Rχ) are closed by the minor premises of the rule.

The notions of closed and open variable occurrences in a derivation are defined ex-

actly as for NIL (page 13). Similarly, the definitions of substitution in derivations
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(page 13) apply to NIL(T ) without change. Again we do not distinguish between

derivations differing only in the names of their closed variables.

We now extend normalization to the systems NIL(T ). The new rules, (Rχ), are

neither introductions nor eliminations, so no new maximum formulae are created.

It is therefore unnecessary to add any new proper reductions to NIL(T ). However,

(Rχ) has the same capacity as (∨E) and (∃E) to interrupt a proof detour (recall

the discussion on page 16). Therefore, in order to remove such interruptions, it is

necessary to add new permutative reductions to NIL(T ).

The various concepts associated with normalization for NIL(T ) are related to

those for NIL as follows. The definition of maximum formula (page 15) remains the

same. Maximum formulae are again removed by the proper reductions of Figure

2–2. We extend the notion of indirect rule (page 16) to include also the rules (Rχ)

(as well as (⊥E), (∨E) and (∃E) as before). With this change, the definition of

permutable formula (page 16) remains the same. Permutable formulae are removed

by the permutative reductions of Figure 2–2 together with the new conversions of

Figure 2–6. We again write =⇒ for the rewrite relation on derivations given by

a single application of either a proper or permutative reduction. The definition

of normal form (page 17) remains the same. Again, a derivation in NIL(T ) is in

normal form if and only if =⇒ is not applicable.

Theorem 2.3.2 The relation =⇒ on derivations in NIL(T ) is strongly normaliz-

ing and confluent.

A proof of the theorem is given in Appendix A. We remark that a proof of weak

normalization can be obtained more easily by following the standard inductive

proof of Theorem 2.1.1

Normalization for NIL(T ) has similar applications to those cited for NIL. As

an example, we prove the subformula property in so far as it holds for NIL(T ).

The subformula property only holds if suitable allowances are made for atomic

formulae (cf. Prawitz [66, §3.2.4.5, p. 251]). We call an atomic formula T -atomic

if it has the form ai[t/x] or bij[t/x], where ai and bij are the atomic formulae

appearing in some basic geometric sequent χ ∈ T (as on page 24).
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Proposition 2.3.3 Let Σ be a normal derivation of S `TIL φ. Then every formula

occurrence in Σ is either T -atomic or a subformula of some formula in S ∪ {φ}.

Proof. We show, by induction on the structure of Σ, that: if the last rule in

Σ is either an introduction or an indirect rule then every formula occurring in Σ

satisfies the property stated in the proposition; otherwise, every formula occurring

in Σ is either T -atomic or a subformula of some formula in S. The proposition

follows.

The proof is straightforward. We consider, as examples, the cases when the

last rule in Σ is either (∃E) or (Rχ). If it is (∃E) then the Σ has the form:

Σ1
∃x. ψ

[ψ]
Σ2
φ

φ

But, as Σ is normal, Σ1 cannot end in either an introduction or an indirect rule

(otherwise ∃x. ψ would be either a maximum or a permutable formula respect-

ively). Thus, as Σ1 is clearly normal, we have, by the induction hypothesis, that

every formula in Σ1, including ∃x. ψ, is either T -atomic or a subformula of some

formula in S. But, also by the induction hypothesis, every formula in Σ2 is either

T -atomic or a subformula of one in S, φ, ψ. However, ψ is a subformula of ∃x. ψ

and therefore of some formula in S. So indeed every formula in Σ is either T -

atomic or a subformula of one in S, φ.

If the last rule is (Rχ) then Σ has the form:

Σ1
a1[t/x] . . .

Σn

an[t/x]

[b11[t/x]] . . . [b1n1[t/x]]
Σ′1
φ . . .

[bm1[t/x]] . . . [bmnm[t/x]]
Σ′m
φ

φ

By the induction hypothesis every formula in each Σi is either T -atomic or a

subformula of one in S, ai[t/x]. Similarly, every formula in each Σ′i is either T -

atomic or a subformula of one in S, φ, bi1[t/x], . . . , bini[t/x]. But each ai[t/x] is

T -atomic as is each bij[t/x]. Also, the only subformula of any atomic formula is

itself. Therefore it is indeed the case that every formula in Σ is either T -atomic
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or a subformula of one in S, φ. �

Thus, by normalization, if S `TIL φ then there exists a derivation of this con-

sequence containing only formulae of the form specified in the proposition. An in-

teresting corollary is that the rules of NIL are redundant for consequences between

atomic formulae. Any such consequence can be proved using just the (Rχ) rules

of NIL(T ).

Another application of normalization is to obtain sufficient conditions on T for

the disjunction property to hold (i.e. conditions such that `T φ ∨ ψ implies `T φ

or `T ψ). This does not hold for an arbitrary (basic) geometric T ; for example,

it fails for T = {a ∨ b}. The normalization of NIL(T ) can be used to show that

the disjunction property does hold for any basic geometric theory containing only

basic geometric sequents (in the form on page 24) satisfying m ≤ 1. However, with

this restriction, the disjunction property follows also from Prawitz [65, Corollary

6, p. 55]. The existence property also fails in general. Sufficient conditions for it

to hold are given by Prawitz [65, Corollary 7, p. 56].

We end this chapter with a rather different aspect of geometric theories con-

cerning their IL-models. Let T be any geometric theory. Let K be any IL-model,

(W, ≤, {Dw}w∈W , {Pw}w∈W ). Now, each (Dw, {Pw}) is a classical structure of the

first-order language. We write (Dw, {Pw}) |=CL T to mean that (Dw, {Pw}) is a

classical model of T . (Similarly, we write (Dw, {Pw}) |=ρ
CL φ to mean that, the φ is

classically true in (Dw, {Pw}) under the interpretation of variables in Dw induced

by ρ.) We show that K is an IL-model of T if and only if it is built out of classical

models of T .

Theorem 2.3.4 For any IL-model K = (W, ≤, {Dw}w∈W , {Pw}w∈W ) and any geo-

metric theory T , the following are equivalent:

1. K |=IL T .

2. For all w ∈ W , (Dw, {Pw}) |=CL T .

Proof. First note that, for any geometric formula φ, for any w ∈ W and for any

w-environment ρ, we have that w 
ρK φ if and only if (Dw, {Pw}) |=ρ
CL φ (as 
ρK
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is determined locally for the logical constants in φ). Now consider any geometric

sequent ∀x. (φ ⊃ ψ) in T . Then:

w 
K ∀x. (φ ⊃ ψ) iff for all w′ ≥ w, for all w′-environments ρ,

w′ 
ρK φ implies w′ 
ρK ψ,

iff for all w′ ≥ w, for all w′-environments ρ,

(Dw, {Pw}) |=ρ
CL φ implies (Dw, {Pw}) |=ρ

CL ψ,

iff for all w′ ≥ w, (Dw, {Pw}) |=CL T ,

The theorem follows. �

Surprisingly, I could not find a reference for this simple theorem, although essen-

tially the same property is required to solve exercise 2.6.14 in Troelstra and van

Dalen [79, p.110] (but beware that their terminology is different from ours).
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Intuitionistic modal logic

The goal of this chapter is to introduce intuitionistic modal logic and, in particular,

our approach to it. In Section 3.1 we review classical propositional modal logic

and its possible world semantics. In Section 3.2 we discuss what it means to

combine intuitionistic logic and modal logic into intuitionistic modal logic. Then

in Section 3.3 we survey previous approaches to intuitionistic modal logic. Lastly,

in Section 3.4 we present our approach.

3.1 Modal logic

The language of propositional modal logic extends that of propositional logic (see

page 20). Again we use A, B, C, . . . to range over formulae, which are given by

the grammar:

A ::= α | ⊥ | A ∧ B | A ∨ B | A ⊃ B | �A | ♦A.

Thus we have two new primitives, the modalities: necessity, �; and possibility, ♦.

(The choice of primitive propositional connectives is, of course, motivated by our

later application to intuitionistic modal logic.)

The possible world semantics of modal logic will be the foundation for all the

work in this thesis. The idea behind it is that there are a number of different worlds

at which the same formula may express different propositions (i.e., classically, it

32
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may have different truth values). The proposition expressed by a formula involving

the usual logical connectives is determined locally in the usual fashion and is

independent of the status of other worlds. However, the proposition expressed by

a formula involving the modalities depends crucially on the status of other worlds.

At a world w, the formula ♦A expresses the proposition that A is true in some

world v deemed possible from the viewpoint of w. (Technically, the qualification

that v is possible according to w will be modelled by a binary relation, see below.)

Dually, the formula�A expresses the proposition (at w) that A is true in all worlds

v deemed possible by w. Thus the meaning of the modalities � and ♦ is given a

clear reading based on the primitive notion of relative truth, i.e. truth at a world.

We now give a technical account of the interpretation sketched above. A modal

model is a triple M = (W, R, V ) where W is a non-empty set (of ‘worlds’), R is

a binary relation on W (the ‘visibility’ relation) and V is a function from W to

℘(Props) (mapping each world to the set of propositional constants held to be

true at the world). We say that M is a finite model if W is finite. The satisfaction

relation, 
M, between W and the set of formulae is defined inductively on formulae

by (we use w, v, . . . to range over W ):

w 
 α iff α ∈ V (w)

w 6
 ⊥

w 
 A ∧ B iff w 
 A and w 
 B

w 
 A ∨ B iff w 
 A or w 
 B

w 
 A ⊃ B iff w 
 A implies w 
 B

w 
 �A iff for all v, wRv implies v 
 A

w 
 ♦A iff there exists v such that wRv and v 
 A

We say that A is valid in M (notation M |= A) if, for all w ∈ W , w 
M A.

Similarly, for a set of modal formulae, L, we write M |= L to mean that, for every

A ∈ L, M |= A.

Classical modal logic arises from interpreting the above definitions of modal

model, satisfaction and validity in the standard informal meta-theory of ordinary

classical mathematics. (Actually, only the so-called normal modal logics arise in

this way, see Chellas [13]. However, we take possible world semantics as funda-
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mental. Therefore we shall only be interested in normal modal logics.) Modal

models determine a natural ‘basic’ classical (normal) modal logic, whose theorems

are the formulae valid in every model. An axiomatization of this logic, known

as K, is given in Figure 3–1. The reason that axiom 0 is stated with respect to

substitution instances is just to emphasize that certain modal formulae (such as

�A ⊃ �A), although not in the strictly propositional fragment, should never-

theless still be counted as tautologies. As modus ponens is one of the inference

rules, it is sufficient to restrict axiom 0 to substitution instances of axioms in some

standard axiomatization of classical propositional logic. Equivalently, axiom 0 can

be replaced with any of the usual sets of axiom schemas for classical propositional

logic. Axiom 2 is just a definition of ♦ in terms of �. The other rule of inference,

(Nec), is known as necessitation. Formally, the soundness and completeness of K

is given by:

Theorem 3.1.1 The following are equivalent:

1. A is a theorem of K.

2. For all modal models M, M |= A.

For a proof see Chellas [13].

Often, however, one is interested in a restricted class of modal models, and,

correspondingly, in an enlarged class of modal theorems. The completeness the-

orem for K extends easily to a general completeness theorem. A normal modal

logic is any set of modal formulae that: contains the theorems of K, is closed under

(MP) and (Nec), and is closed under the substitution of formulae for propositional

constants. For any normal modal logic, L, we have that A is a theorem of L if and

only if, for all modal models M, M |= L implies M |= A. But this theorem is of

little interest as it does not identify any structure in the class of models considered.

More interesting forms of completeness are obtained by considering complete-

ness relative to classes of models determined according to properties of their vis-

ibility relations. A (modal) frame is a structure of the form (W, R) where W is a

nonempty set and R is a binary relation on W . Thus a frame is a modal model
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Axioms

0. Any substitution instance of a propositional tautology.

1. �(A ⊃ B) ⊃ (�A ⊃ �B).

2. ♦A ↔ ¬� ¬A.

Rules

(MP) From A ⊃ B and A deduce B.

(Nec) From A deduce �A.

Figure 3–1: The modal logic K.

Axiom schema Property

D ♦> seriality ∀x. ∃y. xRy

T �A ⊃ A reflexivity ∀x. xRx

B A ⊃ � ♦ A symmetry ∀xy. xRy ⊃ yRx

4 �A ⊃ �� A transitivity ∀xyz. xRy ∧ yRz ⊃ xRz

5 ♦A ⊃ �♦ A Euclideanness ∀xyz. xRy ∧ xRz ⊃ yRz

2 ♦ � A ⊃ �♦ A directedness ∀xyz. xRy ∧ xRz ⊃ ∃w. yRw ∧ zRw

Figure 3–2: Modal axioms and corresponding frame properties.
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less the valuation function V . For a frame, F , we say that A is valid in F if, for all

functions, V , from W to ℘(Props), we have that A is valid in the evident modal

model (F , V ). Then various natural questions arise concerning the relationships

between modal logics and classes of frames.

First, there are completeness questions. We say that a modal logic L is complete

relative to a class of frames if the theorems of L are exactly the formulae valid

in every frame in the class. The most basic completeness question asks of a

normal modal logic L whether there exists a class of frames relative to which

L is complete. As it turns out, not every normal modal logic is complete in

this sense. However, the counterexamples are rather contrived. Many interesting

variants of the completeness question are obtained by restricting the classes of

frames considered. For example, one might ask whether L is complete relative to

some first-order definable class of frames. For a survey of results in this area see

van Bentham [5].

Second, there are the problems of correspondence theory. This concerns the

relationship between properties of frames and modal formulae. One question in

this area is the modal characterizability of a class of frames. A modal formula is

said to characterize the class of frames in which it is valid. The characterizability

question asks of a class of frames whether it is characterized by any modal formula

(or set of modal formulae). The converse direction is also of interest. Given a

modal formula, what can we determine about the class of frames it characterizes?

For example, under what conditions is it first-order definable? See van Bentham

[6] for discussion of these and related questions.

The above questions are natural if one considers the modal logics to be of

principal interest, and their semantics to be of interest mainly in virtue of their

ability to model the logics. This is a standard perspective on modal logic. There

is, however, an alternative viewpoint, according to which one’s primary interest

is in a particular class of frames. Such a class of frames induces a unique normal

modal logic, namely the set of formulae validated by every frame in the class. But

one is interested in this logic only in virtue of its connection with the frames of

interest. This viewpoint is the natural one for applications of modal logic in which
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the class of frames is given by the application and one then seeks the matching

modal logic. In this thesis we shall mainly approach intuitionistic modal logic

from this viewpoint.

The kinds of question that arise from this viewpoint concern what can be de-

termined about the induced modal logic. Basic questions are: Can we axiomatize

it? Is it decidable? A more general programme is to attempt to give systematic

answers to such questions. For example, is it possible to give uniform answers

for all classes of frames specified in a certain way (e.g. by first-order formulae in

particular form)?

Throughout this thesis, we shall use, as examples, intuitionistic analogues of

classical modal logics which are particularly well-behaved. In Figure 3–2 we list

six modal axiom schemas together with (first-order) properties defining classes of

frames. We shall refer to the classical modal logic obtained by adding a subset

of the listed axiom schemas to K by KS1. . . Sn, where S1. . . Sn are the names of

the schemas added. The only exceptions are KT, KT4 and KT5 which are called

by their standard names, T, S4 and S5 respectively. (S5 is also axiomatized by

KTB4.) Any modal logic, KS1. . .Sn, is complete relative to the class of frames

satisfying the conjunction of the properties associated with S1. . .Sn in Figure 3–2.

(Further, the modal logic characterizes that class of frames.) Thus T, S4 and S5

are complete relative to the classes of frames in which R is respectively: reflexive,

a preorder and an equivalence relation. Again see Chellas [13] for proofs.

Each of the modal logics listed above has the finite model property: if A is

not a theorem then there exists a finite model (W, R, V ) such that M 6|= A. As

with IPL (recall the discussion on page 23), the finite model property enables the

non-theorems of the logic to be recursively enumerated. Thus, if the theorems

are also recursively enumerable (which, if we have an effective axiomatization, is

always the case) then theoremhood is decidable. So all the modal logics obtained

from Figure 3–2 are decidable. For proofs of the finite model property for these

logics (using the powerful ‘filtration’ technique) see Chellas [13].
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3.2 What is intuitionistic modal logic?

Classical modal logics (although often referred to as non classical logics) are clas-

sical in the sense that all are built on top of ordinary classical logic. Similarly,

intuitionistic modal logics are modal logics whose underlying logic is intuition-

istic. Although much work has been done in the field, there is as yet no consensus

on the correct viewpoint for considering intuitionistic modal logic. In particular,

there is no single semantic framework rivalling that of possible world semantics

for classical modal logic. Indeed, there is not even any general agreement on what

the intuitionistic analogue of the basic modal logic, K, is. As we shall see, several

different candidates have been proposed.

In Section 3.3 we shall review the many conflicting approaches to intuitionistic

modal logic that have appeared in the literature. First, in the present section, we

discuss fairly informally some features that might be expected of an intuitionistic

modal logic. The points raised in the discussion will serve as a basis for relating

the different logics below.

Classical (propositional) modal logic is classical in that the propositional frag-

ment is exactly classical propositional logic. In the same way, for an intuitionistic

modal logic to deserve the title, a sine qua non is that its propositional fragment

be just intuitionistic propositional logic. Thus we should expect of an intuitionistic

modal logic, IML, that:

Requirement 1 IML is conservative over IPL.

Conservativity over IPL is a requirement only on the non modal fragment of

IML. However, intuitionistic reasoning should be available for the whole language,

e.g. one expects to be able to apply modus ponens even when the formulae involved

contain embedded modal operators. Thus we should also expect:

Requirement 2 IML contains all substitution instances of theorems of IPL and

is closed under modus ponens.
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Of course the converse will not be expected to hold as A may well be a theorem

of IML for some modal reasons invisible to IPL.

This much is uncontroversial, but so far we have hardly constrained IML at all.

However, there are other important properties of intuitionistic logic that we might

expect to transfer to IML. For example, it is a general feature of intuitionistic logics

that the addition of the Law of the Excluded Middle gives rise to the corresponding

classical logics. So we might expect:

Requirement 3 The addition of the schema A ∨ ¬A to IML yields a standard

classical modal logic.

Another general feature of intuitionistic logics is the disjunction property:

Requirement 4 If A∨B is a theorem of IML then either A is a theorem of IML

or B is.

This ought to be expected to hold, as it is important to the constructive reading

of disjunction.

We have yet to consider any properties we should expect of the modalities.

Here one might again proceed by analogy with intuitionistic logic. For example,

just as ∧ and ∨ are independent connectives in intuitionistic propositional logic

(in that neither is definable in terms of the other connectives) and ∀ and ∃ are

independent quantifiers in intuitionistic first-order logic, one might expect the

two modalities to be independent in intuitionistic modal logic. We list this as a

requirement too.

Requirement 5 � and ♦ are independent in IML.

A different way of proceeding by analogy is to observe properties common to

classical modal logics for which there are no obvious reasons why they should fail

intuitionistically. For example, it seems reasonable to assume that an intuitionistic

modal logic ought to satisfy the necessitation rule. More generally, if A ⊃ B is

a theorem then perhaps �A ⊃ �B and ♦A ⊃ ♦B should also be theorems. In
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a similar vein, classically � distributes over finite conjunctions (i.e. �> ↔ >
and �(A ∧ B) ↔ (�A ∧ �B)), and ♦ distributes over finite disjunctions (i.e.

♦⊥ ↔ ⊥ and ♦(A ∨ B) ↔ (♦A ∨ ♦B)). Again, there is no obvious reason why

such principles should fail intuitionistically. We do not, however, list any of these

as formal requirements on IML. First, if we are to make a list of such requirements

then why choose these particular ones? Although the above selection is quite

natural, there could well be other equally natural requirements inadvertently left

out. For example, it is not clear that the list above captures fully any desired

relationship between� and ♦. Second, the only reason we have given for accepting

the principles is that there is no obvious reason for rejecting them. Perhaps,

however, a closer analysis would reveal some subtle reason for doing so (although

in fact it will not).

What is really lacking is any coherent framework within which the appropriate-

ness of the various principles considered above can be evaluated. What we would

like is an intended meaning for the modalities with respect to which the legitimacy

of various candidate modal principles can be evaluated. Moreover, the meaning

ascribed to the modalities should make sense intuitionistically. Further, IML, as

well as being sound, should be complete in the sense that it should support any

modal principle (intuitionistically) valid according to the meaning. We summarize

these desires in:

Requirement 6 There is an intuitionistically comprehensible explanation of the

meaning of the modalities, relative to which IML is sound and complete.

Note that this requirement is the first we have made which is not completely

formal. However, it is the most fundamental of all, and the other requirements

ought to be expected to follow from it.

Requirements 1–5 have all appeared before, either as formal requirements, or as

meta-theorems about intuitionistic modal logics. (References to the many works

in which some of the requirements are mentioned appear in the next section.)

However, they have never previously been collected into one comprehensive list.

We believe that Requirements 1–5 are natural, but we do not wish to place too
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much emphasis on their importance. Their use will be mainly to help compare

the different intuitionistic modal logics considered in the next section. In contrast,

we do wish to emphasize the importance of Requirement 6. This requirement has

been almost entirely ignored in previous work, the most notable exception being

Ewald [19], discussed in Section 3.4.

3.3 Previous approaches to intuitionistic modal

logic

In this section we review the large body of previous work on intuitionistic modal

logic. We shall use the points raised in the previous section to compare the mul-

titude of different approaches. We begin with a comprehensive but brief survey

of the field. We then analyse some of the more semantic based work in greater

detail, as the semantics will be of use to us later. Some of the other work will be

considered in more detail at appropriate points later in the thesis.

The first paper on intuitionistic modal logic was published by Fitch in 1948

[25]. He defined a first-order intuitionistic version of the modal logic T with the

Barcan formula. He gave the logic both a Hilbert-style axiomatization and a

Gentzen-style sequent calculus formulation. Fitch provided no justification for his

particular choice of axioms, his methodology being one of definition by analogy

with classical modal logic. From a modern viewpoint, the choice of axioms seems

rather arbitrary. Not only does ♦ not distribute over disjunction, but also Require-

ment 5 fails as the addition of the Law of the Excluded Middle does not enable

either �A ↔ ¬ ♦ ¬A or ♦A ↔ ¬� ¬A to be derived (see the later discussion of

Wijesekera’s system on page 48). Although pioneering, Fitch’s paper has not had

much influence on subsequent work.

The second occurrence of an intuitionistic modal logic was in Prior’s 1957 book

[67], where he defined an intuitionistic analogue of S5, which he called MIPQ. This

logic does satisfy Requirements 1–5 of the previous section, and we shall see later

that a good claim can be made that it also satisfies Requirement 6. MIPQ was the
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subject of two papers by Bull. In [9] (1965) he gave the logic an algebraic semantics

in terms of Heyting algebras with additional structure and claimed a proof of the

finite model property. A mistake in Bull’s proof was discovered and corrected both

by Fischer Servi [22] (1978) and independently by Ono [61, Theorem 4.8] (1977).

In his second paper [11] (1966), in which he calls the logic MIPC, Bull showed

the faithfulness of a translation of MIPQ into intuitionistic first-order logic using

Kripke’s semantics of the latter. This translation can be used to argue that MIPQ

is the correct intuitionistic analogue of classical S5. We shall discuss this further

in Section 3.4. The translation was also used in a 1988 paper of Ono and Suzuki,

[62], to establish correspondences between extensions of MIPQ and intermediate

predicate logics. A decision algorithm for MIPQ was given by Minc in a 1968

paper in Russian (for a reference see [73, ref. 21]).

A third paper of Bull [10] (1965), considered a different intuitionistic version of

S5 which takes a classical view of the modalities (both �A ↔ ¬ ♦ ¬A and ♦A ↔
¬� ¬A hold) but not of the other connectives. He also defined an intuitionistic

analogue of S4 in which only � is primitive. Algebraic semantics were given to

both logics and the finite model property proved.

Intuitionistic analogues of S4 and S5 were also considered by Prawitz [65,

Chapter VI] (1965). He gave natural deduction systems for the classical versions

of the logics and obtained the corresponding intuitionistic logics by replacing the

classical reductio ad absurdum rule with the standard intuitionistic false rule. (He

also considered ‘minimal’ versions of the logics, obtained by omitting the false

rule altogether.) Prawitz’ main result was a normalization theorem for the ♦-

free fragment. He gave no further analysis of the induced intuitionistic modal

logics. In a recent paper, [7] (1993), Bierman and de Paiva reformulated Prawitz’

system for S4 (without ♦) to give a simpler account of normalization. (They

also gave a categorical semantics to the proof theory.) A different approach to

natural deduction for intuitionistic modal logic (again with only the �modality) is

proposed by Benevides and Maibaum [4] (1992). A generalization of this approach

to the ♦ operator is considered in the recent paper of Masini [55](1993). We shall

discuss these approaches in more detail in Section 4.6.
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Ono [61] (1977) continued the tradition of considering intuitionistic analogues

of S4 and S5. He analysed several inequivalent variants of the two logics, especially

the ♦-free fragments. He gave these both algebraic semantics and Kripke-style

semantics, proving the finite model property in many cases. Some of these logics

were later analysed in more detail by Font [30] (1986) who classified their different

modalities, i.e. combinations of ¬ and � (the intuitionistic analogue of S4 has 31

inequivalent such combinations, a fact that also appears in Došen [15] (1985) and

Mihajlova [57] (1980)). In a later paper, Font and Verdú considered the abstract

algebraic properties of (again ♦-free) intuitionistic analogues of S4 and S5 [31]

(1989).

In the first of a series of papers, [21] (1977), Fischer Servi proposed a way of

determining the correct intuitionistic analogue of a classical modal logic. Motiv-

ated by Gödel’s translation of intuitionistic propositional logic into classical S4

(see e.g. Fitting [29, p. 518]) she suggested that an intuitionistic modal logic

should be determined by a similar translation into a classical ‘bimodal’ logic, a

logic with two � modalities: one inherited from the original modal logic, and the

other an S4 modality to model the intuitionistic connectives. She showed that the

intuitionistic analogue of S5 induced in this way is none other than Prior’s MIPQ.

In her next paper, [23] (1981), Fischer Servi gave both algebraic and possible world

semantics to the so-induced intuitionistic version of any classical modal logic with

such a semantics. In the third paper, [24] (1984), she gave axiomatizations of some

of the logics, using the possible world semantics to prove completeness. The same

semantic framework and similar axiomatizations were discovered independently

by Plotkin and Stirling [64] (1986) who also gave some results on the associated

intuitionistic correspondence theory.

A more philosophical approach was taken by Ewald in his 1978 thesis on in-

tuitionistic temporal logic [19]. He gave models for intuitionistic temporal logic

based on Kripke’s models of intuitionistic first-order logic and motivated through

an interpretation of Brouwer’s creative subject in which the epistemic ordering

(the partial order of the models) is separated from the temporal ordering. He gave

axiomatizations of the intuitionistic modal logics corresponding to various condi-
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tions on the temporal ordering and proved the appropriate completeness results

(see his article [20] (1986)). He also introduced a different form of semantics in or-

der to obtain the finite model property (and thereby prove decidability). However,

Ewald’s proof of the finite model property is incorrect (we shall discuss this later

in Chapter 8). Nevertheless, the ‘decidability’ models introduced by Ewald are

the same as the possible world models of Fischer Servi [23] and Plotkin and Stirl-

ing [64]. Thus Ewald, Fischer Servi and Plotkin and Stirling all independently

proposed the same semantics and gave complete axiomatizations of the corres-

ponding modal logics (Ewald in their tense logic variants). Recently, Williamson

[83] (1992) has used these intuitionistic modal logics as a basis for the development

of anti-realist intuitionistic epistemic logics.

However, their semantic framework is not the only one that that has been

considered. The notions of model proposed by Gabbay [33, §7] (1975), Ono [61]

(1977), Sotirov [73] (1984), Božić and Došen [8,15] (1984–5), Yokota [84,85,86]

(1985–6) and Wijesekera [82] (1990) all differ from each other as well as from those

of Ewald et al, although there are also many similarities. We shall discuss some

of the differences below. (Sotirov [73] also contains a useful survey of the Russian

literature.) It is interesting to observe that the semantics discussed in Ono and

Suzuki [62] (1988), although different in general, does, in the case of S5, coincide

(under a suitable transformation) with Fischer Servi’s models of intuitionistic S5.

In computer science, various applications of intuitionistic modal logics have

been described. In Stirling’s 1987 paper on modal logics for communicating sys-

tems [74], an intuitionistic modal logic was used to capture a bisimulation pre-

order on diverging processes (an idea attributed to Gordon Plotkin). A similar

application appears also in Hennessy and Plotkin [43] (1987). A domain-theoretic

application of intuitionistic modal logic is sketched by Plotkin and Stirling [64]

(1986). More recently, Nerode and Wijesekera proposed an intuitionistic version

of dynamic logic in order to build a logic on top of transition systems between

partial states [60] (1990). Pitts has proposed using constructive logic with certain

‘evaluation’ modalities to reason about functional programs with side-effects [63]
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(1991). Lastly, in hardware design, an application of an intuitionistic ♦ modality

to abstract from constraints has been suggested by Mendler [56] (1991).

In the remainder of this section we discuss some of the many possible world

semantics of intuitionistic modal logic in more detail. The basic idea behind all

of them is the same. Kripke’s possible worlds account of modal logic appeals

to structures of the form (W, R, V ) (our modal models of Section 3.1). Kripke’s

account of intuitionistic propositional logic uses models of the form (W, ≤, V ) (as

in Section 2.2). It is (mathematically) natural to build a semantics of intuitionistic

modal logic by combining the two Kripkean accounts. Thus one is led to consider

structures of the form (W, ≤, R, V ) in which W is partially ordered by ≤, R is a

binary relation on W , and V is a monotonic function from the partial order (W, ≤)

to (℘(Props), ⊆). Now a number of questions arise. How should one interpret the

modalities? Should one consider arbitrary such structures, or should additional

requirements be imposed (e.g. on the relationship between ≤ and R)? It is in

their answers to these questions that the various semantic accounts differ.

At least the interpretation of the non modal connectives is uncontroversial.

One expects the satisfaction clauses for these to be the usual ones (see page 22).

The interpretation of the modalities is more interesting. One could take also

the usual satisfaction clauses for the modalities in modal models (see page 33).

However, an essential feature of intuitionistic models is the monotonicity lemma

(Lemma 2.2.1). If the standard satisfaction clauses for the modalities are used

then the monotonicity lemma does not hold. There are two possible remedies.

One is to modify the satisfaction clauses. This might be a reasonable thing to do,

for one might wish to use the partial order to give a more intuitionistic reading of

the modalities. The other remedy is to impose conditions on models that ensure

that the monotonicity lemma does hold. The eventual models we shall settle on

will in fact adopt both these remedies.

We begin by considering the fragment with the single modality �. If the

satisfaction of �A is defined by:

w 
 �A iff for all v, wRv implies v 
 A (3.1)



Chapter 3. Intuitionistic modal logic 46

Axioms

0. All substitution instances of theorems of IPL.

1. �(A ⊃ B) ⊃ (�A ⊃ �B).

Rules

(MP) From A ⊃ B and A deduce B.

(Nec) From A deduce �A.

Figure 3–3: Intuitionistic K without ♦.

then there is no reason that w 
 �A and w ≤ w′ should imply that w′ 
 �A.

Božić and Došen [8,15] avoid the problem by requiring that models satisfy an extra

condition: if w ≤ w′ and w′Rv′ then there exists v such that wRv and v ≤ v′.

Diagrammatically, this condition is expressed by:

w′
R - v′

w

≤

. . . . . . . . . . .
R

- v

..........

≤

It is clear that in models satisfying the condition, the monotonicity property is

satisfied by formulae in the (♦-free) fragment. Different conditions relating R and

≤, for avoiding the same problem, are considered by Ono [61] and Sotirov [73].

However, it would instead be possible to build the monotonicity property into

the satisfaction clause for �A. If this clause were:

w 
 �A iff for all w′ ≥ w, for all v′, w′Rv′ implies v′ 
 A. (3.2)

then the monotonicity lemma would hold for the fragment in arbitrary structures

(with no conditions placed on R and ≤). Moreover, there is a clear analogy

between the above interpretation of � and the interpretation of universal quan-

tification in intuitionistic predicate models (see page 22). Thus, intuitively, the

above interpretation gives a plausible interpretation of an intuitionistic necessity

modality.
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Axioms

0. All substitution instances of theorems of IPL.

1. �(A ⊃ B) ⊃ (�A ⊃ �B).

2. �(A ⊃ B) ⊃ (♦A ⊃ ♦B).

3. ¬ ♦⊥.

Rules

(MP) From A ⊃ B and A deduce B.

(Nec) From A deduce �A.

Figure 3–4: Wijesekera’s system.

One possible way or sorting out the differences between the interpretations

would be to consider the induced intuitionistic modal logics and argue between

them on, e.g., the basis of intuitionistic plausibility. However, it turns out that

both semantics induce the same intuitionistic modal logic. The logic axiomatized

in Figure 3–3 is sound and complete with respect to both semantics. Only when

the ♦ connective is added do the differences in the semantics become apparent.

The logic of Figure 3–3 is uncontroversially the intuitionistic analogue of K in the

♦-free fragment.

Again with ♦ it is possible to build monotonicity into the definition of satis-

faction by:

w 
 ♦A iff for all w′ ≥ v, there exists v′ such that w′Rv′ and v′ 
 A. (3.3)

This clause is adopted by Wijesekera [82] who considers it alongside (3.2) for �.

However, with ♦ we can no longer justify the definition by appeal to Kripke’s in-

terpretation of the existential quantifier, as the existential quantifier is interpreted

locally (see page 22). In fact the intuitionistic modal logic induced by (3.2) and

(3.3) in arbitrary models has some rather strange properties.
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w3

..........
v3 {α}

.........

w2 � - v2 {α}

w1 v1 {α}

w0 � - v0 {α}

Figure 3–5: Countermodel to Requirement 3.

Wijesekera’s axiomatization of this logic [82, p. 281] is reproduced in Figure

3–4. (Actually, Wijesekera also included the axiom (�A ∧ ♦(A ⊃ B)) ⊃ ♦B,

which is easily shown to be derivable from the others.) Wijesekera’s motivation

for his definitions came from Constructive Concurrent Dynamic Logic in which the

modalities are defined over a transition system of programs between partial states

[60]. However, let us evaluate how the logic shapes up as an intuitionistic version

of modal logic according to the points raised in section 3.2. Requirements 1 and 2

are obviously satisfied and it is a straightforward semantic exercise to show that

Requirements 4 and 5 are too. However, � and ♦ are not only non-interdefinable,

they are hardly related at all. A good illustration of this is given by the following

example showing also how Requirement 3 fails. We define a model (illustrated in

Figure 3–5) by:

W = {wi | i ∈ N} ∪ {vi | i ∈ N}

≤ = {〈ui, uj〉 | u ∈ {v, w} and i ≤ j}

R = {〈u2i, u
′
2i〉 | u, u′ ∈ {v, w} and u 6= u′} ∪ {〈u2i+1, u2i+1〉 | u ∈ {v, w}}

V (wi) = ∅

V (vi) = {α}
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It is straightforward to show, by structural induction on A, that, for all i, j, we

have both that wi 
 A if and only if wj 
 A and that vi 
 A if and only if vj 
 A.

Therefore, wi 
 A ∨ ¬A and vi 
 A ∨ ¬A, for all i. However, it is easy to see

that wi 
 (¬�α) ∧ (¬�¬α) ∧ (¬♦ α) ∧ (¬♦¬α). So this sentence is consistent,

in Wijesekera’s logic, with the Law of the Excluded Middle. Hence, the Law of

the Excluded Middle is not sufficient to derive the usual classical interrelationship

between ♦ and �. (Wijesekera does not make this observation.) Another strange

feature of Wijesekera’s logic is that ♦ distributes over 0-ary disjunctions (i.e. ⊥ ↔

♦⊥ is a theorem) but not over binary ones (it is easy to find a countermodel to

the ♦(A ∨ B) ⊃ (♦A ∨ ♦B) direction).

A different definition of satisfaction for ♦A, which again builds in monotonicity,

is:

w 
 ♦A iff there exist w0, v0 such that w ≥ w0Rv0 and v0 
 A. (3.4)

This definition is due to Plotkin and Stirling who, in unpublished work, have axio-

matized the induced logic (again using (3.2) for � and considering arbitrary mod-

els). The logic does satisfy Requirements 1–5 and ♦ distributes over disjunction.

There is also a natural algebraic semantics using Kan corestrictions of monotone

functions between complete Heyting algebras to interpret the modalities (see also

Hennessy and Plotkin [43]). However, the axiomatization is rather complicated,

and it is not clear that Requirement 6 is addressed.

As mentioned above, if one is guided by the Kripkean interpretation of ex-

istential quantification then the natural satisfaction clause for ♦ is the standard

one:

w 
 ♦A iff there exists v such that wRv and v 
 A. (3.5)

However, as with (3.1) for �, the monotonicity property does not hold in general

with this definition. This time the condition we must place on models is: if

w′ ≥ wRv then there exists v′ such that w′Rv′ ≥ v. Note that, in the presence of

this condition, (3.5), (3.3) and (3.4) are all equivalent. However, it is (3.5) that

leads one to the discovery of the condition.
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Božić and Došen, [8, §7], axiomatize the �-free logic induced by the above

interpretation of ♦ in models satisfying the property. Then in [8, §11] they combine

their interpretations for � and ♦. However, the resulting intuitionistic logic fails

Requirements 4 and 5 as both ♦A ∨�¬A and ♦A ↔ ¬� ¬A are theorems.

We now come to the models introduced independently by Ewald [20] (as ‘decid-

ability models’), Fischer Servi [23] and Plotkin and Stirling [64]. Although these

models are similar to those considered above, we introduce them in some detail as

we shall make use of them in Chapters 6 and 8. We shall concentrate mainly on

technical aspects. Although there is some intuitive motivation behind the defini-

tion of these models, which will be briefly discussed, we do not wish to emphasize

it too strongly. The models will be of interest to us because they happen to model

intuitionistic modal logics which we shall induce by way of other considerations.

A birelation model, B, is a 4-tuple, (W, ≤, R, V ), where: W is a non-empty set

(of ‘worlds’) partially ordered by ≤; R is a binary relation on W ; V is a monotone

function from (W, ≤) to (℘(P ), ⊆); and the two ‘frame conditions’ below are

satisfied:

(F1) If w′ ≥ wRv then there exists v′ such that w′Rv′ ≥ v.

(F2) If wRv ≤ v′ then there exists w′ such that w ≤ w′Rv′.

Diagrammatically these two conditions are:

w
′ . . . . . . . . . .

R
- v′ w′ . . . . . . . . . .

R
- v′

(F1) (F2)

w

≤

R - v

..........

≤

w

≤

.......... R - v

≤

Note that there is no requirement that the v′ and w′ required by the conditions

are unique. A birelation model will be called universal if the required worlds are

indeed always unique. The satisfaction relation, w 
B A, between worlds, w, and

modal formulae, A, is defined by the usual inductive clauses for the intuitionistic

connectives (see page 22) and by the clauses below for the modalities.

w 
 �A iff for all w′ ≥ w, for all v′, w′Rv′ implies v′ 
 A
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w 
 ♦A iff there exists v such that wRv and v 
 A

Again we write B |= A to mean that, for all w ∈ W , w 
B A.

The definition of satisfaction in a birelational model follows the analogy with

the intuitionistic quantifiers by using (3.2) for � and (3.5) for ♦. Moreover, as

discussed above, (F1) ensures that the monotonicity lemma holds:

Lemma 3.3.1 (Monotonicity lemma) If w ≤ w′ and w 
 A then w′ 
 A.

Technically, (F2) means that formulae such as ¬ ♦ A ⊃ �¬A hold (see Plotkin

and Stirling [64]).

However, a more conceptual justification of the two frame conditions is possible.

Following the Kripkean paradigm for intuitionistic logic, atomic facts accumulate

as we ascend the partial order. Now, it might reasonably be held that the fact

that a world w sees another world v is a reasonable sort of atomic fact that should

persist in this way. Thus any world w′ ≥ w should also, in effect, see v; but it

is reasonable to expect that we might have accumulated more facts about v too

which may therefore have ‘evolved’ into some world v′ ≥ v. Formalizing these

considerations, we arrive at (F1). A dual argument based on v being seen by a

world w justifies (F2). One might well dispute that the passive property of being

seen by another world is the sort of fact which should persist. Thus (F2) seems to

have less justification than (F1). (However, both conditions do have equal status

in the context of Ewald’s ‘intuitionistic tense logics’ which have both ‘forwards’

and ‘backwards’ modalities [20].) Nevertheless, if one does accept both arguments

then (F1) and (F2) should be seen as fundamental and not as artificial conditions

imposed for purely technical reasons.

In Figure 3–6 we give Plotkin and Stirling’s axiomatization of the modal for-

mulae valid in all birelation models (see [64]). A similar axiomatization is given

by Ewald for his tense logic version [20]. Fischer Servi, [24], gives a slightly differ-

ent axiomatization, emphasizing more the duality between � and ♦. We call the

resulting logic IK as in [24,64]. In Section 3.4 we shall argue that IK is the true

intuitionistic analogue of K.
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Axioms

0. All substitution instances of theorems of IPL.

1. �(A ⊃ B) ⊃ (�A ⊃ �B).

2. �(A ⊃ B) ⊃ (♦A ⊃ ♦B).

3. ¬ ♦⊥.

4. ♦(A ∨ B) ⊃ (♦A ∨ ♦B).

5. (♦A ⊃ �B) ⊃ �(A ⊃ B).

Rules

(MP) From A ⊃ B and A deduce B.

(Nec) From A deduce �A.

Figure 3–6: Axiomatization of IK.

The soundness of IK relative to birelation models is straightforward. Complete-

ness can be established by a canonical model construction. We give an outline of

the argument, which we shall need to refer to in Chapter 8. For a fully detailed

proof see Fischer Servi [24]. We use X, Y, . . . to range over sets of modal formulae.

We write X ` Y to mean that there are finite X ′ ⊆ X and Y ′ ⊆ Y such that

(
∧

X ′) ⊃ (
∨

Y ′) is a theorem of IK. The set X is said to be prime if it satisfies

the following three conditions: X ` A implies A ∈ X (it is deductively closed);

X 6` ⊥ (it is consistent); and A ∨ B ∈ X implies either A ∈ X or B ∈ X (it

satisfies the disjunction property). The canonical model is the birelation model

B = (W, ≤, R, V ) where:

W = {X | X is prime},

X ≤ X ′ iff X ⊆ X ′,

X R Y iff {♦A | A ∈ Y } ⊆ X and {B | �B ∈ X} ⊆ Y ,

V (X) = {α | α ∈ X}.
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However, it takes some work to show establish that B satisfies the frame conditions.

Crucial to this is the following lemma:

Lemma 3.3.2 (Prime lemma) If X 6` Y then there exists a prime X ′ ⊇ X

such that X ′ 6` Y .

This is proved by a standard Lindenbaum construction. We now give the argument

that B satisfies (F2). Suppose that X R Y and Y ≤ Y ′. We must find a world X ′

such that X ≤ X ′ and X ′R Y . First define:

X ′0 = X ∪ {♦A | A ∈ Y ′}.

We claim that X ′0 6` {�B | B 6∈ Y ′}. For otherwise we would have:

X, (♦A1), . . . , (♦Am) ` (�B1), . . . , (�Bn),

where Ai ∈ Y ′ and Bj 6∈ Y ′. Whence:

X,♦(A1 ∧ . . . ∧ Am) ` �(B1 ∨ . . . ∨ Bn)

so, defining A = A1 ∧ . . .∧Am and B = B1 ∨ . . .∨Bn, we have that X ` �(A ⊃ B)

by axiom 5 of IK. But then, as X is prime, �(A ⊃ B) ∈ X so, because X R Y ,

we have that A ⊃ B is in Y and hence in Y ′. Now A1, . . . , Am ∈ Y ′ and Y ′ is

prime. So, by deductive closure, B ∈ Y ′ whence, by the disjunction property,

Bj ∈ Y ′ for some j. This is a contradiction, so we have justified the claim that

X ′0 6` {�B | B 6∈ Y ′}. But, by the prime lemma, there exists a prime X ′ ⊇ X ′0

such that X ′ 6` {�B | B 6∈ Y ′}. It is easy to see that X ′ is the world required by

(F2). The other frame condition, (F1), is established similarly. The fundamental

property of B is given by:

Lemma 3.3.3 (Canonical model lemma) X 
B A if and only if A ∈ X,

which is proved by induction on the structure of A, using the prime lemma in the

implication and necessity cases. We can now prove completeness by showing the

contrapositive. If A is not a theorem of IK then, by the prime lemma, there is a

prime X such that X 6` A and hence A 6∈ X. So, by the canonical model lemma,

X 6
B A. Thus indeed B 6|= A.
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We now show that IK satisfies Requirements 1–5. We hope that the remainder

of the thesis will convince the reader that Requirement 6 is also satisfied.

Requirement 1 is easily proved using a simple translation from modal formulae

to propositional formulae defined by just omitting the modalities from the modal

formula. It is clear from the axiomatization of IK that the translation maps the-

orems of IK to theorems of IPL. Conservativity follows because the translation is

the identity on propositional formulae. (Alternatively, it can be proved semantic-

ally by extending arbitrary IPL-models to birelation models). Requirement 2 is

immediate from the axiomatization of IK. For Requirement 3, as every theorem

of IK is a theorem of K, it is sufficient to derive ♦A ↔ ¬ � ¬A in IK together

with the Law of the Excluded Middle. This is routine. The disjunction property,

Requirement 4, is easily proved by the standard semantic method (see e.g. van

Dalen [14, pp. 266-267]). It also follows from results we prove in Chapters 5 and 6.

Lastly, we show Requirement 5, the independence of � and ♦. Although simple,

this property is not proved in the literature on IK. First, we show that ♦α is not

equivalent to any modal formula in which ♦ does not occur, thus ♦ is not definable

in terms of � and the other connectives. Consider the birelation model:

w′
R- v {α}

w

≤

Then w′ 
 ♦α but w 6
 ♦α. However, if A is any formula not containing ♦ then it

is easily proved, by structural induction on A, that w 
 A if and only if w′ 
 A.

So indeed A and ♦α are inequivalent. To see that � is not definable in terms of

♦ and the other connectives, consider the two birelation models:
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v′ {α} v′ {α}

�
�
�
�
�

R
�

�
�
�
�
�

R
�

w w
R - v

≤

B1 B2

First note that v′ 
B1 A if and only if v′ 
B2 A, for any modal formula A. Using

this, one proves by structural induction on any �-free formula A, that w 
B1 A

if and only if w 
B2 A. (The only interesting case is that w 
B2 ♦A implies

w 
B1 ♦A, which follows from the monotonicity lemma and the fact noted above.)

However, w 
B1 �α but w 6
B2 �α. So indeed neither � nor ♦ is definable in

terms of the other.

Just as with classical modal logic, there are completeness and correspondence

results relating extensions of IK with classes of birelation models. We present first

some completeness results analogous to those presented in Section 3.1 for classical

modal logics. In Figure 3–7 we give a list of axiom schemas named identically to

those in Figure 3–2 on page 35 (we omit schema 2 for technical reasons, see Sec-

tion 6.3). Classically the new axiom schemas are equivalent to their counterparts

in Figure 3–2. However, in intuitionistic modal logic the schema �A ⊃ A, for

example, is not equivalent to the schema A ⊃ ♦A, and the conjunction is needed

for the completeness results below. We write IKS1. . .Sn for the logic obtained by

extending IK with the schemas S1. . . Sn from Figure 3–7. As in the classical case,

we write IT, IS4 and IS5 for IKT, IKT4 and IKT5 respectively. (Again IS5 is

also axiomatized by IKTB4.) An important fact (see Fischer Servi [24, p. 193])

is that IS5 is an alternative axiomatization of Prior’s MIPQ [67,9,11]. Proofs that

each IKS1. . .Sn satisfies Requirements 1–5 closely follow those for IK (using the

completeness result below).

We say that (W, ≤, R, V ) is a birelation model of IKS1. . . Sn if R satisfies the

properties associated with S1. . . Sn in Figure 3–2. Thus the birelation models for
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D ♦>
T (�A ⊃ A) ∧ (A ⊃ ♦A)

B (♦� A ⊃ A) ∧ (A ⊃ � ♦ A)

4 (�A ⊃ ��A) ∧ (♦ ♦A ⊃ ♦A)

5 (♦� A ⊃ �A) ∧ (♦A ⊃ � ♦ A)

Figure 3–7: Intuitionistic modal axioms.

IT, IS4 and IS5 are those in which R is respectively reflexive, a preorder and an

equivalence relation.

Theorem 3.3.4 The following are equivalent:

1. A is a theorem of IKS1. . .Sn.

2. A is valid in all birelation models of IKS1. . .Sn.

In each case the soundness direction is routine and the completeness direction is

proved by showing that the canonical model, defined analogously to that used in

the proof of the completeness of IK, is indeed a birelation model of IKS1. . . Sn.

The cases IK, IT, IKTB, IS4 and IS5 of Theorem 3.3.4 appear explicitly in Fischer

Servi [24]. The other cases are straightforward.

It turns out that the above completeness results are not correspondence results.

A birelation frame is a triple (W, ≤, R). Apart from in the trivial case of IK, none of

the intuitionistic modal logics IKS1. . .Sn characterizes the class of modal frames

in which R satisfies the properties associated with S1. . . Sn in Figure 3–2. For

example, the schema for T in Figure 3–7 is valid in the frame:

w′

w
?

6

where w ≤ w′, and in this frame R is not reflexive. Appropriate characterization

results, covering all the logics above, are given by Plotkin and Stirling [64, Theorem
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2.2]. They involve classes of frames determined by properties relating R and ≤.

The characterization results enable schemas such as �A ⊃ A and A ⊃ ♦A to be

distinguished. However, we shall never need such distinctions, so our classes of

IKS1. . . Sn models will suffice.

The finite model property for MIPQ relative to an algebraic semantics (see

Fischer Servi [22] and Ono [61, Theorem 4.8]) implies the decidability of IS5.

Further, by a prime filter construction, a finite birelation model of IS5 can be con-

structed from a finite algebraic model, Ono [61, Theorem 3.5] (although Ono uses

a different, but equivalent, formulation of birelation models of IS5). Therefore IS5

has the finite model property relative to its birelation models. Ewald [20] claimed

the finite model property (and hence decidability) for tense logics subsuming IK

and any combination of D, T and 4. However, his proof has a serious flaw, which

we shall discuss in detail in Chapter 8. Ewald also claimed that decidability could

be established using Rabin’s monadic second-order theory, S2S, citing Rabin [68,

p. 621] as substantiation. However, we believe that the relation between ≤ and

R presents a serious obstacle to applying the techniques of Rabin (an obstacle

which remains if one uses Ewald’s ‘intuitionistic tense structures’ [20] instead of

birelation models). And, although we are acquainted with the usual applications

of monadic second-order theories to prove the decidability of non classical logics

(as in Gabbay [32]), we have been unable to adapt such techniques to IK and its

extensions. Nevertheless, using different techniques, we shall prove that IK plus

any combination of D, T and B is decidable (Theorem 7.3.1) and has the finite

model property (Theorem 8.2.1). Decidability and the finite model property for

the other logics (including IS4) remain open questions.
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3.4 Our approach to intuitionistic modal logic

We have yet to consider Requirement 6. In this section we present our approach

to intuitionistic modal logic, which addresses this requirement directly. We accept

the standard possible world account of modality, but we understand it from an

intuitionistic point of view. In many cases, the intuitionistic modal logics induced

by our approach will be those in the scope of Theorem 3.3.4. Thus our approach

provides a new justification to some well known intuitionistic modal logics.

As discussed in Chapter 1, the possible world account of modality gives a simple

interpretation of modal logic which is well motivated both philosophically and

technically. Thus we accept this framework, but we make the following important

observation: there is nothing in the interpretation itself that induces classical

modal logic. Classical modal logic arises only if we interpret the definitions in a

classical meta-theory. However, the definition of modal model and satisfaction on

page 33 could instead be understood from an intuitionistic point of view, in which

case one should not expect principles such as the Law of the Excluded Middle to

follow. So we propose that intuitionistic modal logic should be determined by the

usual possible world semantics viewed from an intuitionistic meta-theory.

To take the proposal most literally, one would like to induce the intuitionistic

analogue of K (say) via an exact analogue of Theorem 3.1.1. Let us refer to the

desired intuitionistic analogue of K by IK. (For the moment it is irrelevant what

IK actually is, however we shall be arguing below that it is indeed the logic IK of

Figure 3–6.) We would like to prove equivalent:

1. A is a theorem of IK.

2. For all modal models M, M |= A.

using the intuitionistic meta-theory. Soundness (1 =⇒ 2) will not be a prob-

lem, so long as IK contains only intuitionistically acceptable principles under the
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interpretation (which IK of Figure 3–6 does). Completeness, however, is problem-

atic. In a classical meta-theory, the logic for which completeness holds is classical

K. Therefore, in order to obtain an intuitionistic completeness theorem for IK

it would, at least, be necessary to allow some classically invalid principles into

the meta-theory. However, even once classically invalid principles are allowed, a

further problem remains. In general, intuitionistic proofs of completeness require

Markov’s principle which is intuitionistically unacceptable (see the discussion on

internal completeness in Dummett [16, pp. 249 ff.]). But a more fundamental

objection to the use of classically invalid principles is that such principles are not

even accepted by all intuitionists. As a general aim, we should like any account

of intuitionistic modal logic to be as philosophically neutral as possible. It must

make sense intuitionistically, but it should also make sense classically. We there-

fore provide two alternative interpretations of our proposal, both of which can

be understood equally well from either a classical or intuitionistic viewpoint. The

first we discuss here uses intuitionistic first-order logic as a formalized meta-theory.

The second defines intuitionistic modal logic by way of a natural deduction system.

For the first approach, we translate a modal sentence into a first-order formula

expressing the possible world conditions for the modal sentence to be satisfied.

With classical modal logic one has that a modal formula is a theorem if and only

if its translation is a theorem of classical first-order logic. We suggest therefore

that intuitionistic modal logic should be similarly determined by provability, under

the same translation, in intuitionistic first-order logic.

The translation is into the standard first-order language, Lm, of modal models.

This has one binary relation symbol, R, and a unary predicate symbol α for each

α ∈ P . There are no function symbols or constants. Let x be a variable and A a

modal formula. A first-order formula, Ax, with (at most) one free variable, x, is

defined by:

αx = α(x)

⊥x = ⊥

(A ∧ B)x = Ax ∧ Bx
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(A ∨ B)x = Ax ∨ Bx

(A ⊃ B)x = Ax ⊃ Bx

(�A)x = ∀x′. xRx′ ⊃ Ax′

(♦A)x = ∃x′. xRx′ ∧ Ax′

Thus, thinking of variables as ranging over possible worlds and R as representing

the visibility relation, Ax codes up the possible world conditions stating that A is

satisfied at x. We suggest then that IK should be determined by:

A is a theorem of IK iff `IL ∀x. Ax. (3.6)

We now have a precise definition of the desired intuitionistic modal logic which,

moreover, is independent of the informal meta-theory from which it is viewed. The

intuitionistic element is confined to a formal theory (intuitionistic first-order logic)

about which we may reason either intuitionistically or classically. But what is the

relation to the original proposal? In a classical meta-theory we have that ∀x. Ax

is a theorem of classical first-order logic if and only if, for all modal models M,

M |= A, by the soundness and completeness of classical first-order logic (as modal

models are in one-to-one correspondence with Lm-structures). So classically the

translational approach is just a formalization of the semantic approach. In an

intuitionistic meta-theory, although we cannot hope for the similar completeness

result (again see Dummett’s discussion on internal completeness [16, pp. 249

ff.]), it seems reasonable to accept `IL ∀x. Ax as a fruitful alternative to semantic

validity, for one might well accept, at least informally, that intuitionistic first-order

logic does formalize all intuitionistically valid elementary reasoning.

As hinted above, the logic IK of Figure 3–6 does indeed satisfy the equivalence

of (3.6). We call the left-to-right implication meta-logical soundness, and the right-

to-left implication meta-logical completeness. The correspondence was first proved

by Colin Stirling in unpublished work. Meta-logical soundness is easily proved by

induction on derivations in IK. Stirling proved the interesting completeness direc-

tion using a complicated method of transforming any birelation model invalidating

A into an intuitionistic predicate model invalidating ∀x. Ax. His proof used clas-
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sical reasoning and relied on the completeness theorem for IK relative to birelation

models.

Other modal logics can be handled in a similar fashion, so long as one takes

the point of view that a modal logic should be determined by a class of frames

(as motivated on page 36). The first-order language, Lf , of modal frames is the

sublanguage of Lm with just the single predicate R. Many conditions on the

visibility relation (e.g. all those in Figure 3–2 on page 35) can be expressed in Lf .

Given a set of sentences T in Lf , we determine the intuitionistic modal logic of

T -frames as that whose set of theorems is:

{A | T `IL ∀x. Ax}. (3.7)

We propose that the induced intuitionistic modal logic is a natural analogue of

the classical modal logic complete relative to the class of frames satisfying the

conditions in T . (The intuitionistic modal logic is not determined by the classical

modal logic itself, but by the theory expressing the class of frames we are interested

in. Some subtleties are discussed below.)

This natural way of defining intuitionistic modal logics appears to be novel.

The closest work is Bull’s translation of MIPQ into the first-order language ob-

tained by removing R from Lm (the modalities being translated as direct quan-

tifiers rather than relativized ones) [11]. From Bull’s results, it is easy to derive

that MIPQ is the intuitionistic modal logic obtained by (3.7) when T is the axiom

stating that R is an equivalence relation. Thus, by the remarks on page 55, IS5

satisfies meta-logical completeness. It will follow from the results of Chapters 5

and 6 that all the intuitionistic modal logics IKS1. . . Sn of Theorem 3.3.4 satisfy

meta-logical completeness. This provides justification that these logics do satisfy

Requirement 6.

As a way of determining the intuitionistic analogue of the classical modal logic

of T -frames, the present proposal still has a number of defects. One problem is

that many interesting classical modal logics arise through conditions on R that are

not first-order definable (e.g., the modal logic of provability used by Solovay [72]).

A possible way of avoiding this problem would be to translate into intuitionistic
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higher-order logic rather than first-order logic. However, it is not clear that the

translational approach is appropriate for higher-order conditions. For, in contrast

to the first-order case, it is not so clear what the intuitionistically valid formulae

of higher-order logic are. No formal system would be appropriate, as any formal

system would run into the same incompleteness phenomena that occur with formal

systems of classical higher-order logic. With classical logic, however, there is

a perfectly adequate semantic notion of validity. I do not know of a generally

accepted notion of intuitionistic validity for higher-order formulae. A different

approach to dealing with higher-order conditions on R will be mentioned in Section

5.4, but from now on we shall be mainly concerned with first-order conditions.

A second feature, that one may consider a defect, is that the proposal does

not determine a unique intuitionistic modal analogue to the classical modal lo-

gic of T -frames. For, in general, there will be many classically equivalent but

intuitionistically inequivalent ways of formulating T , which may induce inequi-

valent intuitionistic modal logics. For example, in classical logic, reflexivity is

expressed by both ∀x. xRx and ∀x. ¬¬xRx, which are intuitionistically inequi-

valent. However, the two sentences induce different intuitionistic modal logics as

�A ⊃ A is valid according to the former but not the latter. In this case ∀x. xRx

is clearly the correct statement of reflexivity. Similarly, one usually expects most

conditions to have just one ‘correct’ intuitionistic formulation (cf. the last para-

graph of Ch. 1, §3 in Troelstra and van Dalen [79, p. 16]). So in practice the

choice amongst inequivalent intuitionistic analogues will be uncontroversial. But,

in any case, these problems in determining a single intuitionistic analogue point

out the potential diversity of intuitionistic modal logics. Although it is a common

situation to have several intuitionistically inequivalent versions of a single classical

notion, we shall be mainly concerned with the single most natural analogue of each

classical modal logic. In Section 5.4 we shall suggest a semantic way of defining

a unique intuitionistic counterpart to the classical modal logic determined by a

given class of frames.

Perhaps the greatest defect of the present proposal is that it is subservient

to the acceptance of intuitionistic first-order logic. One would prefer an a pri-
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ori definition of intuitionistic modal logic in which the intended possible world

interpretation of the modalities is built in. It should be possible to understand in-

tuitionistic modal logic in its own right, not just as a fragment of an intuitionistic

first-order theory. With the standard intuitionistic connectives and quantifiers,

we argued in Section 2.1 that their meanings are given by their natural deduction

introduction and elimination rules, moderated by the inversion principle. So, to

give an a priori interpretation of the modalities, we shall give them introduction

and elimination rules within the context of a natural deduction system for intu-

itionistic modal logic. It will turn out that the modal logics induced by the natural

deduction system are in exact accord with those determined by the translational

approach described above.

The two approaches described above and their equivalence will occupy Chapters

4 and 5. We believe that both approaches meet Requirement 6. Their subsequent

equivalence gives the induced intuitionistic modal logics a very strong justification.

We end this chapter with a short discussion on a couple of related approaches.

The approach adopted by Ewald in his thesis also addresses Requirement 6. He

argued for an intuitionistic philosophy of tense based on Brouwer’s creative subject

(see Dummett [16, pp. 335 ff.]). Notoriously, the creative subject introduces a

temporal aspect to meaning, the temporal order in which facts are accumulated

(theorems are proved). Ewald argued that this order is, in fact, an epistemic one

and should be kept separate from the truly temporal order of temporal logic. He

used these considerations to motivate his ‘intuitionistic tense structures’ (see [20])

in which his intuitionistic tense logics were interpreted. However, his intuitionistic

tense structures are just IL-models. These give an approximation to a creative

subject interpretation of intuitionistic logic, but, as we commented in Section 2.2,

their interpretation of intuitionistic logic is valid only from a classical viewpoint.

Thus, despite his intuitionistic motivation, Ewald’s technical development does

not fulfil Requirement 6. This said, we shall see in Chapter 5 how close Ewald’s

interpretation is to our meta-theoretic translation.

One other related approach is that of Fischer Servi [21] who also proposed a way

of determining the intuitionistic analogue of a classical modal logic. She determ-



Chapter 3. Intuitionistic modal logic 64

ined the intuitionistic modal logic by a translation into a classical bimodal logic

based on the original classical modal logic. This approach is far from providing

an intuitionistic explanation of the modalities, as it presupposes classical modal

logic. Thus Requirement 6 is not addressed. However, it turns out that many of

the intuitionistic modal logics generated by Fischer Servi’s translation agree with

ones determined by our proposal. We shall discuss this in Section 6.4.



Chapter 4

Natural deduction for
intuitionistic modal logics

In this chapter we present natural deduction systems, for intuitionistic modal

logics, in which the inference rules embody the possible world interpretation of the

modalities. In Section 4.1 we motivate the definition of the systems. The basic

natural deduction system, in which no properties are assumed of the visibility

relation, is defined in Section 4.2. Then in Section 4.3 we give additional rules for

imposing conditions on the visibility relation. The induced consequence relation

is defined in Section 4.4, and is shown to be sound relative to standard modal

models in Section 4.5.

4.1 Motivation

Our aim is to provide a natural deduction system for intuitionistic modal logic in

which the standard possible world meanings of the modalities can be read off from

their inference rules. We want, therefore, to give introduction and elimination

rules for � and ♦ which capture their possible world interpretations.

In the possible world semantics of modal logic, the primitive notion is relative

truth. In order to directly build the possible world interpretation of the modalities

into the proof system we therefore base the proof system on judgements asserting

65
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relative truth. The basic judgement of our natural deduction system is of the

form x : A where x is some variable that, intuitively, denotes a world in a modal

model and the assertion is to be read as: ‘A holds at x’. (There is a long history

of such proof systems for modal logics, which will be discussed in Section 4.6.)

One might object that we are importing too much semantics into the syntax.

However, if we are to have a proof system that directly ascribes the usual meaning

to the modalities, then there is no choice other than to found that proof system

on the same primitive concept as the semantics. We offer two, more pragmatic,

justifications. The first is that in informal modal reasoning it is very natural

to make such a relativization of sentences to worlds/contexts/situations (as will

be demonstrated by the example derivations in this thesis). The second is that

technically the approach works. We obtain a natural deduction system with all

the desirable meta-theoretical properties (as will be shown in Chapter 7).

The introduction rule for � must express that if A holds at every world y

visible from x then �A holds at x. That is, if, on the assumption that y is an

arbitrary world visible from x, we can show that A holds at y then we can conclude

that �A holds at x. To formalize this we require a second judgement form, xRy,

asserting that a world y is visible from a world x. Then the rule is:

[xRy]....
y :A

x :�A

where the variable y must represent an arbitrary world so it must be different from

x and must not appear in assumptions other than xRy. Note that the assumption

xRy is discharged in the standard natural deduction fashion, for the conclusion

that �A holds at x is justified whether or not x actually does see any world y.

The associated elimination rule is obvious:

x :�A xRy
y :A

That this rule is legitimate with respect to the � introduction rule, in the sense

that the inversion principle applies, will be shown in Chapter 7.
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A simple derivation using the above rules is:

x :�(A ∧ B) [xRy]1

y :A ∧ B
y :A

x :�A
1

(4.1)

From this derivation we can conclude that if �(A ∧ B) holds at any world x then

�A also holds at x. Therefore, the rôle of the world y in the derivation is merely to

act as a temporary, arbitrary world whose use enables the effects of the assumption

that �(A ∧ B) holds at x to be determined.

The introduction rule for ♦ must express that if A holds at some world y visible

from x then ♦A holds at x. The rule for this is simply:

y :A xRy

x :♦A

The associated elimination rule is more complicated. Suppose that we can deduce

that B holds at some world z on the assumption that A holds at an arbitrary y

visible from x. Then if ♦A holds at x we can conclude that indeed B does hold

at z. Formally then the rule is:

x :♦A

[y :A] [xRy]....
z :B

z :B (♦E)

where again, as the variable y is to represent an arbitrary world, it must be different

from x and z and must not appear in any assumptions other than xRy and y :A.

Once more the inversion principle holds (again see Chapter 7).

A very simple derivation combining � and ♦ is:

x :�A xRy
y :A xRy

x :♦A
(4.2)

From this derivation we can conclude that if �A holds at any world x that sees

another world y then ♦A holds at x. Note that the conclusion is invalid without

the assumption that there is a world y seen by x. Therefore assumptions of the

form xRy must be taken as an integral part of logical consequence.



Chapter 4. Natural deduction for intuitionistic modal logics 68

The rules given above allow the visibility relation to be an arbitrary rela-

tion. Often, one is interested only in visibility relations satisfying certain specified

properties. Such assumptions on the visibility relation will in general mean that

additional modal consequences hold. For example, if we assume that the visibility

relation is serial (i.e. for every world x, there exists a world y visible from x, see

Figure 3–2 on page 35) then we should be able to derive x :♦A from x :�A without

making any additional assumptions, as the extra world demanded by (4.2) is now

guaranteed to exist.

One benefit of using a proof system based on relative truth is that (at least

in simple cases) it is rather easy to build such conditions on the visibility relation

into the system. One just adds appropriate rules manipulating the relational as-

sumptions. The rules for the logical connectives (including the modalities) remain

unaltered. For example, the rule expressing seriality is:

[xRy]....
z :A
z :A

with the restriction that y must be different from both x and z and may not appear

in any open assumption other than xRy. Intuitively, the rule says that if A holds

at z on the assumption that there is an arbitrary world y seen by x, then A holds

at z without that assumption. The conclusion is clearly justified by the seriality

of R. So, for example, the derivation of (4.2) can now be extended to:

x :�A [xRy]1

y :A [xRy]1

x :♦A
x :♦A

1
(4.3)

yielding the conclusion discussed above.

It is possible to represent many other conditions on the visibility relation by

similar rules on relational assumptions. Indeed, for any conditions on the visibil-

ity relation expressed by a geometric theory in the first-order language of modal

frames, we can adapt the associated natural deduction rules introduced in Sec-

tion 2.3
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x :⊥
y :A (⊥E)

x :A x :B
x :A ∧ B

(∧I) x :A ∧ B
x :A (∧E1) x :A ∧ B

x :B (∧E2)

x :A
x :A ∨ B

(∨I1) x :B
x :A ∨ B

(∨I2)
x :A ∨ B

[x :A]....
y :C

[x :B]....
y :C

y :C (∨E)

[x :A]....
x :B

x :A ⊃ B
(⊃I) x :A ⊃ B x :A

x :B (⊃E)

[xRy]....
y :A

x :�A
(�I)∗

x :�A xRy
y :A (�E)

y :A xRy

x :♦A (♦I) x :♦A

[y :A] [xRy]....
z :B

z :B (♦E)†

∗Restriction on (�I): y must be different from x and must not occur in any open

assumptions other than the distinguished occurrences of xRy.

†Restriction on (♦E): y must be different from both x and z and must not occur

in any open assumptions upon which z : B depends other than the distinguished

occurrences of y :A and xRy.

Figure 4–1: The basic modal natural deduction system, N��.
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4.2 The basic modal natural deduction system

In this section we give a full description of the basic natural deduction for intuition-

istic modal logic, in which no properties are assumed of the visibility relation. We

shall proceed quite rapidly through the definitions, most of which are analogous

to ones given in Section 2.1.

Assume given a countably infinite set of variables over which x, y, z . . . range.

The rules of the natural deduction system manipulate two kinds of judgement: a

main judgement form between variables and formulae written x :A, and a subsidi-

ary judgement form between variables and variables written xRy. We call x :A a

prefixed formula where x is the prefix (or variable) and A is the formula. We call

xRy a relational assumption (these judgements will only ever appear in proofs as

assumptions).

The rules for the basic modal natural deduction system, N��, are given in

Figure 4–1. Again we define the major premise of each elimination rule as that

containing the connective or modality which is eliminated. The other premises are

called the minor premises.

Derivations are defined as on page 12, except that we insist that the conclusion

of a derivation be a prefixed formula. The only case excluded is that of the trivial

tree consisting of a single relational assumption. (The idea behind this restriction

is that relational assumptions are just tools to help us establish that that a formula

holds at a world.) This time assumptions are discharged by applications of the of

the (∨E), (⊃I), (�I) and (♦E) rules.

We use Π, Π′, . . . to range over derivations in N��. Again, when we wish to note

the conclusion of Π, we write Π
x :A and we write x :A

Π or
xRy
Π to distinguish

a set of occurrences of open assumptions in Π.

Some example derivations, using all of the modal rules, are given in Figure 4–2.

These show how the axioms of IK are derivable in the natural deduction system.
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1. �(A ⊃ B) ⊃ (�A ⊃ �B).

[x :�(A ⊃ B)]3 [xRy]1

y :A ⊃ B

[x :�A]2 [xRy]1

y :A
y :B

x :�B
1

x :�A ⊃ �B
2

x :�(A ⊃ B) ⊃ (�A ⊃ �B)
3

2. �(A ⊃ B) ⊃ (♦A ⊃ ♦B).

[x :♦A]2

[x :�(A ⊃ B)]3 [xRy]1

y :A ⊃ B [y :A]1

y :B [xRy]1

x :♦B
x :♦B

1

x :♦A ⊃ ♦B
2

x :�(A ⊃ B) ⊃ (♦A ⊃ ♦B)
3

3. ¬ ♦⊥.

[x :♦⊥]2
[y :⊥]1

x :⊥
x :⊥

1

x :¬♦⊥
2

4. ♦(A ∨ B) ⊃ (♦A ∨ ♦B).

[x :♦(A ∨ B)]3
[y :A ∨ B]2

[y :A]1 [xRy]2

x :♦A
x :♦A ∨ ♦B

[y :B]1 [xRy]2

x :♦B
x :♦A ∨ ♦B

x :♦A ∨ ♦B
1

x :♦A ∨ ♦B
2

x :♦(A ∨ B) ⊃ (♦A ∨ ♦B)
3

5. (♦A ⊃ �B) ⊃ �(A ⊃ B).

[x :♦A ⊃ �B]3
[y :A]1 [xRy]2

x :♦A
x :�B [xRy]2

y :B
y :A ⊃ B

1

x :�(A ⊃ B)
2

x : (♦A ⊃ �B) ⊃ �(A ⊃ B)
3

Figure 4–2: Derivations of the IK axioms.
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In fact, in Chapter 6, we shall show that the theorems (in the appropriate sense)

of the natural deduction system are precisely the theorems of IK.

We call the variable y in an application of (�I) or (♦E) the eigenvariable of the

rule (by analogy with the (∀I) and (∃E) rules). The eigenvariable in an application

of (�I) is closed by the conclusion of the rule. The eigenvariable in an application

of (♦E) is closed by the minor premise. The notions of closed and open variable

occurrences in a derivation are defined exactly as for NIL (page 13). The notions

of substitution, Π[y/x] and
Π′

x :A
Π

, are also defined as on page 13. Again we do

not distinguish between derivations differing only in the names of their closed

variables.

4.3 Conditions on the visibility relation

In this section we show how to extend the system with rules expressing conditions

on the visibility relation. In order to do so, we have to restrict attention to

conditions expressed in some formal language. We use the first-order language Lf
defined in Section 3.4, so we shall not be able to express higher-order conditions.

However, we do not know how to give rules for arbitrary conditions expressed in

Lf . Instead we consider conditions expressed by (basic) geometric theories. Then

we adapt the proof rules introduced in Section 2.3. Many interesting properties

(such as all those in Figure 3–2 on page 35) are indeed expressed by basic geometric

sequents.

The atomic formulae of Lf are just relational assumptions, so the form of a

basic geometric sequent is:

∀x. ((R1 ∧ . . . ∧ Rn) ⊃ ∃y.
m∨
i=1

(Ri1 ∧ . . . ∧ Rini)),

where m, n ≥ 0, n1, . . . , nm ≥ 1 and Ri and Rij are relational assumptions. Al-

though written in a formal language, in this chapter we understand the properties

so-expressed both informally and, as we are interested in intuitionistic modal lo-

gics, intuitionistically.
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χD ∀x. ∃y. xRy

χT ∀x. xRx

χB ∀xy. xRy ⊃ yRx

χ4 ∀xyz. xRy ∧ yRz ⊃ xRz

χ5 ∀xyz. xRy ∧ xRz ⊃ yRz

χ2 ∀xyz. xRy ∧ xRz ⊃ ∃w. yRw ∧ zRw

Figure 4–3: Properties of the visibility relation.

[xRy]....
z :A
z :A (RD)∗

[xRx]....
y :A
y :A (RT )

xRy

[yRx]....
z :A

z :A (RB)
xRy yRz

[xRz]....
w :A

w :A (R4)

xRy xRz

[yRz]....
w :A

w :A (R5)
xRy xRz

[yRw] [zRw]....
v :A

v :A (R2)
†

∗Restriction on (RD): y must be different from both x and z and must not occur

in any open assumptions other than the distinguished occurrences of xRy.

†Restriction on (R2): w must be different from x,y,z, v and must not occur in any

open assumptions other than the distinguished occurrences of yRw and zRw.

Figure 4–4: Rules expressing properties of the visibility relation.
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Again, we associate to each basic geometric sequent, χ, a natural deduction

rule, (Rχ), as on page 25. In the natural deduction system for modal logic, the

only terms in relational assumptions are variables and relational assumptions may

not appear as the conclusion of a derivation. Therefore the format of (Rχ) is:

R1[z/x] . . . Rn[z/x]

[R11[z/x]] . . . [R1n1[z/x]]....
x′ :A . . .

[Rm1[z/x]] . . . [Rmnm[z/x]]....
x′ :A

x′ :A
(Rχ)

where: z is any vector of variables of the same length as x; neither x′ nor any of

the variables in z is contained in y; and the variables in y do not occur in any

open assumption other than in the distinguished occurrences of Rij .

Let T be a basic geometric theory in Lf . The natural deduction system N��(T )

is obtained by extending N�� with the set of rules {(Rχ) | χ ∈ T }.

In Figure 4–3 we give names to the basic geometric sequents defining the prop-

erties in Figure 3–2. Then in Figure 4–4 we give the rules induced by the basic

geometric sequents in Figure 4–3. An example derivation using (RD) was already

given as derivation (4.3) on page 68. In Figure 4–5 we give some example de-

rivations using the other rules. For each (Rχ) considered the formula derived in

Figure 4–5 is that which, in classical modal logic, characterizes the condition χ

(see Figure 3–2 and the discussion in Section 3.1). The other halves of the axiom

schemas in Figure 3–7 on page 56 can be derived similarly. It will follow from

the results of Chapter 6 that, for any T ⊆ {χD, χT , χB, χ4, χ5}, the theorems (in

the appropriate sense) of N��(T ) are exactly the theorems of the corresponding

IKS1. . . Sn on page 55. We do not know an axiomatization of the theorems of

N��(χ2) (see Section 6.3).

The eigenvariables of (Rχ) and their closing premises are defined as on page 27.

The treatment of closed variables, substitution and the identity of derivations in

N��(T ) is exactly as in N�� (page 72).
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1. (RT ).
[x :�A]2 [xRx]1

x :A
x :A

1

x :�A ⊃ A
2

2. (RB).

[xRy]2
[x :A]3 [yRx]1

y :♦A
y :♦A

1

x :�♦ A
2

x :A ⊃ � ♦A
3

3. (R4).

[xRy]3 [yRz]2
[x :�A]4 [xRz]1

z :A
z :A

1

y :�A
2

x :��A
3

x :�A ⊃ ��A
4

4. (R5).

[x :♦A]4
[xRy]3 [xRz]2

[z :A]2 [yRz]1

y :♦A
y :♦A

1

y :♦A
2

x :�♦ A
3

x :♦A ⊃ �♦ A
4

5. (R2).

[x :♦� A]4
[xRy]2 [xRz]3

[y :�A]2 [yRw]1

w :A [zRw]1

z :♦A
z :♦A

1

z :♦A
2

x :�♦A
3

x :♦� A ⊃ � ♦A
4

Figure 4–5: Derivations using rules on the visibility relation.
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4.4 The consequence relation

In general, a derivation will have a prefixed formula as conclusion, which will

have been derived from a number of open relational assumptions and a number of

open non-relational assumptions. The rôle of the relational assumptions is quite

different from that of the prefixed formulae. Intuitively, the relational assumptions

amount to assuming a certain structure of possible worlds, whereas the other

assumptions amount to assuming properties holding at these worlds. The structure

on worlds, given by the relational assumptions, can be conveniently considered as

a graph.

Henceforth, by a graph we shall mean a non-empty, directed graph whose un-

derlying set of nodes is a set of variables. We use G, H, . . . to range over such

graphs. Concretely, a graph is just a pair (X, R) where X is a non-empty set of

variables and R is a binary relation on X. We write xRy to say that 〈x, y〉 ∈ R

(confusion with relational assumptions should not be a problem). If G = (X, R)

and G ′ = (X ′, R′) then we write: G ∪G ′ for the graph (X ∪X ′, R∪R′); and G ∪X ′

for the graph (X ∪X ′, R); and G ∪{xRy} for the graph (X ∪{x, y}, R∪{〈x, y〉}).

We write G ⊆ G ′ to mean that X ⊆ X ′ and R ⊆ R′. The restriction of G to a

subset X ′ ⊆ X is the graph (X ′, {〈x, x′〉 ∈ R | x, x′ ∈ X ′}). The trivial graph is

the graph ({x}, ∅), which we henceforth refer to as τ . A graph morphism from G

to G ′ is a function f : X → X ′ such that xRy in G implies f(x)Rf(y) in G ′. Note

that our trivial graph has no categorical status in the category of graphs and graph

morphisms. However, in applications we shall normally be interested (implicitly)

in graphs with a distinguished node (e.g., the node prefixing the conclusion of a

derivation) and in graph morphisms preserving this node. In the category of such

pointed graphs and point-preserving morphisms, the trivial graph, τ , is the initial

object.

The open non-relational assumptions are best treated as just a set of prefixed

formulae. We shall use Γ, ∆, . . . to range over sets of prefixed formulae.



Chapter 4. Natural deduction for intuitionistic modal logics 77

Let T be a basic geometric theory in Lf . We consider the natural deduction

system N��(T ) as generating a consequence relation of the form:

Γ `TG x :A,

where Γ is a set of prefixed formulae and G is a graph containing every variable

mentioned in Γ ∪ {x :A}, defined by: Γ `TG x :A if there is a derivation, Π, of x :A

from open assumptions y1Rz1, . . ., ymRzm, x1 : A1, . . . , xn : An such that y1Rz1

and . . . and ymRzm in G, and {x1 : A1, . . . , xn : An} ⊆ Γ. We also say that Π is a

derivation of Γ `TG x : A. Intuitively, the consequence says that if, in a structure

of worlds satisfying the conditions in T , we have a ‘substructure’, G, and each

formula in Γ holds at the world named by its prefix then A holds at the world

named by x. We shall formalize this interpretation in Section 4.5.

We use standard notational conventions for consequences, omitting set delim-

iters and the empty set from the left-hand side of the consequence relation and us-

ing comma for set union. Also when G is the trivial graph, τ , we omit both it and

the (thereby determined) prefix attached to formulae, writing A1, . . . , An `T A

rather than x : A1, . . . , x : An `Tτ x : A. We say A is a theorem (of the natural

deduction system for T ) if `T A.

Clearly any particular choice of prefix names is irrelevant to the meaning of

a consequence. However, although consequences could be considered up to graph

isomorphism, in practice it is convenient to have a concrete representation. Con-

sequences over different graphs can be related in a useful way by graph morph-

isms. Let Γ be a set of prefixed-formulae with all prefixes contained in the graph

G. Given any function f from variables to variables we write f(Γ) for the set

{f(x) :A | x :A ∈ Γ}.

Proposition 4.4.1 For any graph morphism, f , from G to G ′, if Γ `TG x :A then

f(Γ) `TG′ f(x) :A.

Proof. Let Π be any derivation of Γ `TG x :A. Let x1, . . . , xn be the variables with

open occurrences in Π (x must be one of them). Then Π[f(x1), . . . , f(xn)/x1, . . . , xn]

is a derivation of f(Γ) `TG′ f(x) :A. �
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4.5 Soundness relative to modal models

Although the intuitive correctness of the modal rules must be clear from the dis-

cussion and examples above, we have yet to back this up with a technical account

of their correctness. In this section we formalize the intuitive interpretation of

the consequence relation and justify the correctness of the rules by a soundness

theorem for N��(T ).

Our system was motivated by a desire to understand the modalities through

an intuitionistic interpretation of their standard possible world meanings. There-

fore it is natural to interpret the system in standard modal models, but to allow

only intuitionistic meta-theoretic reasoning about the interpretation. Thus our

interpretation will be identical to that we would give to a classical variant of the

system, only we must take care to choose the correct intuitionistic formulation out

of the many classically equivalent alternatives. Then we shall take care to keep

our informal meta-theoretic reasoning intuitionistically acceptable.

The definition we gave of a modal model (see page 33) is already written in

the correct intuitionistic form. Let T be a basic geometric theory in Lf . We call

a model M = (W, R, V ) a T -model if the relation R satisfies all the conditions

stated in T , where we understand any basic geometric sequent as expressing its

natural informal meaning under an intuitionistic reading.

Let G be a graph. A G-interpretation in M is a graph morphism, [[·]], from G
to (W, R).

Theorem 4.5.1 (Soundness) Statement 1 below implies statement 2.

1. Γ `TG x :A.

2. For all T -models M, for all G-interpretations [[·]] in M, if, for all z :B ∈ Γ,

[[z]] 
M B then [[x]] 
M A.

Proof. By induction on the structure of derivations of Γ `TG x :A. We treat only

the modal rules and (Rχ).
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(�I) We have a derivation:
[xRy]

Π
y :A

x :�A

of the consequence Γ `TG x :�A. Moreover, by the restriction on (�I), we

can assume that y is not in G. Now Π is a derivation of Γ `TG′ y : A where

G ′ = G ∪ {xRy}. So, by the induction hypothesis, for all G ′-interpretations

[[·]], if, for all z :B ∈ Γ, [[z]] 
 B then [[y]] 
 A. Let [[·]] be any G-interpretation

such that, for all z :B ∈ Γ, [[z]] 
 B. We must show that [[x]] 
 �A.

Let v be any world such that [[x]]Rv. Now [[·]] can be trivially extended to

an G ′-interpretation (still called [[·]]) by setting [[y]] = v. Therefore, by the

induction hypothesis, [[y]] 
 A; i.e. v 
 A. So indeed [[x]] 
 �A.

(�E) We have a derivation:
Π

x :�A xRy
y :A

of the consequence Γ `TG y : A where xRy in G. Now Π is a derivation of

Γ `TG x :�A (whether or not the assumption xRy appears anywhere in Π).

Let [[·]] be any G-interpretation such that, for all z : B ∈ Γ, [[z]] 
 B. Then,

by the induction hypothesis, [[x]] 
 �A. But [[x]]R[[y]], so [[y]] 
 A, which is

what we were required to show.

(♦I) We have a derivation:
Π

y :A xRy
x :♦A

of Γ `TG x :♦A where xRy in G. So Π is a derivation of Γ `TG y : A. Let [[·]]
be any G-interpretation such that, for all z : B ∈ Γ, [[z]] 
 B. Then, by the

induction hypothesis, [[y]] 
 A. But [[x]]R[[y]], so [[x]] 
 ♦A as required.

(♦E) We have a derivation:

Π1
x :♦A

[y :A] [xRy]
Π2

z :B
z :B
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of Γ `TG z : B where, by the restriction on (♦E), we can assume that y is

not in G. Now Π1 is a derivation of Γ `TG x :♦A and Π2 is a derivation of

Γ, y :A `TG′ z :B where G ′ = G ∪ {xRy}. Let [[·]] be any G-interpretation such

that, for all w :C ∈ Γ, [[w]] 
 C. We must show that [[z]] 
 B.

By the induction hypothesis due to Π1 we have that [[x]] 
 ♦A. Therefore

there exists a world v such that [[x]]Rv and v 
 A. Extend [[·]] to a G ′-
interpretation by setting [[y]] = v. Then, by the induction hypothesis due to

Π2, we have that [[z]] 
 B as required.

(Rχ) We have a derivation:

R1[z/x] . . . Rn[z/x]

[R11[z/x]] . . . [R1n1[z/x]]
Π1
x′ :A . . .

[Rm1[z/x]] . . . [Rmnm[z/x]]
Πm

x′ :A
x′ :A

of Γ `TG x′ : A where, because of the restriction on (Rχ), we can assume

that no variable in y appears in G. Now each Πi (where 1 ≤ i ≤ m) is a

derivation of Γ `TGi x′ :A where Gi = G ∪{Ri1[z/x], . . . , Rini [z/x]}. Let [[·]] be

any G-interpretation such that, for all y′ : B ∈ Γ, [[y′]] 
 B. We must show

that [[x′]] 
 A.

Now R1[z/x], . . . , Rn[z/x] are all in G. So their interpretations under [[·]]
all hold in M in the obvious sense. Then, by the property expressed by χ

(recall the form of a basic geometric sequent in Lf , page 72) there exists a

vector of worlds w interpreting variables in y such that one of the disjuncts

Ri1[z/x]∧. . .∧Rini [z/x] holds in M under the induced interpretation. But if

the i-th disjunct is the one that holds, we have an induced Gi-interpretation

by assigning w to y. So, by the induction hypothesis given by Πi, we have

that [[x′]] 
 A as required.

�

The soundness result raises the question of completeness. However, a direct

converse of Theorem 4.5.1 is probably not the most pertinent form of completeness,

and, even if possible, would necessarily involve classically invalid meta-theoretic

reasoning (see the discussion on page 59 in Section 3.4).
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4.6 Discussion

In this chapter we have presented a family of proof systems for intuitionistic modal

logics. The four interesting features of the proof systems are: first, they are natural

deduction systems; second, the use of relative truth; third, they are intuitionistic;

and, fourth, the uniform way of incorporating conditions on the visibility relation.

As far as we know, there is no other work in which all four ingredients occur

together. There is, however, a large body of related proof-theoretical work on

modal logic (both classical and intuitionistic).

The work most directly related to ours is that on natural deduction systems

for modal logic using relative truth. The approach was initiated by Fitch, see [26]

(1952) and [27] (1966), who gave proof systems for several classical modal logics.

His systems were generalized by Siemens to cover a still wider range of classical

modal logics [71] (1977). A discussion of these systems is given by Fitting in his

book [29, Ch. 4, §12–16] (1983). The approach seems to have been independently

rediscovered by Gonzalez [39] (1985) and Tapscott [77] (1987). Similar ideas are

used in a non-modal context in the ‘multilanguage systems’ of Giunchiglia and

Serafini [38] (1994).

The application of the approach to intuitionistic modal logics has been a recent

occurrence. Indeed, we developed our systems N��(T ) without knowledge of any

other work in this direction. However, since then two new papers have emerged:

Benevides and Maibaum [4] (1992) and Masini [55] (1993).

Benevides and Maibaum give systems for a number of intuitionistic modal lo-

gics, but they do not consider the ♦ modality. Also, somewhat inexplicably, they

include certain derivable rules as primitive [4, §3.2.2, p. 42], and thus break away

from a pure introduction-elimination presentation. They do not go on to analyse

the intuitionistic modal logics induced by their systems (their basic logic is the

uncontroversial ♦-free fragment of IK discussed on page 47). Nor do they consider

proof normalization (which we shall for N��(T ) in Chapter 7). Indeed, without

any analysis of proof normalization, their claim to have given a constructive ex-
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planation of � in terms of its introduction rule lacks technical support (see the

discussion on page 20).

Masini gives a system for an intuitionistic analogue of KD. He considers both �
and ♦ as primitive, giving rules that appear very similar to ours. However, he has

strong (and unmotivated) restrictions on the rules which prevent the derivations

of ♦(A ∨ B) ⊃ (♦A ∨ ♦B) and (♦A ⊃ �B) ⊃ �(A ⊃ B) from going through.

(In Appendix B we give a possible technical explanation for Masini’s restrictions.)

Therefore, Masini’s system induces a rather different intuitionistic modal logic

from IKD. He provides no further analysis of this logic.

One way in which all the aforementioned work differs from ours is that, rather

than using prefix variables and relational assumptions, the systems use different

ad hoc notations for prefixes together with a convention determining the visibility

relation between the different prefix notations. In Appendix B we show how N��

could be reformulated using such prefix notations. However, the use of variables

and relational assumptions provides, we believe, a notable rationalization. Prag-

matically, the system using relational assumptions is less complex than that using

other notations (cf. Appendix B). Philosophically, it seems to us that the infer-

ence rules of N�� spell out more clearly the meanings of the modalities than the

corresponding inference rules in the other styles. But most importantly, the use of

variables and relational assumptions is fundamental to our definition of a family

of systems, N��(T ), parameterized on an arbitrary geometric theory, T .

The first use of relational assumptions that we are aware of was in Nerode’s

tableau systems for classical modal logics [59]. However, Nerode only considered

tableau systems for a few standard classical modal logics. Whereas, in our use of

geometric theories, we exploit the potential generality of relational assumptions to

the full. Our use of relational assumptions in this way is similar to the use of Horn

clause ‘restriction theories’ made by Gent in his tableau systems for first-order

logic with relativized quantifiers [35].

The use of prefixed formulae and relational assumptions means that our sys-

tems N��(T ) are ‘labelled deductive systems’ in the sense of Gabbay [34]. Labelled

deductive systems are proposed by Gabbay as providing a unifying framework for
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giving proof systems to many different logics. The work in this thesis shows

that intuitionistic modal logic fits naturally into this general framework. Thus

we provide a new example supporting Gabbay’s claim of the wide applicability of

labelled deductive systems.

The obvious similarity between the modal rules in N�� and the quantifier rules

in NIL raises the question of what we gain by considering our special proof rules for

the modalities, rather than just considering NIL as a proof system for modal logic

via the translation from modal formulae to first-order formulae. One philosophical

gain is that the modal proof rules give direct interpretations of the meaning of the

modalities which does not depend on a pre-existing understanding of first-order

quantification. A possible gain in terms of theorem proving is that one would

expect the search for a derivation of a modal consequence in N�� to be more

constrained than the search for a derivation of the corresponding consequence in

NIL. Although we have not analysed the problem of proof search, proof systems

based on relative truth have been important in the theorem proving literature for

classical modal logics (see, e.g., Wallen [81]). But the most striking use of our

specialized modal systems will be given by our later proof that, for certain T , the

consequence relation of N��(T ) is decidable (Section 7.3).

There are other forms of natural deduction for modal logic not based on relative

truth, see Prawitz [65, Ch. VI], Bierman and de Paiva [7] and Segerberg [12, §9]
for different approaches. However, all these approaches work only for a limited

number of modal logics, as the systems rely on different ad hoc rules for each

particular logic. Thus one advantage of our approach is again that we have a

uniform family of systems applicable to a whole range of different modal logics.

However, another reason for considering the systems based on relative truth is

that, for the intuitionistic modal logics we consider, we do not know any other

way of formulating a complete system with good proof-theoretical properties such

as normalization and the subformula property. (Here all the problems are caused

by the ♦ connective. Complete, well-behaved systems for the ♦-free fragments are

easily obtained.)

A further advantage of our systems is that they can be given straightforward
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representations in the Edinburgh Logical Framework (LF) [41]. The various side-

conditions on the modal rules (and on (Rχ)) are all handled easily by the binding

mechanisms of LF. Thus our inference rules are ‘pure’ in the sense of Avron [2].

For the difficulties that arise in representing other forms of proof system for modal

logic in LF see Avron et al [3].



Chapter 5

Meta-logical completeness

In this short chapter we prove the meta-theoretical soundness and completeness

(see Section 3.4) of the natural deduction system N��(T ). Recall the transla-

tion, (·)x, on page 59 from modal formulae to Lm-formulae. We prove that the

statements below are equivalent:

1. A is a theorem of N��(T ).

2. T `IL ∀x. Ax.

As well as being of intrinsic interest for the justification it gives to N��(T ), the

equivalence also allows results about IL (and geometric theories in IL) to be trans-

ferred to N��(T ). For example, if T satisfies the disjunction property in IL then

N��(T ) satisfies the disjunction property too. By the sufficient condition given

on page 30 it is clear that, for any T built out of the basic geometric sequents in

Figure 4–3 on page 73, the system N��(T ) does satisfy the disjunction property.

In Section 5.1 we give a generalized statement of the equivalence of 1 and 2, and

prove the easy soundness direction (1 =⇒ 2). In Section 5.2 we give a semantics

for intuitionistic modal logic, based on IL-models, and we reduce meta-theoretical

completeness to the completeness of N��(T ) relative to the semantics. Then, in

Section 5.3, we prove the required completeness theorem.

85
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5.1 Meta-logical soundness

The main theorem of this chapter is the following generalized statement of meta-

theoretic soundness and completeness for N��(T ).

Theorem 5.1.1 The following are equivalent:

1. Γ `TG x :A.

2. T , {yRz | yRz ∈ G}, {By | y :B ∈ Γ} `IL Ax.

The result stated in the introduction to the chapter is clearly a special case.

The soundness direction (1 =⇒ 2) of Theorem 5.1.1 is proved by a straight-

forward translation from derivations in N��(T ) to derivations in NIL(T ). The

translation maps a derivation, Π, of Γ `TG x :A to a derivation, Π∗, of:

{yRz | yRz ∈ G}, {By | y :B ∈ Γ} `TIL Ax.

Soundness then follows from Proposition 2.3.1 on page 25.

The translation, (·)∗, of derivations is defined inductively on the structure of

Π. For the non-modal rules the translation is evident: each rule is mapped to the

same rule in NIL(T ) (see Sections 2.1 and 2.3). The clauses for the modal rules

and are given in Figure 5–1.

The soundness direction of Theorem 5.1.1 is an immediate consequence of:

Proposition 5.1.2 If Π is a derivation of Γ `TG x :A then Π∗ is indeed a deriva-

tion of {yRz | yRz ∈ G}, {By | y :B ∈ Γ} `TIL Ax.

Proof. The proof is by a straightforward induction on the structure of Π. The

cases in which one of the modal rules is applied use the trivial fact that Ax[y/x] is

the same as Ay. We remark that the side-conditions on (�I) and (♦E) are exactly

right to enable the side conditions on (∀I) and (∃E) to be satisfied in Π∗. We omit

further details. �
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
[xRy]

Π
y :A

x :�A


∗

=

[xRy]
Π∗
Ay

xRy ⊃ Ay

∀x′. xRx′ ⊃ Ax′

 Π
x :�A xRy

y :A


∗

=

Π∗

∀x′. xRx′ ⊃ Ax′

xRy ⊃ Ay xRy

Ay

 Π
y :A xRy

x :♦A


∗

=
xRy

Π∗
Ay

xRy ∧ Ay

∃x′. xRx′ ∧ Ax′

 Π1
x :♦A

[y :A] [xRy]
Π2

z :B
z :B


∗

= Π∗1
∃x′. xRx′ ∧ Ax′

[xRy ∧ Ay]
xRy

[xRy ∧ Ay]
Ay

Π∗2
Bz

Bz

Figure 5–1: Translation of derivations.
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5.2 A semantics for intuitionistic modal logics

The remainder of the chapter will be devoted to the proof of the completeness (or

faithfulness) direction of Theorem 5.1.1. This will be proved semantically using

IL-models. In Section 2.2 we showed how to interpret a first-order language in

such models. However, here we shall be using them as models of intuitionistic

modal logic. It is therefore convenient to have a direct interpretation of modal

formulae in IL-models.

Let K be any IL-model, (W, ≤, {Dw}w∈W , {Rw}w∈W , {αw}w∈W ), of Lm (see

Section 2.2). We define a satisfaction relation, w, d 
K A, between worlds w ∈ W ,

elements d ∈ Dw and modal formulae A. This is defined inductively on the

structure of A by:

w, d 
 α iff αw(d)

w, d 6
 ⊥

w, d 
 A ∧ B iff w, d 
 A and w, d 
 B

w, d 
 A ∨ B iff w, d 
 A or w, d 
 B

w, d 
 A ⊃ B iff for all w′ ≥ w, w′, d 
 A implies w′, d 
 B

w, d 
 �A iff for all w′ ≥ w, for all d′ ∈ Dw′, Rw′(d, d′) implies w′, d′ 
 A

w, d 
 ♦A iff there exists d′ ∈ Dw such that Rw(d, d′) and w, d′ 
 A

This interpretation of modal formulae in IL-models follows Ewald’s interpretation

of his intuitionistic tense logics in IL-models (which he called ‘intuitionistic tense

structures’) [19,20]. For Ewald, the interpretation in intuitionistic tense structures

provided a large part of the philosophical justification for his axiomatizations of

intuitionistic tense logics.

We say that K is an IT -model if, for all w ∈ W , the graph (Dw, Rw) is a

classical model of T . This definition is motivated by Theorem 2.3.4 on page 30.

Let G be a graph. For any world w, a G-w-interpretation is a graph morphism

from G to (Dw, Rw).



Chapter 5. Meta-logical completeness 89

Theorem 5.2.1 The following are equivalent.

1. Γ `TG x :A.

2. T , {yRz | yRz ∈ G}, {By | y :B ∈ Γ} `IL Ax.

3. For all IT -models K, for all worlds w in K, for all G-w-interpretations ρ, if,

for all z :B ∈ Γ, w, ρ(z) 
K B then w, ρ(x) 
K A.

This theorem combines two different forms of completeness for N��(T ). The

equivalence of statements 1 and 2 is just the meta-theoretic completeness of The-

orem 5.1.1; whereas, the equivalence of statements 1 and 3 is a semantic complete-

ness theorem relative to IT -models.

We have already proved that statement 1 implies statement 2. In the remainder

of this section we show that statement 2 implies statement 3. Then in Section 5.3

we show that statement 3 implies statement 1, thereby completing the proof of

Theorem 5.1.1 too.

To prove that statement 2 implies statement 3, we show (as Proposition 5.2.4

below) that the direct interpretation of modal consequence in IT -models is equival-

ent to the indirect interpretation induced by the translation of modal consequence

into Lm. The required implication will then follow from the soundness of intu-

itionistic first-order logic in IL-models.

Let K be an arbitrary IL-model of Lm (it need not be an IT -model). Let w

be any world in K. Let ρ be an arbitrary w-environment. We write ρdG for the

restriction of ρ to the variables in the underlying set of G.

Lemma 5.2.2 w 
ρK {yRz | yRz ∈ G} if and only if ρdG is a G-w-interpretation.

Proof. Immediate from the definitions. �

Lemma 5.2.3 w 
ρK Ax if and only if w, ρ(x) 
K A.

Proof. By an easy induction on the structure of A. For example, if it is of the

form �B then (�B)x is ∀x′. R(x, x′) ⊃ Bx′. So w 
ρ (�B)x if and only if, for all



Chapter 5. Meta-logical completeness 90

w′ ≥ w, for all d′ ∈ Dw′ , Rw′(ρ(x), d′) implies that w′ 
ρ[x′:=d′] Bx′. But, by the

induction hypothesis, w′ 
ρ[x′:=d′] Bx′ if and only if w′, d′ 
 B. So it is clear that

indeed w 
ρ (�B)x if and only if w, ρ(x) 
 �B. �

Proposition 5.2.4 Suppose all prefixes in Γ∪{x :A} are in G. Then the following

are equivalent.

1. For all IT -models K, for all worlds w in K, for all G-w-interpretations ρ, if,

for all z :B ∈ Γ, w, ρ(z) 
K B then w, ρ(x) 
K A.

2. For all IL-models K such that K |=IL T , for all worlds w in K, for all w-

environments ρ, if w 
ρK {yRz | yRz ∈ G}, {By | y :B ∈ Γ} then w 
ρK Ax.

Proof. Immediate from the lemmas above and Theorem 2.3.4. �

That statement 2 of Theorem 5.2.1 implies statement 3 now follows immediately

from the soundness of IL in IL-models (Theorem 2.2.2 (1 =⇒ 2) on page 22). and

the bottom-to-top implication of the above proposition.

Incidentally, it follows from the completeness direction of Theorem 2.2.2 that

statement 3 of Theorem 5.2.1 implies statement 2. But this observation does not

help us fill in the missing gap that statement 3 implies statement 1.

5.3 Completeness

We prove the completeness part (3 =⇒ 1) of Theorem 5.2.1 using a Henkin-style

argument to construct a (canonical) countermodel to underivable sequents.

Let V be the countably infinite set of prefix variables. For any V ′ ⊆ V , define

W (V ′) to be the free algebra generated from V ′ by the following operators:

1. for each modal formula A, a unary operator x 7→ vx:�A;

2. for each basic geometric sequent χ ∈ T (in the form on page 72) and each

y ∈ y, a k-ary operator x1, . . . , xk 7→ vyχ(x1,...,xk)
, where k is the length of x.
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Thus W (V ′) satisfies the following: V ′ ⊆ W (V ′); for each element x ∈ W (V ′)

and modal formulae A, there is an element vx:�A ∈ W (V ′); and, for each basic

geometric sequent χ ∈ T (in the form on page 72) and each vector of elements z

in W (V ′) of the same length as x, there is a vector of distinct elements, vχz , of the

same length as y, in W (V ′). Note also that V ′ ⊆ V ′′ implies W (V ′) ⊆ W (V ′′).

The elements in W (V )\V , which we shall refer to as witness variables, will play

a role similar to that of Henkin-constants in standard proofs of completeness. We

shall construct an IT -model in which each domain Dw will be a subset of W (V ′)

for some V ′ (depending on w). An element of the form vx:�A ∈ Dw will witness

that w, x 
 ♦A in the sense that both Rw(x, vx:�A) and w, vx:�A 
 A will hold.

Similarly, the elements of the vector vχz will provide existential witnesses to show

that (Dw, Rw) is a classical model of T (see below). The reason for restricting to

a subset V ′ ⊆ V is that, as we move from w to some w′ ≥ w, it will sometimes be

necessary to introduce new elements in Dw′ not contained in Dw (see the �B case

in the proof of the canonical model lemma below). In order to always guarantee a

supply of such new elements for Dw′ we shall work below with V ′ that are coinfinite

subsets of V (i.e. subsets such that V \V ′ is infinite).

Henceforth in this section we consider graphs whose underlying sets are subsets

of W (V ) and formulae prefixed with elements of W (V ). We now introduce the

structures out of which the canonical model will be built. A context is a pair (G, Γ)

where: G is a graph containing every prefix in the set of prefixed formulae Γ, and

the three conditions below are satisfied.

1. For some coinfinite subset V ′ ⊆ V , the underlying set of G is contained in

W (V ′).

2. The witness variable vx:�A is in G only if xRvx:�A in G and vx:�A :A ∈ Γ.

3. For each basic geometric sequent χ ∈ T (in the form on page 72), each of

the witness variables in vχz is in G only if the others are and, for some i

(1 ≤ i ≤ m), the relations Ri1[z/x][vχz/y], . . . , Rini[z/x][vχz/y] all hold in G.

We write (G, Γ) ⊆ (H, ∆) to mean that G ⊆ H and Γ ⊆ ∆.
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A context, (G, Γ), is said to be T -prime if G is a classical model of T and the

following additional conditions are satisfied:

1. If Γ `TG x :A then x :A ∈ Γ. (Deductive closure.)

2. For all x in G, it holds that Γ 6`TG x :⊥. (Consistency.)

3. If x :A ∨ B ∈ Γ then x :A ∈ Γ or x :B ∈ Γ. (Disjunction property.)

4. If x :♦A ∈ Γ then there exists y such that xRy in G and y :A ∈ Γ. (Diamond

property.)

Lemma 5.3.1 (Prime lemma) If (G, Γ) is a context and Γ 6`TG x : A then there

is a T -prime context (H, ∆) with (H, ∆) ⊇ (G, Γ) such that ∆ 6`TH x :A.

Proof. Suppose that (G, Γ) is a context such that Γ 6`TG x : A. Let V ′ be some

coinfinite subset of V such that the underlying set of G is contained in W (V ′)

(as given by condition 1 on being a context). Suppose further that Γ 6`TG x : A.

Consider the set C of all contexts (G ′, Γ′) ⊇ (G, Γ) such that the underlying set of

G ′ is contained in W (V ′) and Γ′ 6`TG′ x :A. Let {(Gi, Γi)}i∈I be any chain in the set

C partially ordered by inclusion. It is easily seen that (
⋃
i∈I Gi,

⋃
i∈I Γi) is also in

C. So every chain in C has an upper bound. Therefore, by Zorn’s Lemma, C has

a maximal element (H, ∆). We show that (H, ∆) is T -prime and hence fulfils the

requirements of the lemma.

First, we show that H is a classical model of T . Consider any basic geometric

sequent χ ∈ T (in the form on page 72). We show that H |=CL χ. Suppose that

the relations R1[z/x], . . . , Rn[z/x] hold in H. We must show that there is a vector

v of variables in H of the same length as y such that, for some i (1 ≤ i ≤ m), the

relations Ri1[z/x][v/y], . . . , Rini [z/x][v/y] all hold in H. We show that, in fact, vχz

is the required vector.

Suppose, for contradiction, that the variables in vχz are not in H. Define:

Hi = H ∪ {v | v ∈ vχz} ∪ {Ri1[z/x][vχz/y], . . . , Rini [z/x][vχz/y]}.
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Then it cannot be the case that ∆ `TH1
x : A and . . . and ∆ `THm x : A, because if

it were then ∆ `TH x :A would be derivable by an application of (Rχ). Therefore,

for some i, we have that ∆ 6`THi x : A. But then (Hi, ∆) is in C. Whence, by the

maximality of (H, ∆), we have that Hi = H contradicting our assumption. So, as

the variables in vχz are in H, it follows, from requirement 3 on contexts, that, for

some i, the relations Ri1[z/x][vχz/y], . . . , Rini [z/x][vχz/y] all hold in H. But this

is what we had to show.

It remains to verify the four conditions. Consistency is immediate, because

∆ 6`TH x :A. For deductive closure, suppose that ∆ `TH y :B. Then ∆, y :B 6`H x :A

(for otherwise would contradict that ∆ 6`H x : A). Therefore (H, ∆ ∪ {y : B}) is

in C. So y : B ∈ ∆ by the maximality of (H, ∆). For the disjunction property,

suppose that y : B ∨ C ∈ ∆. Now either ∆, y : B 6`TH x : A or ∆, y : C 6`TH x : A, for

otherwise we would have that ∆ `TH x : A by an application of (∨E). Therefore

one of (H, ∆ ∪ {y : B}) and (H, ∆ ∪ {y : C}) is in C. So, by maximality, either

y :B ∈ ∆ or y :C ∈ ∆ as required. Lastly, for the diamond property, suppose that

y :♦B ∈ ∆. We show that vy:�B is in H. Suppose not. Then ∆, vy:�B :B 6`TH′ x :A

where H′ = H ∪ {yRvy:�B}, because otherwise we could derive ∆ `TH x : A by

an application of (♦E). But then, by maximality, H′ = H contradicting our

assumption. So indeed vy:�B is in H. Whence, by requirement 2 on contexts,

yRvy:�B in H and vy:�B : B ∈ ∆. Thus vy:�B is the variable required by the

diamond property. �

It is worth remarking that, as the set of formulae and the set W (V ) are both

denumerable, the prime lemma can actually be proved without using any form

of the axiom of choice. However, in a choice-free proof, (H, ∆) would have to be

obtained by a laborious iterative construction.

We now construct the canonical IT -model,

KT = (W T , ≤T , {DTw}w∈WT , {RTw}w∈WT , {αTw}w∈WT ).

Define:

W T = the set of T -prime contexts,

(H, ∆) ≤T (H′, ∆′) iff (H, ∆) ⊆ (H′, ∆′),
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DT(H,∆) = the underlying set of H,

RT(H,∆)(x, y) iff xRy in H,

αT(H,∆)(x) iff x :α ∈ ∆.

It is clear that all the conditions on being a model are satisfied by KT . In partic-

ular, for all (H, ∆) ∈ W T , (DT(H,∆), R
T
(H,∆)) |=CL T because (DT(H,∆), R

T
(H,∆)) = H

and H |=CL T as (H, ∆) is T -prime.

Lemma 5.3.2 (Canonical model lemma) For all T -prime contexts (H, ∆), for

all y in H, the relation (H, ∆), y 
KT B holds if and only if y :B ∈ ∆.

Proof. We show, by a case analysis on the structure of B, that the induct-

ive clauses defining the satisfaction relation (H, ∆), y 
 B are mimicked by the

membership relation y :B ∈ ∆. We consider a selection of cases.

B ∨ C. We show that y :B ∨ C ∈ ∆ if and only if y :B ∈ ∆ or y :C ∈ ∆.

=⇒ Immediate by the disjunction property of (H, ∆).

⇐= Suppose that either y :B ∈ ∆ or y :C ∈ ∆. Then clearly ∆ `TH y :B∨C.

So, by deductive closure, y :B ∨ C ∈ ∆.

B ⊃ C. We show that y : B ⊃ C ∈ ∆ if and only if, for all (H′, ∆′) ≥T (H, ∆),

y :B ∈ ∆′ implies y :C ∈ ∆′.

=⇒ Suppose y : B ⊃ C ∈ ∆, (H′, ∆′) ≥T (H, ∆) and y : B ∈ ∆′. Now

∆′ ⊇ ∆ so clearly ∆′ `TH′ y :C whence, by deductive closure, y :C ∈ ∆′.

⇐= Suppose, for all (H′, ∆′) ≥T (H, ∆), y : B ∈ ∆′ implies y : C ∈ ∆′.

Suppose, for contradiction, that ∆, y : B 6`TH y : C. Then, by the prime

lemma, there is a T -prime context (H′, ∆′) ⊇ (H, ∆ ∪ {y : B}) such

that ∆′ 6`TH′ y : C. But then (H′, ∆′) ≥T (H, ∆) is a world such that

y :B ∈ ∆′ and y :C 6∈ ∆′, contradicting the initial supposition.

So ∆, y : B `TH y : C and thus, by (⊃I), ∆ `TH y : B ⊃ C whence, by

deductive closure, y :B ⊃ C ∈ ∆.



Chapter 5. Meta-logical completeness 95

�B. We show that y :�B ∈ ∆ if and only if, for all (H′, ∆′) ≥T (H, ∆) and all z,

yRz in H′ implies z :B ∈ ∆′.

=⇒ Suppose y :�B ∈ ∆, (H′, ∆′) ≥T (H, ∆) and yRz in H′. Now ∆′ ⊇ ∆

so ∆′ `TH′ y :�B and hence, by (�E), ∆′ `TH′ z : B. So, by deductive

closure, z :B ∈ ∆′.

⇐= Suppose that, for all (H′, ∆′) ≥T (H, ∆), we have that yRz in H′ implies

z :B ∈ ∆′. Let V ′ be a coinfinite subset of V such that the underlying

set of H is contained in W (V ′) (as given by requirement 1 on contexts).

Take any z ∈ V \V ′. Define H0 = H ∪ {yRz}. Clearly (H0, ∆) is a

context.

Suppose, for contradiction, that ∆ 6`H0 z : B. Then, by the prime

lemma, there exists a T -prime context (H′, ∆′) ⊇ (H0, ∆) such that

∆′ 6`TH′ z : B. But then (H′, ∆′) ≥T (H, ∆) and yRz in H′, but clearly

z :B 6∈ ∆′, contradicting the initial assumption.

So ∆ `TH0
z :B. But, as z ∈ V \V ′, we have that z is not in H. Therefore,

by an application of (�I), it holds that ∆ `TH y : �B. Whence, by

deductive closure, y :�B ∈ ∆ as required.

♦B. We show that y :♦B ∈ ∆ if and only if there exists z such that yRz in H

and z :B ∈ ∆.

=⇒ Immediate from the diamond property of (H, ∆).

⇐= Suppose, for some z, yRz in H and z : B ∈ ∆. Then ∆ `TH y :♦B, by

the (♦I) rule. So, by deductive closure, y :♦B ∈ ∆. �

It is now a simple matter to prove Theorem 5.2.1, 3 =⇒ 1. We show the

contrapositive. Suppose then that Γ 6`TG x : A. By the prime lemma, there is a

T -prime context (H, ∆) ⊇ (G, Γ) such that ∆ 6`TH x :A. Now (H, ∆) is a world in

KT . Define a G-(H, ∆)-interpretation by ρ(y) = y. Then, by the canonical model

lemma, for all y : B ∈ Γ, we have (H, ∆), ρ(y) 
KT B, but (H, ∆), ρ(x) 6
KT A.

This complete the proof Theorem 5.2.1. Thus we have also finished the proof of

Theorem 5.1.1.
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5.4 Discussion

As discussed in Section 3.4, Theorem 5.1.1 is a fundamental result showing the

equivalence of two different ways of defining the intuitionistic modal logic de-

termined by T . Unfortunately, our semantic proof of the completeness direction

uses much intuitionistically invalid reasoning. However, Theorem 5.1.1 is a purely

proof-theoretic statement, and it can be proved by intuitionistically acceptable

proof-theoretic techniques.

We now sketch how such a proof of meta-theoretical completeness would go.

The idea is to use a normalization result for NIL(T ) similar to that discussed

in Section 2.3. Ideally one would like to show that any normal derivation of

{yRz|yRz ∈ G}, {By|y :B ∈ Γ} `TIL Ax is of the form Π∗ for some derivation Π of

Γ `TG x : A (where (·)∗ is the translation of derivations from N��(T ) to NIL(T )).

However, the definition of normal derivation in Section 2.3 is not strong enough

for this result to obtain. Nevertheless, a proof along these lines is possible. We

have carried out the proof for N�� using a stronger definition of normal form re-

quiring further rewrite rules for normalization (specifically certain expansion rules,

see Prawitz [66, §II 3.3.3], and some additional commuting conversions pushing

introductions through indirect rules). We also found it necessary to modify the

(·)∗ translation of Section 5.1. The resulting proof was rather messy.

So one reason for preferring the classical semantic proof is its relative cleanness.

But we also gave this proof in order to establish the semantics for N��(T ). As

we said, the interpretation of modal formulae in IL-models is due to Ewald [19,

20]. He proved completeness for his Hilbert-style axiomatizations of intuitionistic

tense logics. Because of the close relationship between modal completeness relative

to IL-models and meta-logical completeness, it would have been a small step for

Ewald to have deduced the meta-logical completeness of his tense logics. However,

he did not formulate the result.

Although it uses standard techniques, our proof of completeness relative to

IL-models is more straightforward than Ewald’s. The simplification is due to our
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use of a consequence relation between prefixed formulae and graphs, which yields

a very natural model construction. We also work in the more general situation of

a modal logic parameterized on an arbitrary geometric theory T .

A philosophical difference with Ewald is that for him the interpretation in IL-

models was a primary motivation for his intuitionistic modal logics, whereas for us

it is just a meta-theoretic tool. Indeed, as discussed on page 63, the interpretation

in IL-models cannot serve as the basis for an intuitionistic account of intuitionistic

modal logic.

There are, nonetheless, some interesting technical possibilities that arise from

taking the interpretation in IL-models as fundamental. For example, IL-models

provide one way of addressing some of the issues raised in Section 3.4. Let F be

an arbitrary class of frames. Then, just as F determines a unique classical modal

logic (see Section 3.1); by way of IL-models, it also determines an intuitionistic

analogue, namely the modal formulae valid in in all IL-models satisfying, for all

w ∈ W , (Dw, Rw) ∈ F. This method associates a unique intuitionistic modal logic

with F no matter how F is specified (so the problems of determining the correct

intuitionistic formulation of a classical property are avoided). It also enables intu-

itionistic analogues of classical modal logics generated by non first-order definable

classes F to be defined. We do not know how ‘reasonable’ the induced intuition-

istic modal logics are in general. However, by the results in this chapter, when F

is specified by a geometric theory T , the induced intuitionistic modal logic is just

that of N��(T ).



Chapter 6

Axiomatizations

In this chapter we consider the problem of obtaining Hilbert-style axiomatizations

of the modal logics induced by the natural deduction systems. In Section 6.1

we prove that the logic IK, introduced in Section 3.3, axiomatizes exactly the

theorems of the basic natural deduction system, N��. Having established this

correspondence, it is natural to look for sets of additional axioms, Ax(T ), such

that IK + Ax(T ) axiomatizes the theorems of N��(T ). In Section 6.2 we give

such axiomatizations for a fairly wide class of theories T . However, the general

problem is more difficult. In Section 6.3 we show that a natural generalization

of the methods of Section 6.2 does not always give complete axiomatizations. In

particular the natural axiomatization of the intuitionistic modal logic of directed

frames is incomplete.

6.1 Correspondence with IK

In this section we show that the intuitionistic modal logic IK, presented in Figure

3–6 on page 52, does indeed axiomatize the theorems of N��.

Theorem 6.1.1 The following are equivalent:

1. A is a theorem of IK.

2. A is a theorem of N��.

98
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The easy direction of the theorem is that 1 implies 2. We need only show

that N�� derives all the axioms of IK and is closed under its inference rules.

As intuitionistic propositional natural deduction is a subsystem, it is clear that

all substitution instances of theorems of IPL are derivable. Derivations of the

remaining five modal axiom schemas have already been given in Figure 4–2 on

page 71. It remains to show that the natural deduction system is closed under

modus ponens and necessitation. Modus ponens is just an application of (⊃E). For

necessitation, suppose there is a derivation Π showing that ` A. Then:

Π[y/x]
y :A

x :�A

is a derivation of ` �A. So the system can indeed derive all the theorems of IK.

The converse direction could be proved semantically. One could prove the

soundness, in a suitable sense, of N�� relative to the birelation models introduced

in Section 3.3. (We shall do this in Chapter 8. It is not completely trivial.) The

desired implication would then follow from the known completeness of IK with

respect to birelation models [20,24,64]. Alternatively, as mentioned on page 60,

Stirling has given an unpublished semantic proof of the meta-logical completeness

of IK (also relying on the completeness of IK relative to birelation models). So

the desired implication follows from the meta-logical soundness of N��, which we

established in Chapter 5. However, instead we shall give a self-contained, proof-

theoretic proof. Our proof has the benefit of extending easily to establish the

completeness of axiomatizations of theoremhood in N��(T ) for certain nonempty

T (see Section 6.2). It is also intuitionistically acceptable.

The proof works by establishing the interesting fact that, for suitable graphs

G, entire prefixed consequences of the form Γ `G x :A are equivalently represented

by single modal formulae.

The suitable graphs are finite trees, i.e., finite graphs with a node x0 (the

root) such that, for every node x, there is a unique sequence of points, x1, . . . , xm

(where m ≥ 0) with x = xm and x0Rx1R . . .Rxm. We say that m is the depth of

x. Let G be a finite tree. Let Γ ∪ {x : A} be a finite set of prefixed formulae all
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Figure 6–1: General form of G.

of whose prefixes are in G. We shall define a modal formula, (Γ `G x : A)∗, such

that: Γ `G x :A if and only if (Γ `G x :A)∗ is a theorem of IK (although we shall

only need to use the left-to-right implication); and such that (`τ x : A)∗ ↔ A is

a (trivial) theorem of IK. Therefore if A is a theorem of the natural deduction

system then it is indeed a theorem of IK.

Without loss of generality, G has the form displayed in Figure 6–1 where m ≥ 0

is the depth of xm and each T i (0 ≤ i ≤ m) is the finite tree with root xi and

ni immediate subtrees T i
1, . . . , T i

ni
(ni ≥ 0). Note that, for i < m, the node xi

actually has ni + 1 immediate successors for, in addition to the ni apices of T i
1,

. . . , T i
ni

, there is also the node xi+1.

First we define a formula, Γ@T i, for each T i (0 ≤ i ≤ m). In fact let U be

any subtree of G. Let y be the root of U and let U1, . . . , Uk (where k ≥ 0) be the

immediate subtrees below y in U . The formula Γ@U is defined inductively on the

structure of U by:

Γ@U =
∧

{B | y :B ∈ Γ} ∧ (♦ Γ@U1) ∧ . . . ∧ (♦ Γ@Uk)
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(the base case is when k is zero). When empty, the above conjunction is taken to

be >. We can now define the formula we have been working towards by:

(Γ `G xm :A)∗ = Γ@T 0 ⊃ �(Γ@T 1 ⊃ �(. . . Γ@Tm−1 ⊃ �(Γ@Tm ⊃ A) . . .))

Example. Suppose G is the tree:
x - y

@
@
@
@
@R

z - w

Then:

(x :♦A ⊃ ��B, y :A `G z :♦B)∗ = ((♦A ⊃ ��B) ∧ ♦A) ⊃ �(♦> ⊃ ♦B)

(the > arises from the empty conjunction of {x : ♦A ⊃ � � B, y : A}@w). We

can see that in this example x : ♦A ⊃ � � B, y : A `G z : ♦B holds and indeed

((♦A ⊃ ��B) ∧ (♦A)) ⊃ �(♦> ⊃ ♦B) is a theorem of IK.

It is easy to see that (`τ x : A)∗ is the formula > ⊃ A, so the equivalence of

(`τ x :A)∗ and A is trivial. It remains only to prove the lemma below.

Lemma 6.1.2 If G is a finite tree then Γ `G x :A if and only if (Γ `G x :A)∗ is a

theorem of IK.

Proof. The left-to-right implication is proved by induction on the structure

of derivations of Γ `G x : A. In the induction we must take care that we can

always restrict attention to graphs that are trees. We consider only the cases in

which the last rule of derivation is one of the four modal rules. Of the non-modal

rules, all are straightforward except for (⊥E) and (∨E) which are quite intricate

because their premises and conclusion may have prefixes arbitrarily far apart in G.

However, the difficulties are similar to those encountered in the (♦E) case, which

we do consider below. Throughout the proof we use, without further comment,

obvious preservation properties of IK such as: if A ⊃ B is a theorem then so

are (C ⊃ A) ⊃ (C ⊃ B) and �A ⊃ �B and ♦A ⊃ ♦B. Notation will be kept

consistent with Figure 6–1, i.e. G will always be assumed to be of this form. We

hope that this makes the proof comprehensible without too much formality.
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(�I) We have a derivation:
[xmRy]

Π
y :A

xm :�A

of the consequence Γ `G xm :A where G is the tree in Figure 6–1. Thus Π is

a derivation of Γ `G∪{xmRy} y :A, where, because of the restriction on (�I),

G ∪ {xmRy} is also a tree. Now (Γ `G∪{xmRy} y :A)∗ is:

Γ@T 0 ⊃ �(. . .Γ@Tm−1 ⊃ �(Γ@Tm ⊃ �(> ⊃ A)) . . .). (6.1)

By the induction hypothesis, (6.1) is a theorem of IK. But (Γ `G xm :�A)∗

is:

Γ@T 0 ⊃ �(. . .Γ@Tm−1 ⊃ �(Γ@Tm ⊃ �A) . . .),

which is clearly equivalent to (6.1). Hence it is a theorem of IK as required.

(�E) We have a derivation:

Π
xm−1 :�A xm−1Rxm

xm :A

of Γ `G xm :A. Then Π is a derivation of Γ `G xm−1 :�A. Now the formula

(Γ `G xm−1 :�A)∗ is:

Γ@T 0 ⊃ �(. . . (Γ@Tm−1 ∧ ♦Γ@Tm) ⊃ �A) . . .), (6.2)

which, by the induction hypothesis, is a theorem of IK. But (Γ `G xm : A)∗

is:

Γ@T 0 ⊃ �(. . .Γ@Tm−1 ⊃ �(Γ@Tm ⊃ A) . . .). (6.3)

And this follows from (6.2) by axiom 5 of IK.

(♦I) We have a derivation:
Π

xm :A xm−1Rxm
xm−1 :♦A
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Figure 6–2: Dissection of T i.

of Γ `G xm−1 :♦A. Thus Π is a derivation of Γ `G xm :A. Now (Γ `G xm :A)∗

is formula (6.3) above, and, by the induction hypothesis, it is a theorem of

IK. But (Γ `G xm−1 :♦A)∗ is:

Γ@T 0 ⊃ �(. . . (Γ@Tm−1 ∧ ♦Γ@Tm) ⊃ ♦A) . . .).

And this follows from (6.3) by axiom 2 of IK.

(♦E) We have a derivation:

Π1
yj :♦A

[y :A] [yjRy]
Π2

xm :B
xm :B

of the consequence Γ `G xm : B. Thus Π1 is a derivation of Γ `G yj : ♦A
and Π2 is a derivation of Γ, y : A `G∪{yjRy} xm : B, where, because of the

restriction on (♦E), G ∪ {yjRy} is a tree. Suppose that the (unique) path

from x0 to yj in G is given by x0Rx1 . . . xiRy1 . . . Ryj where if j > 0 and

i < m then j1 is different from xi+1, and if j = 0 then by yj we mean xi. We

now break up T i as in Figure 6–2. Then (Γ `G yj :♦A)∗ is:
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Γ@T 0 ⊃ �(Γ@T1 ⊃ �(. . .Γ@T i−1 ⊃ �(

(Γ@U0 ∧ ♦(Γ@T i+1 ∧ ♦(. . . Γ@Tm−1 ∧ ♦Γ@Tm))) ⊃

�(Γ@U1 ⊃ �(. . .Γ@U j−1 ⊃ �(Γ@U j ⊃ ♦A))) ))),

(6.4)

and (Γ, y :A `G∪{yjRy} xm :B)∗ is:

Γ@T 0 ⊃ �(Γ@T1 ⊃ �(. . .Γ@T i−1 ⊃ �(

(Γ@U0 ∧ ♦(Γ@U1 ∧ ♦(. . . Γ@U j−1 ∧ ♦(Γ@U j ∧ ♦A)))) ⊃

�(Γ@T i+1 ⊃ �(. . .Γ@Tm−1 ⊃ �(Γ@Tm ⊃ B))) ))).

(6.5)

By the induction hypothesis, both (6.4) and (6.5) are theorems of IK. Now

(Γ `G xm :B)∗ is:

Γ@T 0 ⊃ �(Γ@T1 ⊃ �(. . . Γ@T i−1 ⊃ �(

(Γ@U0 ∧ ♦(Γ@U1 ∧ ♦(. . . Γ@U j−1 ∧ ♦Γ@U j))) ⊃

�(Γ@T i+1 ⊃ �(. . .Γ@Tm−1 ⊃ �(Γ@Tm ⊃ B))) ))).

(6.6)

We must show that this is a theorem of IK.

The derivation of (6.6) is slightly involved. First, we note the following two

theorems of IK:

♦(Γ@U1 ∧ ♦(. . . Γ@U j−1 ∧ ♦Γ@U j)) ⊃

�(Γ@U1 ⊃ �(. . .Γ@U j−1 ⊃ �(Γ@U j ⊃ ♦A))) ⊃
♦(Γ@U1 ∧ ♦(. . .Γ@U j−1 ∧ ♦(Γ@U j ∧ ♦A))),

(6.7)

(
♦(Γ@T i+1 ∧ ♦(. . . Γ@Tm−1 ∧ ♦Γ@Tm)) ⊃

�(Γ@T i+1 ⊃ �(. . .Γ@Tm−1 ⊃ �(Γ@Tm ⊃ B)))
)

⊃
�(Γ@T i+1 ⊃ �(. . . Γ@Tm−1 ⊃ �(Γ@Tm ⊃ B))).

(6.8)

Formula (6.7) is derived by repeated applications of axiom 2 of IK (together

with intuitionistic propositional reasoning), and (6.8) is derived by repeated

applications of axiom 5.

We now show how (6.6) is derivable from (6.4) and (6.5). By (6.7) it is clear

that the following formula is derivable from (6.4):
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Γ@T 0 ⊃ �(Γ@T1 ⊃ �(. . .Γ@T i−1 ⊃ �(

(Γ@U0 ∧ ♦(Γ@U1 ∧ ♦(. . . Γ@U j−1 ∧ ♦Γ@U j))) ⊃

♦(Γ@T i+1 ∧ ♦(. . . Γ@Tm−1 ∧ ♦Γ@Tm)) ⊃

(Γ@U0 ∧ ♦(Γ@U1 ∧ ♦(. . .Γ@U j−1 ∧ ♦(Γ@U j ∧ ♦A)))) ))).

Whence, using (6.5), one can derive:

Γ@T 0 ⊃ �(Γ@T1 ⊃ �(. . .Γ@T i−1 ⊃ �(

(Γ@U0 ∧ ♦(Γ@U1 ∧ ♦(. . . Γ@U j−1 ∧ ♦Γ@U j))) ⊃

♦(Γ@T i+1 ∧ ♦(. . . Γ@Tm−1 ∧ ♦Γ@Tm)) ⊃

�(Γ@T i+1 ⊃ �(. . .Γ@Tm−1 ⊃ �(Γ@Tm ⊃ B))) ))).

But now, by (6.8), it is clear that (6.6) is indeed derivable.

This concludes the left-to-right implication of the lemma.

The right-to-left implication is somewhat easier. As we do not use the result

we give only a sketch. One proves by induction on the structure of G, which we

again assume to be in the form of Figure 6–1, that, for all Γ, x :A,

x0 : (Γ `G x :A)∗, Γ `G x :A. (6.9)

Now, if (Γ `G x : A)∗ is a theorem of IK then, as we showed earlier, it is also a

theorem of the natural deduction system. So it follows from (6.9) that Γ `G x :A

as required. �

6.2 Axiomatizations of other modal logics

We now consider the problem of axiomatizing the theorems of N��(T ) for non-

empty T . Specifically, given a basic geometric theory T , is there a reasonable set

of modal axioms, Ax(T ), such that the theorems of IK + Ax(T ) are exactly the

theorems of N��(T )? Of course, if T is recursively enumerable then the set of

theorems of N��(T ) is a recursively enumerable axiomatization of itself, and, by

a standard trick, one can find a complete recursive subset (cf. Shoenfield [70, Ex.



Chapter 6. Axiomatizations 106

5, p. 138]). However, in particular cases, we would like to find simpler and more

elegant axiomatizations.

We shall consider certain theories T for which axiomatizations can be obtained

in a particularly simple way. With certain basic geometric sequents, χ, we shall

associate a single modal axiom schema Aχ. Then, for any T containing only such

sentences, we define:

Ax(T ) = {A | A is an instance of Aχ for some χ ∈ T }. (6.10)

For such theories, we shall prove that Ax(T ) is a complete axiomatization of the

theorems of N��(T ).

Unfortunately, we only know how to axiomatize the modal logics induced by

some particularly simple theories in this way. First, with the axiom for seriality,

∀x. ∃y xRy, we associate the single modal axiom:

AχD = ♦>.

(One could equivalently use the schema �A ⊃ ♦A. Earlier AχD was just called D.

Here we change name for the sake of the uniform definition of Ax(T ) as above.)

We shall also associate a modal axiom schema with the frame axiom expressing

the property:

∀xyz. xRky ∧ xRlz ⊃ yRz

for any k, l ≥ 0. Here we write xR0y to mean x = y and xRi+1y to mean that

there exists x′ such that xRx′ and x′Riy. Although we do not have equality in Lf ,

the property above can be expressed by the basic geometric sequent (indeed Horn

clause):

φkl = ∀xy1 . . . ykz1 . . . zl. (xRy1 ∧ y1Ry2 ∧ . . . ∧ yk−1Ryk ∧

xRz1 ∧ z1Rz2 ∧ . . . ∧ zl−1Rzl) ⊃ ykRzl

where if k = 0 then yk is x and if l = 0 then zl is x. The axiom schema associated

with φkl is:

Aφkl = (♦k � A ⊃ �lA) ∧ (♦lA ⊃ �k ♦A)
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In classical modal logic, the two sides of the conjunction, taken individually, give

equivalent schemas, so only half of the conjunction is required. In intuitionistic

modal logic, the two schemas are not equivalent, and it is necessary to take their

conjunction. Four of the frame conditions of Figure 4–3 (page 73) fit into the

above scheme. We give these together with their induced axiom schemas in Figure

6–3. Note that the induced axiom schemas are exactly those given earlier in Figure

3–7 (page 56).

Let T be any frame theory containing only axioms of the form φkl and χD.

Define Ax(T ) as in (6.10).

Theorem 6.2.1 The following are equivalent:

1. A is a theorem of IK + Ax(T ).

2. A is a theorem of N��(T ).

For any T ⊆ {χD, χT , χB, χ4, χ5}, we have that IK+Ax(T ) is just the appropriate

IKS1. . . Sn as defined on page 55. Thus, IKS1. . .Sn is a complete axiomatization

of the theorems of N��(T ), and therefore, by the results of Chapter 5, IKS1. . .Sn

is meta-logically sound and complete.

To prove Theorem 6.2.1, we first establish the equivalence of N��(T ) with a

system obtained by extending N��, in a suitable way, with the axioms in Ax(T ).

Then, by modifying the proof of Theorem 6.1.1, we show that IK + Ax(T ) axio-

matizes the theorems of N�� + Ax(T ).

First we define the system N�� + Ax(T ). This is obtained by extending N��

with the rule:
A ∈ Ax(T )

x :A (AxT )

(Although A ∈ Ax(T ) is not a judgement in the system, we have written the rule

in the form above for notational convenience. Strictly speaking, A ∈ Ax(T ) is

a side-condition on the application of the rule.) We write Ax(T ); Γ `G x : A to

mean that there is a derivation of x : A in the system N�� + Ax(T ) in which all
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Name Formula k l Axiom schema

χT ∀x. xRx 0 0 (�A ⊃ A) ∧ (A ⊃ ♦A)

χB ∀xy. xRy ⊃ yRx 1 0 (♦ �A ⊃ A) ∧ (A ⊃ � ♦A)

χ4 ∀xyz. xRy ∧ yRz ⊃ xRz 0 2 (�A ⊃ �� A) ∧ (♦ ♦ A ⊃ ♦A)

χ5 ∀xyz. xRy ∧ xRz ⊃ yRz 1 1 (♦ �A ⊃ �A) ∧ (♦A ⊃ � ♦A)

Figure 6–3: Axioms for T, B, 4 and 5.

[x :♦k� A]0
′

[y1 :♦k−1 � A]k

[yk−1 :♦� A]2
R

[yk :�A]1 [ykRzl]0

zl :A
zl :A

0

zl :A
1

....
zl :A

zl :A
k−1

zl :A
k

zl−1 :�A
1′

....
z1 :�l−1A

x :�lA
l′

x :♦k � A ⊃ �lA
0′

We use R to abbreviate the following sequence of discharged assumptions:

[xRy1]
k [y1Ry2]

k−1 . . . [yk−1Ryk]
1 [xRz1]

l′ . . . [zl−1Rzl]
1′,

which are the major premises of the application of (Rφkl).

Figure 6–4: Derivation of ♦k � A ⊃ �lA using (Rφkl).
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open relational assumptions hold in G and all open non-relational assumptions are

contained in Γ. The equivalence of N��T and N�� + Ax(T ) is given by:

Lemma 6.2.2 Γ `TG x :A if and only if Ax(T ); Γ `G x :A.

Proof. For the left-to-right direction it is enough to derive the axioms in Ax(T )

using N��(T ). If we have φkl in T then a derivation of ♦k � A ⊃ �lA is given in

Figure 6–4. The other half, ♦lA ⊃ �k ♦A, of Aφkl is derived in a similar way (see

also examples 2 and 4 in Figure 4–5, page 75). The derivation of χD using (RD)

is very easy (cf. (4.3) on page 68).

For the converse, we show how to translate a derivation in N��(T ) into one

of the same conclusion from the same open assumptions in N�� + Ax(T ). The

translation is by induction on the structure of the derivation in N��(T ). Applic-

ations of any rule other than (Rφ) are left unchanged. Thus the only interesting

case is the translation of derivations ending in an application of (Rφ). First, we

show how to translate an application of (Rφkl). Suppose we have a derivation:

xRy1 y1Ry2 . . . yk−1Ryk xRz1 . . . zl−1Rzl

[ykRzl]
Π

w :A
w :A

(6.11)

in N��(T ). By the induction hypothesis, we have a derivation:

ykRzl
Π∗

w :A

in N�� + Ax(T ), obtained by translating Π. Now each relational assumption in

Π∗, in particular the open assumptions ykRzl, must be the premise of either a

(�E) application or a (♦I) application. The translation of (6.11) is obtained from

Π∗ by replacing each application:

Π′
yk :�B ykRzl

zl :B
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with the derivation:

x :♦k�B ⊃ �lB

Π′
yk :�B yk−1Ryk

yk−1 :♦�B....
y1 :♦k−1 �B xRy1

x :♦k �B

x :�lB xRz1

z1 :�l−1B....
zl−1 :�B zl−1Rzl

zl :B

using just the ♦k �B ⊃ �lB half of Aφkl; and by replacing each application:

Π′
zl :B ykRzl

yk :♦B

in Π′ with a similar derivation of:

Π′
zl :B xRy1 y1Ry2 . . . yk−1Ryk xRz1 . . . zl−1Rzl....

yk :♦B

using the ♦lB ⊃ �k ♦B half of Aφkl. The resulting transformation of Π∗ gives the

required derivation of:

xRy1 y1Ry2 . . . yk−1Ryk xRz1 . . . zl−1Rzl....
w :A

in N�� + Ax(T ).

It remains to translate applications of (RD). Suppose we have a derivation:

[xRy]
Π

z :A
z :A

(6.12)

in N��(T ) ending in an application of (RD). By the induction hypothesis, we

have a derivation:
xRy
Π∗
z :A
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in N��+Ax(T ), obtained by translating Π. Then the translation of (6.12) is just:

x :♦>

[xRy]
Π∗
z :A

z :A

�

By the lemma, it follows that the theorems of N��(T ) and N�� + Ax(T )

coincide. So Theorem 6.2.1 now follows from:

Lemma 6.2.3 The following are equivalent:

1. A is a theorem of IK + Ax(T ) .

2. A is a theorem of N�� + Ax(T ).

This is proved by making trivial modifications to the proof of Theorem 6.1.1. In

particular, Lemma 6.1.2 is modified to: if G is a finite tree then Ax(T ); Γ `G x :A

if and only if (Γ `G x :A)∗ is a theorem of IK+Ax(T ). The proof applies verbatim,

apart from one extra trivial case covering the use of an axiom.

6.3 Problems with a more general scheme

In this section we consider the problems that arise in trying to generalize The-

orem 6.2.1 to wider classes of frame properties.

The property of klmn-incestuality is defined by:

ψklmn = ∀xyz. xRky ∧ xRlz ⊃ ∃w. yRmw ∧ zRnw.

(see Chellas [13, p. 88]). This generalizes all the examples we have considered: the

property φkl is expressed by ψkl10, seriality is expressed by ψ0011 and directedness is

expressed by ψ1111. In contrast to the case for φkl, the property ψklmn is not always

expressible in our first-order language of modal frames, Lf , as sometimes equality

is essential. A necessary and sufficient condition for ψklmn to be expressible in Lf
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is that m = n = 0 implies k = l = 0 (the necessity can be checked semantically),

in which case it is expressible by a single basic geometric sequent in Lf . (In

general, ψklmn is expressible by a single basic geometric sequent in the language

extended with equality.) However, such considerations of expressibility with or

without equality are distractions. So henceforth we consider only instances of

ψklmn expressible in Lf . The purpose of this section is to give an example showing

that, perhaps surprisingly, the natural axiomatization of the intuitionistic modal

logic of klmn-incestual frames is, in general, incomplete.

In classical modal logic, a complete axiomatization of the modal logic valid in

klmn-incestual frames is given by the axiom schema:

♦k �m A ⊃ �l ♦n A,

or equivalently by the schema:

♦l �n A ⊃ �k ♦m A.

Thus, in the intuitionistic case, it is natural to consider the axiom schema:

Aψklmn = (♦k �m A ⊃ �l ♦n A) ∧ (♦l �n A ⊃ �k ♦m A).

Let T be any theory consisting of (the basic geometric sequents expressing) sen-

tences of the form ψklmn. Define Ax(T ) as in (6.10). One might hope that the

theorems of IK + Ax(T ) would be exactly the theorems of N��(T ). Indeed, in

Section 6.2, we showed that this is the case for a more restricted range of T ; as

the axiomatizations obtained by way of ψklmn are equivalent to our earlier ones.

However, although it is always the case that every theorem of IK + Ax(T ) is a

theorem of N��(T ), the converse does not hold in general. Thus the candidate

axiomatization is not always complete.

To see that the theorems of IK + Ax(T ) are always theorems of N��(T ),

it is enough to derive Aψklmn using (Rψklmn). So far we have not even properly

formalized ψklmn. We remark only that the formalization is straightforward and

that the subsequent derivation of Aψklmn using (Rψklmn) is an easy generalization

of the derivation of Aφkl from (Rφkl) in the proof of Lemma 6.2.2. Instead, we
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concentrate on the more interesting failure of completeness. One example for

which completeness fails is directedness. This is expressed by ψ1111 (although we

henceforth revert to its earlier name, χ2), so its induced axiom schema is:

♦ � A ⊃ �♦ A

(only one side of the conjunction is needed as both sides are the same), which is

axiom schema 2 of Figure 3–2. It is easily checked that IK+2, which we call IK2,

is sound relative to birelation models whose visibility relation is directed (as in

Figure 3–2). However, using the correspondence theorem of Plotkin and Stirling

[64, Theorem 2.2] it is straightforward to show that the schema:

(♦(�(A ∨ B) ∧ ♦A) ∧ ♦(�(A ∨ B) ∧ ♦B)) ⊃ ♦(♦A ∧ ♦B)

is not a theorem of IK2, whereas it is easily seen to be valid in any birelation

model whose visibility relation is directed and also in any IL-model of χ2.

Actually, it is easily shown that any formula valid in all birelation models with

directed visibility relation is valid in all IL-models of χ2. Quite surprisingly, the

converse does not hold. We shall show that the following schema is derivable in

N��(χ2):

(¬¬(�A ∨�B) ∧ ♦((A ⊃ �D) ∧ (B ⊃ �C)) ) ⊃

�( ((A ⊃ �C) ∧ (B ⊃ �D)) ⊃ ♦¬¬(C ∧ D) ),
(6.13)

although there are instances of this schema that are not valid in all birelation

models with directed visibility relation. Thus (6.13) is another example of the

incompleteness of IK2 as an axiomatization of the theorems of N��(χ2).

First, we show that every instance of (6.13) is a theorem of N��(χ2). Let G
be the graph:
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and let Γ be {y : (A ⊃ �D) ∧ (B ⊃ �C), z : (A ⊃ �C) ∧ (B ⊃ �D)}. Then it is

easy to derive:

Γ, x :�A∨�B `G w :C ∧ D

in N��. From this it is straightforward to obtain:

Γ, x :¬¬(�A ∨�B) `G w :¬¬(C ∧ D)

whence:

Γ, x :¬¬(�A ∨�B) `G z :♦¬¬(C ∧ D).

We now apply (R2) to obtain:

Γ, x :¬¬(�A ∨�B) `χ2
H z :♦¬¬(C ∧ D).

where H is the graph:
y

�
�
�
�
��

x

@
@
@
@
@R

z

It is now a straightforward step to derive (6.13) as a theorem of N��(χ2).

However, the instance of (6.13) obtained by instantiating A, B, C, D with dis-

tinct propositional constants α, β, γ, δ is not valid in every birelation model with

directed visibility relation. Consider Figure 6–5. This shows a birelation model in

which R is directed. The partial order is the least partial order such that x ≤ x′,

x ≤ x′′, y ≤ y′, y ≤ y′′, z ≤ z′, z ≤ z′′, w ≤ w′, w ≤ w′′ and v ≤ v′. Observe that

x 
 ¬¬(�α ∨�β) and y 
 (α ⊃ �δ) ∧ (β ⊃ �γ) and z 
 (α ⊃ �γ) ∧ (β ⊃ �δ)

but w 6
 ¬¬(γ ∧ δ). Then it is easy to see that indeed

x 6
 (¬¬(�α ∨�β) ∧ ♦((α ⊃ �δ) ∧ (β ⊃ �γ)) ) ⊃

�( ((α ⊃ �γ) ∧ (β ⊃ �δ)) ⊃ ♦¬¬(γ ∧ δ) ).
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y′ {α} - u1 {γ, δ}

�
�
�
�
��

y′′ {β}
@
@
@
@
@
@
@
@
@R

�
�
�
�
�
�
�
�
�
�
�
�
�� Q

Q
Q
Q
Q
Q
Q
Q
Qs

x′

�
�
�
�
��

PPPPPPPPPq
S
S
S
S
S
S
S
S
S
S
S
S
Sw

w′ {γ} - v′

x′′

Q
Q
Q
QQ
Q
Q
Q
Qs �

�
�
�
��

w′′ {δ}�
��
��
��
��1

�
�
�
�
�
�
�
�
��

Q
Q
Q
Q
Q
Q
Q
Q
Qs

z′ {α}
�
�
�
�
��

z′′ {β} - u2 {γ, δ}

y

�
�
�
�
��

Q
Q
Q
Q
Q
Q
Q
Q
Qs

x w - v
Q
Q
Q
QQ
Q
Q
Q
Qs �

�
�
�
��

z

Figure 6–5: Countermodel to axiomatization of directedness.
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Incidentally, the rationale behind the choice of model in Figure 6–5 is that it is

not graph-consistent (and hence not cartesian) in the terminology of Section 8.1.

The problem of obtaining a complete axiomatization of the theorems of N��(χ2)

is open, as is the problem of obtaining a complete axiomatization of the formulae

valid in all birelation models with directed visibility relation.

6.4 Discussion

In this chapter we have established a reasonable class of ‘well-behaved’ intuition-

istic modal logics which are both determined by N��(T ) for some T and axiomat-

ized by natural extensions of IK. One can look at the results either as establishing

axiomatizations of theoremhood in N��(T ), or alternatively as establishing the

meta-logical completeness of the axiomatizations (in conjunction with the results

of Chapter 5). In any case, as discussed in Section 3.4, we believe that N��(T )

induces the ‘correct’ intuitionistic modal logic of modal frames satisfying T .

With the results of this chapter, we can compare some different approaches

to determining the intuitionistic analogues of classical modal logics. The first ap-

proach of Fischer Servi [21] determined a unique intuitionistic counterpart to any

classical modal logic, via a translation into a classical bimodal logic. Her second ap-

proach, [23], determined, for a class of modal frames, F, an intuitionistic analogue

of the classical modal logic induced by F, namely the intuitionistic modal logic

whose theorems are the formulae valid in any birelation model (W, ≤, R, V ) such

that (W, R) ∈ F. The main result of [23], is that, for a wide range of F (including

all those covered by Theorem 3.3.4), the two approaches agree. Thus each of the

intuitionistic modal logics IKS1. . . Sn on page 55 is Fischer Servi’s intuitionistic

modal logic of F-frames for the appropriate F. So, by the results of this chapter,

when F is the class of frames determined by some T ⊆ {χD, χT , χB, χ4, χ5}, the

theorems of N��(T ) are the same as those of Fischer-Servi’s intuitionistic modal

logic of F-frames.
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By Theorem 5.2.1, for any T to which Theorem 6.2.1 applies, we have a

complete axiomatization of the modal formulae valid in any IT -model. It is

worthwhile noting in what sense the axiomatizations actually characterize the

class of IT -models. First, we define the notion of an ‘I-frame’. An I-frame,

(W, ≤, {Dw}w∈W , {Rw}w∈W ), is just an arbitrary IL-model of Lf . A modal for-

mula is said to be valid in an I-frame J if, for all IL-models, K, of Lm of the

form (J , {αw}w∈W ), we have that w, d 
K A, for all w ∈ W and d ∈ Dw. The

class of I-frames characterized by a modal formula A is the class of I-frames in

which A is valid. The class of I-frames characterized by a set of modal formulae

is defined similarly. It is easy to show that, for any T to which Theorem 6.2.1

applies, Ax(T ) characterizes the class of I-frames: {J | J |=IL T }. Therefore

Ax(T ) characterizes exactly the class of I-frames on which IT -models are based.

The notion of characterizability leads to some very straightforward incomplete-

ness phenomena relative to I-frames. We say that an intuitionistic modal logic L

(obtained by adding a set of axiom schemas to IK) is complete relative to a class

of I-frames if the theorems of L are exactly the set of modal formulae valid in each

I-frame in the class. We say that L is I-complete if there exists a class of I-frames

relative to which L is complete. Thus, by the remarks above, all the modal logics

to which Theorem 6.2.1 applies are I-complete. However, for a simple example of

an intuitionistic modal logic which is not I-complete, take L to be IK extended

with the schema �A ⊃ A. It is easy to show that this characterizes the class of

I-frames: {J | J |=IL χT}. But it is not I-complete because the schema A ⊃ ♦A
is also valid in any such frame, but α ⊃ ♦α is not a theorem of L (see Plotkin and

Stirling [64]).

The above discussion hints at a general theory of completeness and corres-

pondence for intuitionistic modal logics based on I-frames. However, the interest

of such a theory depends on how much importance one attaches to the semantics

of intuitionistic modal logics in IT -models.

Lastly, we remark that all the proofs in this chapter were intuitionistically

acceptable.



Chapter 7

Normalization and its
consequences

In this chapter we prove and exploit normalization results for the modal natural

deduction systems. In Section 7.1 we define the reduction relation on derivations in

N��(T ) and prove it to be both strongly normalizing and confluent. In Section 7.2

we use the normalization of N��(T ) to infer the completeness of a cut-free sequent

calculus, L��(T ), for deriving modal consequences. In Section 7.3 we use variants

L��(T ) to prove the decidability of the consequence relation of N��(T ) for certain

theories T .

7.1 Strong normalization for N�♦(T )

In this section we present reduction rules for N��(T ) and we prove strong nor-

malization and confluence.

Once again, a formula occurrence in a derivation is a maximum formula if it

is both the conclusion of an application of an introduction rule and the major

premise of an application of an elimination rule. The indirect rules in N��(T )

are (⊥E), (∨E), (♦E) and (Rχ). As before, a formula occurrence in a derivation

is permutable if it is both the conclusion of an application of an indirect rule and

the major premise of an application of an elimination rule. Again, a derivation in

118
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Π1
x :A1

Π2
x :A2

x :A1 ∧A2

x :Ai

=⇒ Πi

x :Ai

Π
x :Ai

x :A1 ∨A2

[x :A1]
Π1
y :B

[x :A2]
Π2

y :B
y :B

=⇒
Π

x :Ai

Πi

y :B

[x :A]
Π1

x :B
x :A ⊃ B

Π2
x :A

x :B

=⇒
Π2

x :A
Π1

x :B

[xRy]
Π

y :A
x :�A xRy′

y′ :A

=⇒
xRy′

Π[y′/y]
y′ :A

Π1
y :A xRy

x :♦A

[y′ :A] [xRy′]
Π2

z :B
z :B

=⇒
Π1
y :A xRy

Π2[y/y′]
z :B

Figure 7–1: Modal proper reductions.
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Π
x :⊥
y :A Ξ

z :B (r)
=⇒

Π
x :⊥
z :B

Π
x :♦A

[y :A] [xRy]
Π′

z :B
z :B Ξ

w :C (r)
=⇒ Π

x :♦A

[y :A] [xRy]
Π′

z :B Ξ
w :C (r)

w :C

Π
x :A ∨ B

[x :A]
Π1
y :C

[x :B]
Π2
y :C

y :C Ξ
z :D (r)

=⇒ Π
x :A ∨ B

[x :A]
Π1
y :C Ξ

z :D (r)

[x :B]
Π2
y :C Ξ

z :D (r)

z :D

R1[z/x] . . . Rn[z/x]

[R11[z/x]] . . . [R1n1[z/x]]
Π1
w :A . . .

[Rm1[z/x]] . . . [Rmnm[z/x]]
Πm

w :A
w :A Ξ

w′ :B
(r)

=⇒

R1[z/x] . . . Rn[z/x]

[R11[z/x]] . . . [R1n1[z/x]]
Π1
w :A Ξ

w′ :B
(r)

. . .

[Rm1[z/x]] . . . [Rmnm[z/x]]
Πm

w :A Ξ
w′ :B

(r)

w′ :B

Figure 7–2: Modal permutative reductions.
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N��(T ) is in normal form if it contains no maximum formula and no permutable

formula.

Maximum formulae are removed by the proper reductions in Figure 7–1. Note

that the reductions for the non-modal connectives are just the expected reductions

from NIL adapted to manipulate prefixed formulae. The reductions for the modal-

ities show that the modal rules do indeed enjoy the inversion principle (recall the

discussion on page 15). The permutable formulae are removed by the permutative

reductions in Figure 7–2. The permutative reductions for the non-modal connect-

ives are again the expected adaptations of those for NIL(T ). For an example in

the modal fragment, the permutative reduction permuting (♦E) and (�E) is:

Π
x :♦A

[y :A]1 [xRy]1

Π′
z :�B

z :�B
1

zRw
w :B

=⇒ Π
x :♦A

[y :A]1 [xRy]1

Π′
z :�B zRw

w :B
w :B

1

Again we write =⇒ for the rewrite relation on derivations in N��(T ) given by

a single application of either a proper or permutative reduction. As before, a

derivation is in normal form if and only if =⇒ is not applicable.

Theorem 7.1.1 The relation =⇒ on derivations in N��(T ) is strongly-normal-

izing and confluent.

One philosophical application of normalization is that, as argued on page 20, it

provides the technical justification for the claim in Section 4.1 that the modal

inference rules determine the meaning of the modalities. Some mathematical ap-

plications will be given in Sections 7.2 and 7.3. Again, weak normalization is

sufficient for all the applications we give. However, we establish strong normaliza-

tion and confluence as they give further evidence for the naturalness of the systems

N��(T ) and their reduction rules.

The proof of Theorem 7.1.1 is by reduction to strong normalization and con-

fluence for NIL(T ) (Theorem 2.3.2). For this we use a translation of derivations in

N��(T ) into derivations in NIL(T ). To prove strong normalization, it would be

sufficient to work with the translation, (·)∗, of Section 5.1. However, for the proof
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of confluence we shall require the translation of derivations to be injective. This

is not satisfied by (·)∗ as, for example, the two derivations:

x :⊥
x :⊥

x :⊥
y :⊥

both have the same translation. The remedy is simple, we need only keep track

of the prefixes attached to formulae. First, we modify the translation, (·)x, on

page 59 from modal formulae to Lm-formulae by redefining:

⊥x = ⊥ ∧ xRx

and leaving the other clauses unchanged. For the remainder of this section, we use

Ax to refer to the new translation of a modal formula A. (Note that the new trans-

lation is intuitionistically equivalent to the old, so the statement of Theorem 5.1.1

continues to hold under it.) Now, we redefine (·)∗ to take account of the new

translation of formulae. The new Π∗ is again defined inductively on the structure

of Π. For all inference rules other than (⊥E) the translation is as for the original

(·)∗, defined on page 86 and in Figure 5–1. For (⊥E) the new translation is:

 Π
x :⊥
y :A

∗ =

Π∗
⊥ ∧ xRx

⊥
Ay

Henceforth in this section we use (·)∗ to refer to the new translation.

Lemma 7.1.2 (Basic properties of (·)∗)

1. Π∗ is indeed a valid derivation in NIL(T ).

2. (Π[y/x])∗ = Π∗[y/x].

3.


Π′

x :A
Π

y :B


∗

=
Π′∗
x :A
Π∗
y :B

.

4. (·)∗ is injective.
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Proof. Each statement is proved by a straightforward induction on the structure

of Π (for 1 cf. Proposition 5.1.2). �

We now give two lemmas leading to the proof of Theorem 7.1.1. As we shall be

working with reduction in two systems, N��(T ) and NIL(T ), to avoid confusion,

we label the reduction relations =⇒�� and =⇒IL respectively. (Recall that we

write =⇒+ for the transitive closure of a relation =⇒.)

Lemma 7.1.3 If Π1 =⇒�� Π2 then Π∗1 =⇒+
IL Π∗2.

Proof. In fact any proper (resp. permutative) reduction in N��(T ) is mimicked

by a non-empty sequence of proper (resp. permutative) reductions in NIL(T ). The

proof is just a matter of checking the different cases. The only interesting cases

are those involving one of the rules: (⊥E), (�I), (�E), (♦I) and (♦E), as the

other reductions in N��(T ) transport trivially to NIL(T ). We consider two cases

as examples, one proper reduction and one permutative reduction.

For the proper reduction we show that:


Π1
y :A xRy

x :♦A

[y′ :A] [xRy′]
Π2

z :B
z :B


∗

=⇒+
IL


Π1
y :A xRy

Π2[y/y′]
z :B


∗

(7.1)

The left-hand side is the NIL(T ) derivation:

xRy
Π∗1
Ay

xRy ∧ Ay

∃x′. xRx′ ∧ Ax′

[xRy′ ∧ Ay′]

Ay′
[xRy′ ∧ Ay′]

xRy′

Π∗2
Bz

Bz

which reduces by one proper reduction to:

Π∗1
Ay xRy

xRy ∧ Ay

Ay

Π∗1
Ay xRy

xRy ∧ Ay

xRy
Π∗2[y/y′]
Bz
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and then by a (possibly empty) sequence of further proper reductions to:

Π∗1
Ay xRy

Π∗2[y/y′]
Bz

which, by Lemma 7.1.2(2 & 3), is indeed the right-hand side of (7.1).

For the permutative reduction, we consider the example on page 121. We must

show that:
Π1

x :♦A

[y :A]1 [xRy]1

Π2
z :�B

z :�B
1

zRw
w :B


∗

=⇒+
IL

 Π1
x :♦A

[y :A]1 [xRy]1

Π2
z :�B zRw

w :B
w :B

1


∗

The left-hand side is:

Π∗1
∃x′. xRx′ ∧ Ax′

[xRy ∧ Ay]
Ay

[xRy ∧ Ay]
xRy

Π∗2
∀z′. zRz′ ⊃ Bz′

∀z′. zRz′ ⊃ Bz′

zRw ⊃ Bw zRw
Bw

which, by the application of two permutative reductions, does indeed reduce to

the translation of the right-hand side:

Π∗1
∃x′. xRx′ ∧ Ax′

[xRy ∧ Ay]
Ay

[xRy ∧ Ay]
xRy

Π∗2
∀z′. zRz′ ⊃ Bz′

zRw ⊃ Bw zRw
Bw

Bw

�

Lemma 7.1.4 If Π is in normal form (in N��(T )) then Π∗ is in normal form

(in NIL(T )).

Proof. First observe that the last rule in Π∗ is an introduction if and only if

the last rule in Π is. Similarly, the last rule in Π∗ is indirect if and only if the last
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rule in Π∗ is. The proposition is now proved by a straightforward induction on the

structure of Π. For example, if the last rule applied is (♦E) then Π has the form:

Π1
x :♦A

[y :A] [xRy]
Π2

z :B
z :B

If Π is in normal form then so are Π1 and Π2 and thus, by the induction hypothesis,

Π∗1 and Π∗2 are too. Moreover. Π1 cannot end in an application of either an

introduction rule or an indirect rule (otherwise Π would not be in normal form).

Hence, by the observation, Π∗1 neither ends in an introduction nor in an indirect

rule. It is now clear, from the definition of Π∗, that Π∗ is in normal form as

required. �

Proof of Theorem 7.1.1. Let Π be a derivation in N��(T ). By Theorem 2.3.2

there is an n such that all sequences of =⇒IL reductions on Π∗ have length ≤ n.

Then, by Lemma 7.1.3, all sequences of =⇒�� reductions on Π have length ≤ n.

Thus =⇒�� is indeed strongly normalizing.

We now show that Π has a unique normal form. For suppose Π reduces to two

normal form derivations, Π1 and Π2. Then, by Lemma 7.1.3, Π∗ reduces to Π∗1

and Π∗2 which, by Lemma 7.1.4, are both in normal form. But, by Theorem 2.3.2,

normal forms in NIL(T ) are unique. Therefore Π∗1 = Π∗2 and thus, as (·)∗ is

injective, Π1 = Π2.

Confluence is an obvious consequence of (weak) normalization and the unique-

ness of normal forms. �

7.2 A cut-free sequent calculus

The application of normalization for N��(T ) are similar to those for NIL(T ) (see

Sections 2.1 and 2.3). For example, a similar proof to that of Proposition 2.3.3 es-

tablishes the subformula property for N��(T ). Rather than repeating the details,

in this section we formulate a cut-free sequent calculus, which we call L��(T ), in

which the subformula property is built into the rules. The normalization result
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G; Γ, x :A ` x :A (Ass) G; Γ, x :⊥ ` z :A (⊥L)

G; Γ, x :A, x :B ` z :C
G; Γ, x :A ∧ B ` z :C

(∧L)
G; Γ ` x :A G; Γ ` x :B

G; Γ ` x :A ∧ B
(∧R)

G; Γ, x :A ` z :C G; Γ, x :B ` z :C
G; Γ, x :A ∨ B ` z :C (∨L)

G; Γ ` x :Ai

G; Γ ` x :A1 ∨ A2
(∨Ri)

G; Γ, x :B ` z :C G; Γ ` x :A
G; Γ, x :A ⊃ B ` z :C (⊃L)

G; Γ, x :A ` x :B
G; Γ ` x :A ⊃ B

(⊃R)

G; Γ, y :A ` z :B
G, xRy; Γ, x :�A ` z :B

(�L)
G, xRy; Γ ` y :A

G; Γ ` x :�A
(�R)∗

G, xRy; Γ, y :A ` z :B
G; Γ, x :♦A ` z :B (♦L)†

G; Γ ` y :A
G, xRy; Γ ` x :♦A (♦R)

G, R11[z/x], . . . , R1n1 [z/x]; Γ ` x :A . . . G, Rm1[z/x], . . . , Rmnm [z/x]; Γ ` x :A
G, R1[z/x], . . . , Rn[z/x]; Γ ` x :A (Sχ)

‡

∗Restriction on (�R): y must not occur in G; Γ ` x :�A.

†Restriction on (♦L): y must not occur in G; Γ, x :♦A ` z :B.

‡Restriction on (Sχ): none of the variables in y occur in the sequent

G, R1[z/x], . . . , Rn[z/x]; Γ ` x :A.

Figure 7–3: The cut-free sequent calculus L��(T ).

G; Γ, y :A ` z :B xRy ∈ TH-Cl(G)
G; Γ, x :�A ` z :B

(�L)TH
G; Γ ` y :A xRy ∈ TH-Cl(G)

G; Γ ` x :♦A (♦R)TH

Figure 7–4: Rules for the modified sequent calculus, L′
��

(TH, T ).
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for NIL(T ) is then used to establish the completeness of L��(T ). In Section 7.3

we shall use variants of L��(T ) to establish the decidability of the consequence

relation of N��(T ) for certain T .

A sequent is a formal entity of the form G; Γ ` x :A, where G is a finite graph, Γ

is a finite set of prefixed formulae and all prefixes in Γ∪{x :A} are in G. The rules

of L��(T ) are given in Figure 7–3. As with N��(T ) we include only rules (Sχ) for

χ ∈ T . Note that our choice to consider sets Γ means that the usual contraction

rule is built in to the notation of the system. The formulation of (Ass) means that

weakening is an admissible rule (this fact is a consequence Theorem 7.2.1 below).

The normalization property of the natural deduction system enables the com-

pleteness of the sequent calculus to be easily established. For convenience, we only

consider consequences involving finite graphs and sets of prefixed formulae. The

generalizations to the infinite case are obvious.

Theorem 7.2.1 G; Γ ` x :A is derivable in L��(T ) if and only if Γ `TG x :A.

Proof. The soundness direction (that if the sequent G; Γ ` x : A is derivable

then Γ `TG x : A) is proved by an easy induction on sequent derivations. We

concentrate instead on the converse (completeness) direction. The proof is along

the lines of that given by Prawitz [65, Appendix A], who uses normalization in

natural deduction to prove the completeness of the cut-free fragment of Gentzen’s

sequent calculus (relative to the corresponding natural deduction system).

The proof proceeds by induction on the number of rule applications in normal

derivations of Γ `TG x : A. The cases in which the last rule is an introduction are

straightforward. For example, in the case of (♦I) we have a derivation of the form:

Π
y :A xRy

x :♦A

of Γ `TG x : ♦A where xRy in G. Now Π is a derivation of Γ `TG y : A. So, by

the induction hypothesis, there is a sequent derivation of G; Γ ` y : A. This is

extended to the desired derivation of G; Γ ` x :♦A by an application of (♦R).
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Similarly, if the last rule applied is (Rχ) then we have a derivation of the form:

R1[z/x] . . . Rn[z/x]

[R11[z/x]] . . . [R1n1[z/x]]
Π1
x′ :A . . .

[Rm1[z/x]] . . . [Rmnm[z/x]]
Πm

x′ :A
x′ :A

of Γ `TG x′ : A where G contains R1[z/x], . . ., Rn[z/x]. Now each Πi (where 1 ≤

i ≤ m) is a derivation of Γ `Gi x′ :A where Gi = G ∪ {Ri1[z/x], . . . , Rini [z/x]}. So,

by the induction hypothesis, we have derivations of G, Ri1[z/x], . . . , Rini[z/x]; Γ `

x′ :A for each i. Also, by the restriction on (Rχ), none of the variables in y occur

in G; Γ ` x′ : A. Therefore the sequent G; Γ ` x′ : A is indeed derivable by an

application of (Sχ).

The cases in which the last rule is an elimination are more interesting. Suppose

we have a normal derivation of Γ `TG x0 : A0 whose last rule is an elimination.

Because it is normal, the derivation must be of the form:

xn :An Ξn

xn−1 :An−1
(rn) Ξn−1....

x1 :A1 Ξ1

x0 :A0
(r1)

(7.2)

where: n ≥ 1; each rule (ri) is a elimination with major premise xi :Ai and subsi-

diary derivations Ξi of the minor premises (if any); and (ri) is a direct elimination

when i ≥ 2. Clearly xn :An is an open assumption. Therefore xn :An ∈ Γ.

We show that G; Γ ` x0 : A0 is derivable by a case analysis on (rn). First,

if (rn) is indirect then, as observed above, n = 1. We consider the case of (♦E),

which is illustrative of the general case. The derivation is of the form:

x1 :♦B

[y :B] [x1Ry]
Π

x0 :A
x0 :A0

Π is a normal derivation of Γ, y : B `TG∪{x1Ry} x0 : A0. So, by the induction

hypothesis, we have a sequent derivation of G, x1Ry; Γ, y : B ` x0 : A0. The (♦L)

rule extends this to a derivation of G; Γ, x1 : ♦B ` x0 : A. This is the desired

derivation of G; Γ ` x0 :A0 (as xn :An is x1 :♦B so x1 :♦B ∈ Γ).
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Lastly, suppose (rn) is a direct elimination. Then if it is removed from (7.2)

we obtain a smaller (and still normal) derivation of Γ, xn−1 : An−1 `TG x0 : A0.

Therefore, by the induction hypothesis, G; Γ, xn−1 : An−1 ` x0 : A0 is derivable.

We now proceed again by a case analysis on (rn). Suppose, for example, that

(rn) is (⊃E). Then xn : An is of the form xn−1 : C ⊃ An−1, and Ξn is a single

normal derivation of Γ `TG xn−1 :C. By the induction hypothesis there is a sequent

derivation of G; Γ ` xn−1 : C. This couples with the given derivation of the

sequent G; Γ, xn−1 : An−1 ` x0 : A0 to obtain, by (⊃L), the desired derivation of

G; Γ, xn−1 :C ⊃ An−1 ` z :B. The other direct eliminations are treated similarly.

�

In our application of the cut-free sequent calculus to establish decidability we

shall, for technical reasons, use variants of L��(T ). The variants are formulated

in order to restrict the set of graphs that can appear in derivations of a given

sequent. The problem with L��(T ) is that the graph appearing in the conclusion

of an application of (Sχ) might bear little relation to the graphs appearing in its

prefixes. In the remainder of this section we show how L��(T ) can be altered so

that, for any Horn clause χ, the rule (Sχ) can be omitted.

Let TH be a Horn clauses theory in Lf . The TH-closure of a graph G, written

TH-Cl(G), is the smallest graph (under inclusion) satisfying:

1. G ⊆ TH-Cl(G).

2. If ∀x. ((R1 ∧ . . . ∧ Rn) ⊃ R′) is in TH and R1[z/x], . . ., Rn[z/x] all hold in

TH-Cl(G) then R′[z/x] in TH-Cl(G).

TH-Cl(G) is just the initial model of the evident Horn clause theory TH ∪ G. Note

that the underlying set of G is also the underlying set of TH-Cl(G). Further, if TH
is finite then the relation xRy ∈ TH-Cl(G) is decidable (because TH-Cl(G) can be

computed by iterating closure principle 2 above a finite number of times until a

fixed point is reached).
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We now define the modified sequent-calculus, which we call L′��(TH , T ). This

is obtained from L��(TH ∪T ) by omitting the rules (Sχ) for χ ∈ TH and replacing

the rules (�L) and (♦R) with the rules (�L)TH and (♦R)TH of Figure 7–4.

Lemma 7.2.2 The sequent G; Γ ` x :A is derivable in L��(TH ∪ T ) if and only

if the sequent TH-Cl(G); Γ ` x :A is.

Proof. The left-to-right direction is trivial as L��(TH ∪ T ) is closed under

weakening. For the right-to-left implication, it is easy to show that a derivation

of TH-Cl(G); Γ ` x : A can be extended to one of G; Γ ` x : A by applications of

the (Sχ) rules for χ ∈ TH mimicking the generation of TH-Cl(G) from G. �

Proposition 7.2.3 A sequent G; Γ ` x :A is derivable in L′��(TH , T ) if and only

if it is derivable in L��(TH ∪ T ).

Proof. The left-to-right implication is proved by induction on the structure of

derivations in L′��(TH , T ). If the last rule applied is any other than (�L)TH or

(♦R)TH then the same rule applies in L��(TH ∪ T ). If the last rule applied is

(�L)TH then the derivation has the form:

....
G; Γ, y :A ` z :B

G; Γ, x :�A ` z :B

where xRy ∈ TH-Cl(G). By the induction hypothesis, G; Γ, y : A ` z : B is

derivable in L��(TH ∪ T ). Then, by Lemma 7.2.2, so is TH-Cl(G); Γ, y :A ` z :B.

Now an application of (�R) derives TH-Cl(G); Γ, x : �A ` z : B. So, again by

Lemma 7.2.2, the sequent G; Γ, x :�A ` z :B is indeed derivable in L��(TH ∪ T ).

The case for (♦R)TH is similar.

For the converse, the following more general statement is proved by a straight-

forward induction on the structure of derivations in L��(TH ∪ T ): if the sequent

G; Γ ` x :A is derivable in L��(TH ∪ T ) and G ⊆ TH-Cl(G ′) then G ′; Γ ` x :A is

derivable in L′��(TH, T ). The generalized statement is to cover the case in which

the last rule is an application of (Sχ) for some χ ∈ TH, which it renders trivial. �
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Corollary 7.2.4 A sequent G; Γ ` x :A is derivable in L′��(TH , T ) if and only if

Γ `TH ∪TG x :A.

Proof. By the above proposition and Theorem 7.2.1. �

7.3 Decidability

In this section we prove the decidability of the consequence relation of N��(T )

for any T in the family (recall Figure 4–3 on page 73):

DecT = {∅, {χD}, {χT}, {χB}, {χD, χB}, {χT , χB}}

(We do not consider any T containing both χT and χD, because χT implies χD.)

Thus, including the known result about IS5 (see page 57), we have, by the results

of Chapter 6, that theoremhood is decidable for any of the intuitionistic modal

logics in Figure 7–5 (where the arrows represent inclusions). The most prominent

logics for which decidability is left open are IK4, IKD4 and IS4. We shall discuss

possible approaches to proving their decidability in Section 7.4 and in Chapter 9.

For obvious reasons, in this section we consider only finite graphs and finite

sets of prefixed formulae. The main theorem is:

Theorem 7.3.1 For any theory T ∈ DecT the relation Γ `TG x :A is decidable.

Although it would be possible to prove Theorem 7.3.1 by a direct analysis of

normal derivations in N��(T ) for appropriate T , we shall use instead the cut-

free sequent calculi of Section 7.2. The sequent calculi seem more convenient for

performing the crucial analysis of the graph structures appearing in derivations

(see Section 7.3.1 below). Theorem 7.3.1 follows from:

Proposition 7.3.2 In each of the following modified sequent-calculi: L′��(∅, ∅),

L′��(∅, {χD}), L′��({χT}, ∅), L′��({χB}, ∅), L′��({χB}, {χD}), L′��({χT , χB}, ∅),

it is decidable whether a sequent, G; Γ ` x :A, is derivable.
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Figure 7–5: Intuitionistic modal logics known to be decidable.

For the proof of the proposition we fix TH and T so that L′��(TH , T ) is one

of the listed systems. We also fix G, Γ and x : A. We shall give an algorithm

that decides whether the sequent G; Γ ` x : A is derivable in L′��(TH , T ). The

algorithm works by searching backwards from G; Γ ` x :A for possible derivations

of it. Thus the search runs through a space of incomplete derivations ending in

G; Γ ` x :A. We begin by defining such incomplete derivations formally.

A pseudo-derivation (of G; Γ ` x :A) in L′��(TH , T ) is a derivation of G; Γ ` x :A

from arbitrary sequent axioms. Thus any derivation of G; Γ ` x : A is trivially a

pseudo-derivation. We define the size of a pseudo-derivation to be the number of

rule applications in it.

The decision procedure will work by searching a space of pseudo-derivations

until a genuine derivation is found. However, the set of all of pseudo-derivations

is infinite, so we must find a finite subset that will suffice. The set of all pseudo-

derivations is infinite for two reasons. First, the hypotheses of a sequent rule need

not be structurally less complex than its conclusion (this is partly because of the
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built-in contraction and partly because of the rules manipulating graphs), so there

is no bound on the depth of pseudo-derivations. Second, the set of all sequents

occurring in pseudo-derivations is infinite (even up to graph isomorphism). This

is because the graphs appearing in a pseudo-derivation can be arbitrarily large.

The first problem already occurs with Gentzen’s cut-free sequent calculus for

intuitionistic propositional logic, in which the contraction rule is necessary for

completeness. There the usual solution (see e.g. Dummett [16, p.146]) is to intro-

duce a notion of redundancy such that any derivable sequent has an irredundant

derivation and, moreover, there are only a finite number of irredundant pseudo-

derivations. In intuitionistic propositional logic the notion of redundancy is a

simple one based on the same sequent occurring twice in the same branch of a

pseudo-derivation. However, because of the second problem identified above, this

will not work in our case.

Instead we proceed as follows. The formulation of the modified sequent systems

listed in Proposition 7.3.2 enables us to give a good account of the structure of

the sequents we need consider (Section 7.3.1). Exploiting this structure, we define

a decidable preorder on sequents for which the induced equivalence relation has a

finite number of equivalence classes (Section 7.3.2). This preorder is then used to

define an appropriate notion of redundancy, restricting the search to a finite space

(Section 7.3.3).

Before embarking on the proof we give some preliminary definitions. The

modal depth, ||A||, of a modal formula, A, is defined inductively by: ||α|| = 0;

||A ∧ B|| = ||A ∨ B|| = ||A ⊃ B|| = max(||A||, ||B||); ||� A|| = || ♦A|| = 1 + ||A||. The

modal depth, ||Θ||, of a finite non-empty set of formulae, Θ, is the maximum modal

depth of any formula in Θ. The set of subformulae of a modal formula A is defined

inductively by: A is a subformula of itself; if any of B ∧ C, B ∨ C and B ⊃ C are

subformulae of A then so are both B and C; if either �B or ♦B is a subformula

of A then so is B. The subformula closure, Θ∗, of Θ is the least set containing Θ

that contains the set of subformulae of each of its members. We write Θ∗n for the

set of all modal formulae in the subformula closure of Θ with modal depth ≤ n

(the n-bounded subformula closure of Θ).
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Henceforth, we fix Θ = {B | y :B ∈ Γ} ∪ {A}. Define d = ||Θ||. Let X be the

underlying set of G.

7.3.1 The structure of sequents

In this subsection we analyse the structure of sequents that need appear in de-

rivations of G; Γ ` x : A in L′��(TH , T ). It turns out that we need only consider

sequents H; ∆ ` y : B in which: H is a graph extending G in a particular way,

and, for any y′ in H, the modal formulae prefixed by y′ in ∆∪{y :B} are restricted

according to the position of y′ in H.

The notion of a graph being a G-extension is defined inductively by:

1. G is a G-extension.

2. If H is a G-extension and z is not in H then H ∪ {yRz} is a G-extension.

In the second clause y need not (but may) be a node in H. Let H be a G-extension

with underlying set Y . Note that the restriction of H to X is G. We say that a

node, y, in H has depth m ≥ 0 if there exists a sequence y0Ry1 . . . Rym in H such

that: y0 ∈ X, yi+1 ∈ Y \X and ym = y. Note that any node in H has at most

one accessing sequence satisfying the conditions and so its depth, if it exists, is

unique. Clearly the depth of any x′ ∈ X exists and is 0. We say that H is bounded

if every node in H has a depth ≤ d. Intuitively a bounded G-extension is given

by G together with a set of trees of depth ≤ d each rooted at some x′ ∈ X. The

bounded-restriction of an arbitrary G-extension, H, is defined to be the restriction

of H to the set {y ∈ H | y has a depth ≤ d}. Clearly the bounded-restriction of

H is indeed a bounded G-extension.

Let ∆ be a set of prefixed formulae with all prefixes contained in the graph H.

We say that the pair (H, ∆) is a bounded context if:

1. H is a bounded G-extension, and

2. if y :B ∈ ∆ then B ∈ Θ∗d−n where n is the depth of y in H.
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A sequent, H; ∆ ` y :B, is said to be admissible if (H, ∆ ∪ {y :B}) is a bounded

context. Note that the sequent G; Γ ` x :A is admissible. A (pseudo-)derivation

is said to be admissible if every sequent in it is admissible. The main result of this

subsection is:

Proposition 7.3.3 The sequent G; Γ ` x : A is derivable in L′��(TH , T ) if and

only if it has an admissible derivation.

Establishing the bounded aspect of admissibility depends crucially on the

lemma below. This lemma is the reason that we are proving decidability for

such a limited range of logics. If TH contains either χ4 or χ5 then the lemma fails.

Lemma 7.3.4 Let H be a G-extension with nodes y and z of depths dy ≤ d and

dz ≤ d respectively. Let H′ be the bounded-restriction of H. Then:

1. yRz in TH-Cl(H) implies dz ≤ 1 + dy.

2. yRz in TH-Cl(H) implies yRz in TH-Cl(H′).

Proof. Suppose that yRz in TH-Cl(H). Then, depending on TH , one of the

following holds: yRz in H, or zRy in H, or y = z. In each case it is clear that

dz ≤ 1 + dy, so 1 holds. For 2, as dy ≤ d and dz ≤ d, then one of the following

holds: yRz in H′, or zRy in H′, or y = z. So indeed yRz in TH-Cl(H′). �

Proposition 7.3.3 follows immediately from:

Lemma 7.3.5 If there is a pseudo-derivation of G; Γ ` x :A from the axioms:

H1; ∆1 ` y1 :B1 . . . Hk; ∆k ` yk :Bk

then:

1. For each i with 1 ≤ i ≤ k, Hi is a G-extension and if z : C ∈ ∆i ∪ {yi : Bi}

then z has a depth n ≤ d in Hi and C ∈ Θ∗d−n.

2. There is an admissible pseudo-derivation of G; Γ ` x :A from the axioms:

H′1; ∆1 ` y1 :B1 . . . H′k; ∆k ` yk :Bk
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where each H′i is the bounded-restriction of Hi.

Proof. The proof is by induction on the size of the pseudo-derivation. For a

pseudo-derivation of size 0 the result is immediate, for the only sequent in the

derivation is G; Γ ` x : A itself. For the induction step, any pseudo-derivation of

size n + 1, is obtained from one of size n by adding a new rule application to its

top. We consider below the cases in which this rule is one of: (�L)TH , (�R), (♦L),

(♦R)TH and (SD). The other cases are dealt with more easily.

If the rule is (�R) then the pseudo-derivation has the form:

H, yRz; ∆ ` z :B
H; ∆ ` y :�B . . .....

G; Γ ` x :A

(7.3)

where z is not in H. By the induction hypothesis (1), we have that H is a G-

extension and the depth of y in H is n ≤ d − 1 as �B ∈ Θ∗d−n. But H ∪ {yRz}
is a G-extension (as z is not in H), the depth of z in H ∪ {yRz} is n + 1 ≤ d and

B ∈ Θ∗d−(n+1) (as �B ∈ Θ∗d−n). So (7.3) does indeed satisfy 1. For 2, we have, by

the induction hypothesis, an admissible pseudo-derivation:

H′; ∆ ` y :�B . . .....
G; Γ ` x :A

But H′ ∪ {yRz} is the bounded-restriction of H ∪ {yRz} and H′, yRz; ∆ ` z :B

is admissible (as H′; ∆ ` y :�B is). Therefore:

H′, yRz; ∆ ` z :B
H′; ∆ ` y :�B . . .....

G; Γ ` x :A

is a pseudo-derivation fulfilling the conditions required by 2. The case for (♦L) is

similar.

If the rule is (♦R)TH then the pseudo-derivation has the form:

H; ∆ ` z :B
H; ∆ ` y :♦B . . .....

G; Γ ` x :A

(7.4)
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where yRz in TH-Cl(H). By the induction hypothesis (1), we have that H is

a G-extension and the depth of y in H is n ≤ d − 1 as ♦B ∈ Θ∗d−n. But, by

Lemma 7.3.4(1), the depth of z in H is n′ ≤ n + 1 ≤ d, so indeed B ∈ Θ∗d−n′ .

Therefore (7.4) does indeed satisfy 1. For 2, we have, by the induction hypothesis,

an admissible pseudo-derivation:

H′; ∆ ` y :♦B . . .....
G; Γ ` x :A

where H′ is the bounded-restriction of H. But then, by Lemma 7.3.4(2):

H′; ∆ ` z :B
H′; ∆ ` y :♦B . . .....

G; Γ ` x :A

is an admissible pseudo-derivation fulfilling the conditions required by 2. The case

for (�L)TH is similar.

If the rule is (SD) then the pseudo-derivation has the form:

H, zRz′; ∆ ` y :B
H; ∆ ` y :B . . .....

G; Γ ` x :A

where z′ is not in H. For 1, we have, by the induction hypothesis, that H is a G-

extension. But then so is H∪{zRz′}. For 2, we have, by the induction hypothesis,

an admissible pseudo-derivation:

H′; ∆ ` y :B . . .....
G; Γ ` x :A

where H′ is the bounded-restriction of H. If z does not have a depth ≤ d − 1 in

H then H′ is also the bounded-restriction of H∪{zRz′} and so the above pseudo-

derivation already fulfills condition 2. If z does have a depth n ≤ d − 1 in H

then the depth of z′ in H ∪ {zRz′} is n + 1 ≤ d. So the bounded-restriction of

H ∪ {zRz′} is H′ ∪ {zRz′} and

H′, zRz′; ∆ ` y :B
H′; ∆ ` y :B

(SD)
. . .....

G; Γ ` x :A
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is the pseudo-derivation required by condition 2. �

It is worth commenting that many of the complications in the formulation and

proof of Proposition 7.3.3 come from the occurrence of the (SD) rule in the systems

L′��(∅, {χD}) and L′��({χB}, {χD}). For the other systems, a stronger statement

than Proposition 7.3.3 holds: every pseudo-derivation is admissible. The proof

still depends on Lemma 7.3.4, but is more straightforward.

7.3.2 A preorder on sequents

We define the preorder on sequents via a slightly circuitous route which will save

us from having to repeat definitions in Chapter 8. Henceforth in this proof, we

refer to bounded contexts as just contexts. A pointed context (henceforth pcontext)

is a triple (H, ∆, y) where (H, ∆) is a context and y is any node in H. A pcontext

morphism from (H, ∆, y) to (H′, ∆′, y′) is a graph morphism f : H → H′ such

that:

1. for all x ∈ X, f(x) = x (i.e. f preserves G);

2. if z :B ∈ ∆ then f(z) :B ∈ ∆′; and

3. f(y) = y′.

A preorder, -, on pcontexts is given by the preorder collapse of the category of

pcontexts and pcontext morphisms; i.e.

(H, ∆, y) - (H′, ∆′, y′) iff there exists a pcontext morphism from (H, ∆, y)

to (H′, ∆′, y′).

The relation - is clearly decidable (by enumerating all functions from H to H′ and

checking whether any is a pcontext morphism). We write h for the equivalence

relation induced by -.
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Finally, we induce a preorder, -, and equivalence relation, h, on admissible

sequents (again we henceforth drop the adjective “admissible”).1 The preorder is

defined by:

H; ∆ ` y :B - H′; ∆′ ` y′ :B′ iff B = B′ and (H, ∆, y) - (H′, ∆′, y′).

Once more - is clearly decidable (this fact is important). The equivalence relation

is again the induced equivalence.

Proposition 7.3.6 The set of pcontexts is partitioned into a finite number of

equivalence classes by h. Similarly the set of sequents.

Proof. We show the proposition for pcontexts, by constructing a finite set S of

‘canonical’ pcontexts and showing that every pcontext is equivalent to a canonical

one. The proposition for sequents obviously follows.

In a canonical pcontext (Hφ, ∆φ, s), the components Hφ and ∆φ will be determ-

ined by a function φ mapping each node x′ of G to the associated tree of variables

rooted at x′, labelled at each node with the set of formulae prefixed there. First

sets Tn (0 ≤ n ≤ d) of all inequivalent labelled trees with nodes of depths from n

to d are defined by:

Td = ℘(Θ∗0) × {∅}

Tn<d = ℘(Θ∗d−n) × ℘(Tn+1)

Hφ and ∆φ are then determined by a function φ : X → T0. The underlying set

of Hφ is (we use π1 and π2 as the first and second projections from a cartesian

product):

Yφ = {(x′, p0, . . . , pm) | 0 ≤ m ≤ d, x′ ∈ X, p0 = φ(x′), pn+1 ∈ π2(pn)}.

(As defined Yφ does not contain X, hence Hφ is not properly a G-extension.

However, think of (x′, p0) as x′ and see the discussion below.) The relation on

1It will always be clear when we mean the preorder/equivalence to be on pcontexts

and when on sequents.
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Hφ is:

{〈(x′, p0), (x
′′, p′0)〉 | x′Rx′′ in G} ∪ {〈(x′, p0, . . . , pm), (x′, p0, . . . , pm, pm+1)〉}.

The set of prefixed formulae is extracted by:

∆φ = {(x′, p0, . . . , pm) :B | B ∈ π1(pm)}.

We can now define the desired set S by:

S = {(Hφ, ∆φ, (x
′, p0, . . . , pm)) | Hφ and ∆φ are determined by some

φ : X → T0 and (x′, p0, . . . , pm) ∈ Yφ}

It is clear by construction that S is finite. Moreover it is clear that an upper bound

on its cardinality can be easily calculated. We do not bother to do so.

The elements of S are not officially pcontexts for the inessential reason (men-

tioned above) that the Hφ, as defined, do not extend G. The reader is asked to

identify (x′, p0) in Hφ with x′ in G. We do not do this formally, as it is useful

to have the uniform sequence notation for all nodes in Hφ. It is clear that the

elements of S do satisfy the other requirements on being a pcontext.

We now show how, given an arbitrary pcontext (H, ∆, y), we can find an ele-

ment of S equivalent to it. First we must extract the generating φ : X → T0. For

each m with 0 ≤ m ≤ d we define an auxiliary function φm mapping nodes in H

of depth m to trees in Tm by:

φd(y
′) = 〈{B | y′ :B ∈ ∆}, ∅〉

φm<d(y
′) = 〈{B | y′ :B ∈ ∆}, {φm+1(y

′′) | y′Ry′′ in H}〉.

Then φ : X → T0 is just φ0. Next we define a function f : Y → Yφ by:

f(y′) = (y0, φ(y0), φ1(y1), . . . , φm(ym))

where y0, y1, . . . , ym is the unique sequence determining the depth of y′. The

element of S equivalent to (H, ∆, y) is (Hφ, ∆φ, f(y)). It is easily checked that f

is a pcontext morphism so we know that (H, ∆, y) - (Hφ, ∆φ, f(y)).
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It remains to define a pcontext morphism from (Hφ, ∆φ, f(y)) to (H, ∆, y).

Let y0, y1, . . . , ym be the unique sequence determining the depth of y. (Note that

ym = y.) The morphism, g, is defined first on nodes of depth 0 in Hφ, then on

nodes of depth i + 1 by a finite choice depending on the action of g on nodes of

depth i.

g(x′, p0) = x′

g(x′, p0, . . . , pi+1) =



yi+1 if i + 1 ≤ m and f(yi+1) = (x′, p0, . . . , pi+1),

any y′ such that g(x′, p0, . . . , pi)Ry′ in H and

f(y′) = (x′, p0, . . . , pi+1), if the clause above

does not apply.

To show that g is well defined, we must show that if the second clause in the defin-

ition of g(x′, p0, . . . , pi+1) applies then a y′ satisfying the stated conditions exists.

First we can assume that g(x′, p0, . . . , pi) is well defined and it is clear (whatever

clause is used in its definition) that f(g(x′, p0, . . . , pi)) = (x′, p0, . . . , pi). It now

follows from the definition of f that pi = φi(g(x′, p0, . . . , pi)). But pi+1 ∈ π2(pi),

by the definition of Hφ. So pi+1 ∈ π2(φi(g(x′, p0, . . . , pi))). Then, by the definition

of φi, we have that pi+1 = φi+1(y′) for some y′ such that g(x′, p0, . . . , pi)Ry′ in H.

It is clear that this is the y′ required.

Before proceeding we note a simple fact about g, namely: if i + 1 ≤ m then

g(x′, p0, . . . , pi+1) is defined (to be yi+1) by the first clause if and only if x′ = y0 and,

for all j (0 ≤ j ≤ i+1), pj = φj(yj) (because f(yi+1) = (y0, φ0(y0), . . . , φi+1(yi+1))).

To complete the proof, g must be shown to be a pcontext morphism. First,

as a function, g preserves G in that g(x′, p0) = x′. It is clear then that the re-

striction of g to G is a graph morphism to H. So for g to be a graph morph-

ism from Hφ to H we need only show that g(x′, p0, . . . , pi)Rg(x′, p0, . . . , pi+1)

in H. This is clear when g(x′, p0, . . . , pi+1) is obtained by the second clause

in its definition. If it is obtained by the first clause then, by the fact noted

above, (x′, p0, . . . , pi+1) = (y0, φ0(y0), . . . , φi+1(yi+1)) and so, again by the fact,

g(x′, p0, . . . , pi) = yi. But g(x′, p0, . . . , pi+1) = yi+1 and yiRyi+1 as required.
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Thus g is indeed a graph morphism from Hφ to H. We must also show that

g(f(y)) = y, but this is immediate from the fact above. It remains to show that,

for all (x′, p0, . . . , pi) :B ∈ ∆φ, g(x′, p0, . . . , pi) :B ∈ ∆. Accordingly, suppose that

(x′, p0, . . . , pi) : B ∈ ∆φ. Then B ∈ π1(pi), by the definition of ∆φ. So (as in the

argument that g was well defined) B ∈ π1(φi(g(x′, p0, . . . , pi))). But then, by the

definition of φi, we have that g(x′, p0, . . . , pi) :B ∈ ∆ as required. �

7.3.3 Irredundant derivations and decidability

We now turn to the promised notion of redundancy on pseudo-derivations. An

admissible pseudo-derivation is said to be redundant if it contains two sequents

H; ∆ ` y : B and H′; ∆′ ` y′ : B, with the former occurring strictly above the

latter, such that H; ∆ ` y :B - H′; ∆′ ` y′ :B. An admissible pseudo-derivation

is irredundant if it is not redundant. The last stage in our preparation for proving

decidability is to show that if G; Γ ` x :A is derivable then it has an irredundant

(admissible) derivation.

Lemma 7.3.7 If H; ∆ ` y : B - H′; ∆′ ` y′ : B and H; ∆ ` y : B has an

admissible derivation of size n then so does H′; ∆′ ` y′ :B′.

Proof. The lemma is essentially a sequent calculus version of Proposition 4.4.1.

Let f be a pcontext morphism witnessing that H; ∆ ` y : B - H′; ∆′ ` y′ : B.

Given an admissible derivation of H; ∆ ` y :B, we can assume that the set of all

variables not in H that occur in the derivation (essentially, the set of eigenvariables

of the derivation) is disjoint from the set of variables in H′. Then the admissible

derivation of H′; ∆′ ` y′ :B′ is obtained by replacing each sequent, H′′; ∆′′ ` z :C

in the derivation of H; ∆ ` y :B with the sequent:

f(H′′) ∪ H′; f(∆′′) ∪ ∆′ ` f(z) :C

where f is extended to behave as the identity on variables not in H. It is easily

checked that the resulting tree of sequents is indeed a derivation of H′; ∆′ ` y′ :B′.

Moreover, by its construction, its size is that of the original derivation. �
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Proposition 7.3.8 If G; Γ ` x :A is derivable then it has an irredundant deriva-

tion.

Proof. By induction on the size of the derivation of G; Γ ` x : A. If the

derivation is irredundant then we are done. Otherwise it contains two sequents

H; ∆ ` y : B and H′; ∆′ ` y′ : B with the former strictly above the latter such

that H; ∆ ` y : B - H′; ∆′ ` y′ : B. Let m be the size of the subderivation of

H; ∆ ` y : B. Clearly the size of the subderivation of H′; ∆′ ` y′ : B is strictly

greater than m. But, by the lemma, H′; ∆′ ` y′ :B also has a derivation of size m.

So the subderivation of H′; ∆′ ` y′ :B can be replaced with the one of size m to

obtain a new derivation of G; Γ ` x :A which clearly has size strictly less than n.

Whence, by the induction hypothesis, G; Γ ` x :A has an irredundant derivation.

�

We are now in a position to give the decision algorithm. This will be an

exhaustive search for an irredundant derivation of G; Γ ` x : A. The decision

procedure performs the following loop starting with the sequent G; Γ ` x : A

which is the only irredundant pseudo-derivation of size 0. Given (essentially) all

the irredundant pseudo-derivations of size n (the caveat will be explained below),

these are checked to see if any is a genuine derivation. If so, the decision algorithm

succeeds. Otherwise, the finite set of (essentially) all the irredundant pseudo-

derivations of size n+1 is constructed. It is clear that, given any sequent, there are

(modulo the inessential choice of eigenvariable in the rules: (�R), (♦L) and, when

present, (SD) — and this explains the repeated qualification of ‘essentially’) only

a finite number of possible rule applications whose conclusion can be that sequent

and whose premises are admissible sequents. Moreover the finite set of different

possibilities can be effectively calculated. Therefore, assuming a canonical choice

of eigenvariable for different applications of the (�R), (♦L) and (SD) rules, there

are only a finite number of admissible pseudo-derivations of size n + 1 (extending

the irredundant ones of size n) and this set can be effectively calculated. From this

set the redundant ones are weeded out. This is possible because the - relation on

sequents is decidable. We are left with (essentially) all the irredundant derivations
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of size n + 1. If this set is empty then the decision algorithm fails. Otherwise the

loop is repeated with the new set.

The algorithm is guaranteed to terminate because eventually the maximum

height of an irredundant pseudo-derivation (which is clearly bounded by the num-

ber of equivalence classes of h for sequents) will be exceeded. The algorithm

does not need to know the bound. If the algorithm succeeds then G; Γ ` x : A

is indeed derivable, as we have found a derivation of it. If the algorithm fails

then G; Γ ` x : A is not derivable, for otherwise an irredundant derivation would

eventually have been found.

The proof of decidability is complete.

7.4 Discussion

Despite the many Fitch-style natural deduction systems for modal logic which

have appeared in the literature (see Section 4.6), the only treatment of normaliza-

tion has been in the recent paper of Masini [55]. Perhaps one explanation for this

avoidance of normalization is that most authors have considered classical modal

logic and normalization does not work particularly well for classical natural de-

duction. (For example, in his treatment of classical first-order logic, Prawitz was

forced to omit the, admittedly definable, logical constants ∨ and ∃ [65, Ch. III].)

Masini deals only with a single system which, though intuitionistic, yields a dif-

ferent modal logic from any of the systems we consider. Also, he considers only

weak normalization.

In Section 7.1, we proved strong normalization and confluence for the whole

family of systems N��(T ). The reduction of the proof to the corresponding result

for NIL(T ) shows how proof systems for modal logics can be analysed without the

theoretical overhead of having to reprove basic properties.

The first sequent calculus based on relative truth was Kanger’s system for S5

using ‘spotted’ formulae [47] (1957). The approach has been generalized by Fitting
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with his prefixed tableau systems [28] (1972) and [29, Ch. 8] (1983) (which are

closely related to cut-free sequent calculi).

The sequent calculi presented in Section 7.2 differ in two ways from those

in the aforementioned work. First, they are intuitionistic. Second, as in the

tableau systems of Nerode [59], they use relational assumptions rather than ad hoc

prefix notations (see the discussion in Section 4.6 and Appendix B). Indeed, our

basic sequent calculus, L��, could have been discovered as the single-conclusioned

restriction of a cut-free sequent calculus derived from Nerode’s tableau system for

K. (Although, in fact, it was derived from N��.) But again, our use of geometric

theories to give a uniform family of sequent systems for many different intuitionistic

modal logics is novel.

As with natural deduction, modal logics are often given sequent calculi not

based on relative truth. These manipulate the usual sequents of formulae, rather

than prefixed formulae. With such systems, cut-elimination and the subformula

property yield very easy proofs of decidability. For a survey of such techniques

see Goré [40] (1992). However, as in the case of natural deduction, we do not

know how to apply such techniques to any of the intuitionistic modal logics we

are interested in. (Again, it is the ♦ modality that causes problems.) But see

Chapter 9 for a tentative proposal.

The proof of decidability in Section 7.3 is quite long. Nevertheless, the underly-

ing argument is straightforward (once the proof theory is in place). The technical

complications arise in establishing two things: the structure of sequents and the

properties of the preorder. The difficulties in restricting to derivations containing

only admissible sequents could have been avoided by formulating the original se-

quent calculi in such a way that only admissible sequents arose. We did not do

this, however, because we preferred to derive the uniform family of sequent calculi

L��(T ) parameterized on an arbitrary (basic) geometric theory T . The extra

work in establishing properties of derivations was a price paid for this generality.

The effort invested in establishing the properties of the preorder will be shown, in

Section 8.2, to have been doubly worthwhile. The same preorder will be used to
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help establish the finite model property for those logics proved decidable in this

chapter.

The use of prefixed proof systems to establish the decidability of modal logics

originates in Fitting’s book [29, Ch. 8, §7]. There, on pp. 410–413, he gives a

proof of the decidability of classical K. Fitting proceeds as we do by (essentially)

searching backwards for a proof of the goal sequent. However, in the classical

setting the whole problem of having a potentially infinite search space is avoided

by the convenient fact that the contraction rule is redundant in the propositional

fragment. Just as we limit the depth of the trees of eigenvariables in a G-extension

by the maximum modal depth of a formula in the goal sequent, Fitting limits also

their breadth by the number of modalities in the goal sequent. Therefore, the

proof is considerably simpler in the classical case than in the intuitionistic case.

One interesting question is whether the contraction rule can be avoided in the

intuitionistic modal system. It is well known that the standard sequent calculus

rules for the intuitionistic propositional connectives are not complete without con-

traction. However, there are ways of modifying the implication rules to overcome

this problem (see, e.g., the recent paper of Dyckhoff [18]). We do not know if such

techniques can be extended to the modal sequent calculi we consider.

It is rather unfortunate that our decidability proof is restricted to such a limited

class of intuitionistic modal logics. In view of the traditional importance of S4,

our failure to capture IS4 is especially embarrassing. The problem with adding

transitivity to TH is that it enables the (�L)TH and (♦R)TH rules to transport a

formula arbitrarily deep into a G-extension. Therefore it is no longer possible to

bound the G-extensions.

Fitting [29, pp. 413–416] gives a proof of the decidability of classical K4 based

on a prefixed tableau system. He avoids the problem of not being able to bound

the depth of (in his case) trees of prefixes by incorporating a suitable check to pre-

vent the construction of periodic infinite trees. We conjecture that it is possible to

adapt such an approach to establish the decidability of IK4, IS4 and other com-

binations. However, once again, any proof in our setting would be complicated by

the necessity of contraction. Also, Fitting makes crucial use of a systematic proof
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procedure that allows one to infer the periodicity of an infinite tree from a finite

portion of it. We are not sure how to define such proof procedures for our intu-

itionistic sequent calculi. It looks certain that any such approach to decidability

would be complicated.

In Chapter 9 we shall outline another possible approach to proving the decid-

ability of IS4, which looks more promising.

In contrast to IS4, it is straightforward to adapt the proof-theoretic techniques

of this chapter to prove the known result that IS5 is decidable. Actually, the proof

of the decidability of IS5 is considerably easier than the proofs in the cases we

considered. For the easiest proof, it is probably best to use a sequent calculus

with sequents of the form Γ ` x :A. There is no need to keep account of any graph

structure because, for IS5, the visibility relation can be assumed to be total. (The

resulting proof system is just the intuitionistic restriction of Kanger’s sequent

calculus for classical S5 [47].) Again, cut-free proofs contain only subformulae of

formulae appearing in the goal sequent. But this time, rather than contending with

graph-indexed sets of subformulae as we had to do, one works with plain indexed

sets of subformulae instead. Consequently, an appropriate notion of redundancy on

derivations is easily established. It is also straightforward to adapt these methods

to obtain the decidability of the full consequence relation of N��({χT , χB, χ4}).

Lastly, we remark that all the proofs in this chapter have been intuitionistically

acceptable.



Chapter 8

Birelation models and the finite
model property

In this chapter we consider two aspects of the birelation models introduced in

Section 3.3. First, in Section 8.1, we consider the problem of giving direct inter-

pretations of the natural deduction systems N��(T ) in birelation models. Second,

in Section 8.2, we prove that each of the intuitionistic modal logics proved decid-

able in Chapter 7 enjoys the finite model property relative to birelation models.

8.1 Interpreting N�♦ in birelation models

In Chapter 5 we proved the soundness and completeness of an interpretation of

N��(T ) in IL-models. In Section 3.3 we stated the soundness of the various ax-

iomatized IKS1. . .Sn relative to appropriate classes of birelation models, and we

sketched the proof of completeness. So far, the only tie-up between the two se-

mantics has been via the results of Sections 6.1 and 6.2, showing that certain

systems IKS1. . .Sn give complete axiomatizations of the theorems of the appro-

priate N��(T ). However, Section 6.3 pointed out a discrepancy between the two

semantics, not every modal formula valid in IL-models of χ2 (expressing directed-

ness) is valid in every birelation model with directed visibility relation.

In this section we consider how well birelation models fare when considered

directly as models of the natural deduction systems. It turns out that, even for

148
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Figure 8–1: Counterexample to general soundness.

the basic system N��, there are problems in interpreting the natural deduction

consequence relation in arbitrary birelation models.

It is natural to consider the following definition of G-interpretation in a birela-

tion model. A G-interpretation in (W, ≤, R, V ) is a graph morphism, [[·]], from G

to (W, R). However, now there is a surprise. The obvious statement of soundness

for N�� fails. There is a consequence Γ `G x : A, a birelation model B and a

G-interpretation [[·]] in B such that, for all z :B ∈ Γ, [[z]] 
B B, but [[x]] 6
B A.

Let G be the graph:

y
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Then it is easy to derive the following consequence in N��:

y :α ⊃ �¬α `G x :¬� α.
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However, this consequence does not hold semantically. Consider the model in

Figure 8–1. The order is the least partial order such that: x ≤ x′, x ≤ x′′, y ≤ y′,

y ≤ y′′, z ≤ z′ and z ≤ z′′. It is easy to check that the two frame conditions are

satisfied, indeed the model is universal. It is clear that y 
 α ⊃ �¬α, but x′ 
 �α

so x 6
 ¬� α. Thus taking the evident (and unique) G-interpretation, soundness

fails.

It might be possible to avoid this problem by changing the notion of G-

interpretation. However, we believe that the present definition is natural so, in-

stead, we consider the forms of soundness and completeness that do hold. There

are two options. One is to work with arbitrary birelation models and consider

restricted forms of consequence. The theorem obtained is quite natural.

Theorem 8.1.1 Let G be a tree. Then the following are equivalent:

1. Γ `G x :A.

2. For all birelation models B, for all G-interpretations [[·]] in B, if, for all

z :B ∈ Γ, [[z]] 
B B then [[x]] 
B A.

The second option is to restrict the notion of model (ruling out e.g. the model

of Figure 8–1) so that soundness is obtained for arbitrary consequences. We shall

discuss this possibility later.

In Section 8.1.1 we prove the completeness direction of Theorem 8.1.1. In

Section 8.1.2 we prove the soundness direction. In Section 8.1.3 we consider the

problem of extending the interpretation in birelation models to N��(T ) when T
is nonempty.

8.1.1 Completeness

We show the completeness direction of Theorem 8.1.1 by reducing it to complete-

ness for IL-models. Suppose we have an IL-model:

K = (W, ≤, {Dw}w∈W , {Rw}w∈W , {αw}w∈W )
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Then we define a birelation model BK = (W ′, ≤′, R′, V ′) by:

W ′ = {〈w, d〉 | w ∈ W and d ∈ Dw},

〈w, d〉 ≤′ 〈w′, d′〉 iff w ≤ w′ and d = d′,

〈w, d〉R′〈w′, d′〉 iff w = w′ and Rw(d, d′),

V
′(〈w, d〉) = {α | αw(d)}.

Clearly ≤′ is indeed a partial order and V ′ is monotonic. To see that the frame

conditions hold:

〈w′, d〉 . . . . .
R′
- 〈w′, d′〉 〈w′, d〉 . . . . .

R′
- 〈w′, d′〉

(F1) (F2)

〈w, d〉

≤′

R′- 〈w, d′〉

........
≤′

〈w, d〉

≤′
.........

R′- 〈w, d′〉

≤′

In fact the selected worlds are the unique ones satisfying the conditions. So the

model BK is universal.

Lemma 8.1.2 w, d 
K A if and only if 〈w, d〉 
BK A.

Proof. By an easy induction on the structure of A. We consider only the case

that A is of the form �B. Then w, d 
K �B if and only if, for all w′ ≥ w, for

all d′ ∈ Dw′ , Rw′(d, d′) implies w′, d′ 
K B if and only if, for all 〈w′, d〉 ≥′ 〈w, d〉,
for all 〈w′, d′〉 ∈ W ′, 〈w′, d〉R′〈w′, d′〉 implies w′, d′ 
K B. But, by the induction

hypothesis, w′, d′ 
K B if and only if. 〈w′, d′〉 
BK B. So indeed w, d 
K �B if

and only if 〈w, d〉 
BK �B. �

Proof of Theorem 8.1.1 (2 =⇒ 1). First note that, given any world w in an

arbitrary IL-model K and any G-w-interpretation ρ in K, then [[x]] = 〈w, ρ(x)〉 is

a G-interpretation in BK. Using this fact and the lemma above, it is easily seen

that the completeness direction of Theorem 8.1.1 follows from the completeness

direction of Theorem 5.2.1. �

Note that nowhere in the proof of completeness have we used the assumption that

G is a tree. Thus the completeness direction of Theorem 8.1.1 holds for arbitrary

consequences.
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As BK is universal, we also have the completeness of N�� relative to universal

models. However, we can cut down the class of birelation models considered much

further. Let B = (W, ≤, R, V ) be any birelation model. We write ≤∼ and R∼ for

the equivalence-closures of ≤ and R respectively. We say that B is cartesian if

w ≤∼ vR∼w implies w = v. Not every universal model is cartesian. For example,

in the model of Figure 8–1 we have that x′ ≤∼ x′′R∼x′. However, it is obvious that

every cartesian birelation model is universal. It is also clear that, for any IL-model

K, the birelation model BK is cartesian. Therefore, N�� is complete relative to

the class of cartesian models.

The interest in cartesian models is that every cartesian birelation model is

isomorphic to one of the form BK (under the natural notion of isomorphism).

Thus those birelation models obtained from IL-models are characterized (up to

isomorphism) as exactly the cartesian models. This characterization is inspired

by a similar one, attributed to P. Idziac, in Ono and Suzuki [62, Lemma 3.4, p.

73] for (their formulation of) birelation models of IS5. We shall not prove the

characterization in detail. However, let us at least outline the interesting parts.

First, given a cartesian birelation model B = (W, ≤, R, V ), we sketch the con-

struction of an IL-model, K, such that BK is isomorphic to B. Define:

K = (W ′, ≤′, {Dw}w∈W ′, {Rw}w∈W ′, {αw}w∈W ′)

where:

W ′ = W/R∼,

[w] ≤′ [w′] iff there exists v′ such that w ≤ v′R∼w′,

D[w] = {[v] ∈ W/≤∼ | there exists w′ such that wR∼w′ ≤∼ v},

R[w]([v1], [v2]) iff wR∼w1 ≤∼ v1 and wR∼w2 ≤∼ v2 implies w1Rw2,

α[w]([v]) iff wR∼w′ ≤∼ v implies α ∈ V (w′).

The proof that K is indeed an IL-model depends upon the following fact: for any

[v] ∈ D[w], there is a unique w′ such that wR∼w′ ≤∼ v. The fact follows from

B being cartesian. The isomorphism from B to BK is determined by the function

mapping w ∈ W to 〈[w], [w]〉. Its inverse is determined by the function mapping
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〈[w], [v]〉 to the unique w′ such that wR∼w′ ≤∼ v. A detailed proof is routine, and

is similar to that of [62, Lemma 3.4, p. 73].

The notion of cartesian birelation model is due to Fischer Servi [23, p. 69],

from whom we take the terminology. However, her definition was (essentially) via

the construction of BK. She did not give our intrinsic (and hence invariant under

isomorphism) definition.

8.1.2 Soundness

For the proof of the soundness direction of Theorem 8.1.1 we work with an arbit-

rary (but henceforth fixed) birelation model B = (W, ≤, R, V ).

The simple but crucial lemma that enables things to work is:

Lemma 8.1.3 (Lifting lemma) Let G be a tree. Given any G-interpretation [[·]],

any x in G and any w ≥ [[x]], there exists another G-interpretation, [[·]]′, such that

[[x]]′ = w and, for all z ∈ G, [[z]]′ ≥ [[z]].

The model of Figure 8–1 demonstrates that the lemma can fail when G is not a

tree.

Proof. We assume G has the form in Figure 6–1 on page 100. Given a G-

interpretation [[·]] and w ≥ [[xm]] we define [[·]]′ satisfying the lemma for x = xm.

First define [[xm]]′ = w. Next we find a suitable value for [[xm−1]]′ using the

frame condition (F2). This process is iterated another m − 1 times to find in

turn: [[xm−2]]′, . . . , [[x1]]′ and [[x0]]′. We must still interpret those prefixes in G

not of the form xi. Each of these, y, has a unique path from x0 of the form

x0Rx1 . . . xiyRy1 . . . yj = y where j ≥ 1 and y1 is different from xiy+1. First [[y]]′

is defined for those y for which j = 1 from (the already determined) [[xiy]]
′ using

frame condition (F1). Again the process is iterated to define, in turn, [[y2]]′, . . . ,

[[yj]]′. �

Proof of Theorem 8.1.1 (1 =⇒ 2). By the usual induction on derivations.

The only extra difficulty is that we must ensure that throughout the induction we
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can restrict attention to graphs that are trees. However, this is indeed possible,

as already seen in the proof of Lemma 6.1.2. We consider only those cases that

require the lifting lemma. The other cases can be copied mutatis mutandis from

the corresponding cases in the proof of Theorem 4.5.1.

(⊃I) We have a derivation:
[x :A]

Π
x :B

x :A ⊃ B

of the consequence Γ `G x :A ⊃ B where G is a tree. Then Π is a derivation

of Γ, x :A `G x :B. So, by the induction hypothesis, for all G ′-interpretations

[[·]], if, for all z : C ∈ Γ ∪ {x : A}, [[z]] 
 C then [[x]] 
 B. Let [[·]] be any

G-interpretation such that, for all z : C ∈ Γ, [[z]] 
 C. We must show that

[[x]] 
 A ⊃ B.

Let w ≥ [[x]] be such that w 
 A. By the lifting lemma there is a G-

interpretation, [[·]]′ such that [[x]]′ = w and, for all z ∈ G, [[z]]′ ≥ [[z]]. But

then [[x]]′ 
 A and, by the monotonicity lemma, for all z : C ∈ Γ, [[z]]′ 
 C.

So, by the induction hypothesis, [[x]]′ 
 B, i.e. w 
 B. Thus [[x]] 
 A ⊃ B

as required.

(�I) We have a derivation:
[xRy]

Π
y :A

x :�A

of the consequence Γ `G x : �A where G is a tree. Let G ′ = G ∪ {xRy}
which is a tree as y is not in G. Now Π is a derivation of Γ `G′ y :A. So, by

the induction hypothesis, for all G ′-interpretations [[·]], if, for all z : B ∈ Γ,

[[z]] 
 B then [[y]] 
 A. Let [[·]] be any G-interpretation such that, for all

z :B ∈ Γ, [[z]] 
 B. We must show that [[x]] 
 �A.

Let w,v be any worlds such that w ≥ [[x]] and wRv. By the lifting lemma,

there is an G-interpretation, [[·]]′, such that [[x]]′ = w and, for all z in G,

[[z]]′ ≥ [[z]]. Again, by the monotonicity lemma, for all z : C ∈ Γ, [[z]]′ 
 C.
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Now [[·]]′ can be trivially extended to an G∪{xRy}-interpretation (still called

[[·]]′) by setting [[y]]′ = v. Therefore, by the induction hypothesis, [[y]]′ 
 A,

i.e. v 
 A. So indeed [[x]] 
 �A.

�

From the above proof, it can be seen that the failure of the lifting lemma is the

only obstruction to a general soundness theorem for arbitrary graphs. It is easily

seen that, in any cartesian birelation model, the property of the lifting lemma

does hold for arbitrary graphs. So the class of cartesian models gives a sound

and complete interpretation to the full consequence relation of N��. But, given

the connection between cartesian birelation models and IL-models, this is hardly

surprising. One might as well work with IL-models.

However, the lifting lemma suggests considering a wider class of birelation

models. Call a birelation model graph consistent if, for all graphs G, the property

of the lifting lemma is satisfied. It is easy to see that the class of cartesian models

is strictly contained in the class of graph consistent models. But the problematic

model of Figure 8–1 is clearly not graph consistent. Indeed, by the remarks above,

the class of graph consistent models also gives a sound and complete interpretation

to the full consequence relation of N��. However, the notion of graph consistency

is rather inelegant, and we lack at present a more reasonable reformulation. So,

apart from the odd remark, we shall not consider the class of graph consistent

models further.

Instead, we shall consider arbitrary birelation models and restrict attention

to consequences over trees, or even theoremhood. (The close connection between

consequences over trees and theoremhood was brought out in Chapter 6.)

8.1.3 Extension to N�♦(T )

The first problem in extending Theorem 8.1.1 to N��(T ) for arbitrary T is which

class of birelation models to consider. The natural candidate is the class of all

birelation models, (W, ≤, R, V ), such that (W, R) |=CL T . Let us call such models
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the birelation models of T . However, the example of Section 6.3 shows that even

theoremhood in N��(χ2) is not sound relative to the class of all birelation models

of χ2.

A second problem arises with completeness. Given an IT -model K, it is not

necessarily the case that BK is a birelation model of T . For example, consider

what happens if T = {∀xy. xRy}.

In general, we do not have a good solution to these problems. (Although

the problem with soundness can be avoided by restricting to the class of graph-

consistent birelation models of T , relative to which the full consequence relation

of N��(T ) is sound.) Instead we state a solution for a restricted class of T . Let T

be any of the basic geometric theories within the scope of Theorem 6.2.1. Then:

Theorem 8.1.4 Let G be a tree. Then the following are equivalent:

1. Γ `TG x :A.

2. For all birelation models B of T , for all G-interpretations [[·]] in B, if, for all

z :B ∈ Γ, [[z]] 
B B then [[x]] 
B A.

Completeness follows from the observation that, for the T considered, given any

IT -model K, the model BK is indeed a birelation model of T . Soundness is more

difficult because the use of (Rχ) rules means that derivations in N��(T ) involving

excursions through non-tree consequences are unavoidable. The easiest proof of

soundness uses the modified sequent system L′��(T , ∅) when χD 6∈ T and the

system L′��(T \{χD}, {χD}) when χD ∈ T . For in these systems, excursions

through non-tree graphs can be avoided by the use of T -closure in the (�L)TH
and (♦R)TH rules.

Note that, for any T ⊆ {χD, χT , χB, χ4, χ5}, Theorems 6.2.1 and 8.1.4 imply

the soundness and completeness of the corresponding IKS1. . .Sn relative to its

birelation models. However, these results are obtained more easily by considering

the Hilbert systems directly (as in Section 3.3).
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8.2 The finite model property

In this section we show that birelation models do have at least one significant

advantage over IL-models. Define:

DecL = {IK, IKD, IKB, IT, IKDB, IKTB, IS5}.

Thus DecL is just the set of intuitionistic modal logics highlighted in Figure 7–5

(page 132) as those known to be decidable.

Theorem 8.2.1 (Finite model property) Let L be any logic in DecL. If A is

not a theorem of L then there exists a finite birelation model, B, of L such that

B 6|= A.

Because of the problems highlighted in Section 8.1, we do not consider an analogue

for the corresponding natural deduction consequence relations. However, for con-

sequences over trees, there is no problem in doing so. (Indeed, the corresponding

theorem follows from Theorem 8.2.1 and the equivalence between theoremhood

and consequences over trees established in Chapter 6.)

First we give a simple example to show that the finite model property fails for

IL-models.

Proposition 8.2.2 �¬¬A ⊃ ¬¬� A is valid in any IL-model:

(W, ≤, {Dw}w∈W , {Rw}w∈W , {αw}w∈W )

in which W is finite.

Proof. Suppose W is finite. Suppose that w, d 
 �¬¬A for some w ∈ W and

d ∈ Dw. Consider any maximal w′ ≥ w and d′ ∈ Dw′ such that Rw′(d, d′). Then

w′, d′ 
 ¬¬A and so w′, d′ 
 A as w′ is maximal. So w′, d 
 �A (again as w′ is

maximal). But then w′, d 
 �A for all maximal w′ ≥ w and, as W is finite, for

every w′′ ≥ w there is some maximal w′ ≥ w′′. So indeed w, d 
 ¬¬� A. �

However, for any L in DecL, the formula �¬¬α ⊃ ¬¬�α is not a theorem of L. A
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finite birelation model invalidating the formula is given by the two point model:

w′ {α}

w
?

6

where w ≤ w′. This is clearly a birelation model of any L in DecL. Furthermore,

w 
 �¬¬α and w 6
 ¬¬� α so indeed w 6
 �¬¬α ⊃ ¬¬ � α. It is also easy to

find infinite IL-models invalidating the formula. This simple counterexample to

the finite model property for IL-models was observed (in the case of IS5) by Ono

and Suzuki [62, p. 85].

Theorem 8.2.1 is already known in the case that L is IS5 (see page 57 for

discussion and references). For the other logics, the finite model property would

follow from claims made by Ewald [20] for his intuitionistic tense logics. Indeed

Ewald’s motivation for introducing birelation models (as ‘decidability’ models)

was in order to establish the finite model property. However, as pointed out to me

by Colin Stirling, the ‘proof’ given by Ewald [20, §4] is incorrect. We now outline

Ewald’s argument, pinpointing his mistake and showing the difficulty in patching

his proof. For the purpose of the discussion, we restrict attention to IK.

Ewald’s attempted proof adapts the filtration technique of classical modal logic

(see, e.g., Chellas [13]). Suppose A is not a theorem of IK. Let B = (W, ≤, R, V )

be the canonical birelation model of IK as defined on page 52. (Throughout this

discussion we use the notation established on page 52.) Let Φ be the closure of

the set of subformulae of A under the propositional connectives: ⊥, ∧, ∨ and ⊃.

We define an equivalence relation, ∼, on W by:

X ∼ Y iff X ∩ Φ = Y ∩ Φ

The structure B/∼ = (W/∼, ≤′, R′, V ′) is defined by:
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[X] ≤′ [Y ] iff there exist X ′ and Y ′ such that X ∼ X ′ ≤ Y ′ ∼ Y

[X] R′ [Y ] iff there exist X ′ and Y ′ such that X ∼ X ′R Y ′ ∼ Y

V ′([X]) = V (X) ∩ Φ

Ewald claims that B/∼ is a finite birelation model invalidating A. However, al-

though it is a birelation model invalidating A, it is not in general finite. Ewald’s

claim is based on the false statement that the quotient of Φ by intuitionistic equi-

valence is finite [20, bottom of p. 173]. The quotient is infinite because it is the

free Heyting algebra on a finite set of generators and, despite Ewald’s statement

to the contrary, it is well known that the free Heyting algebra on even a single

generator is infinite (see, e.g., van Dalen [14, p. 262]). (Ewald mistakenly cites

references to the free distributive lattice, which, although it is a finite Heyting

algebra, is not a free one.)

It is clear that B/∼ would not be infinite if the set Φ were not infinite. Indeed,

in filtration proofs in classical modal logic, the equivalence relation on the canonical

model is usually based on the finite set of subformulae of A. However, we now

show why Ewald required Φ to be closed under the propositional connectives. The

problem arises in showing that B/∼ is indeed a birelation model. For this, one

must show that ≤′ is a partial order and that B/∼ satisfies the frame conditions.

As on page 174 of [20], these requirements follow from:

Lemma 8.2.3 (Ewald [20, Lemma 11]) If X ≤ X ′ and X ∼ Y then there

exists Y ′ such that Y ≤ Y ′ and X ′ ∼ Y ′.

Proof. Suppose that X ≤ X ′ and X ∼ Y . Define

Y ′0 = Y ∪ (X ′ ∩ Φ).

We claim that Y ′0 6` {C ∈ Φ | C 6∈ X ′}. For otherwise we would have:

Y, B1, . . . , Bm ` C1, . . . , Cn

where Bi ∈ X ′ ∩ Φ and Cj ∈ {C ∈ Φ | C 6∈ X ′}. Whence Y ` B ⊃ C where

B = B1 ∧ . . .∧Bm and C = C1 ∨ . . .∨Cn. Then, by deductive closure, B ⊃ C ∈ Y .
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Now B ⊃ C ∈ Φ, as Φ is closed under the propositional connectives. So, because

X ∼ Y , we have that B ⊃ C ∈ X. Then B ⊃ C ∈ X ′, whence C ∈ X ′, by the

deductive closure of X ′. So it follows from the disjunction property for X ′ that

some Cj ∈ X ′. This is a contradiction, so the claim that Y ′0 6` {C ∈ Φ | C 6∈ X ′}
is justified. Therefore, by Lemma 3.3.2, there exists a prime Y ′ ≥ Y0 such that

Y ′ 6` {C ∈ Φ | C 6∈ X ′}. Clearly this is the required Y ′ such that Y ≤ Y ′ and

X ′ ∼ Y ′. �

Thus the closure of Φ under the propositional connectives is crucial to the proof

of the lemma.

We have not shown that there is no variant of B/∼, based on a finite Φ, that will

work. For example, using different definitions, it might be possible to circumvent

the above proof. However, it seems that, whatever approach one takes, it really

is necessary to build up logically complex formulae in order to establish the frame

conditions. For example, the proof on page 53 that B satisfies (F2) again involves

the construction of a formula of the form (A1 ∧ . . . ∧ Am) ⊃ (B1 ∨ . . . ∨ Bn). Thus

the possibility of using a finite Φ seems unlikely.

There still remains the possibility of using the infinite Φ defined above, but

quotienting it by a coarser relation than intuitionistic equivalence so that a finite

quotient of the free Heyting algebra is obtained. Suppose we have such a finite

Heyting algebra. (Such quotients exist as, e.g., the free distributive lattice gener-

ated by the subformulae of A is one.) Let Φ′ ⊆ Φ be the set of formulae equivalent

to the top element in the resulting algebra. The aim is to quotient B by the partial

equivalence relation:

X ∼′ Y iff Φ′ ⊆ X ∩ Y and X ∩ Φ = Y ∩ Φ,

constructing a birelation model B/∼′ analogously to B/∼. If Φ′ 6` A in IK, one can

show that B/∼′ is indeed a finite birelation model invalidating A. The problem lies

in finding a finite quotient of Φ such that Φ′ 6` A. We do not know how to achieve

this. For example, there seems to be no guarantee that the intuitionistically invalid

equivalences in the free distributive lattice interact safely with the modalities so

that indeed Φ′ 6` A in IK.
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We turn instead to our proof of Theorem 8.2.1. As the theorem is already

known for IS5, we consider only the other cases (for which we can give a uniform

proof). In Section 8.3, we shall indicate how our techniques can also be extended

to IS5.

Henceforth, we fix L as any logic in DecL other than IS5. Let T be its associated

basic geometric theory. Thus T ⊆ {χD, χT , χB}. Let A be any modal formula.

Our proof proceeds as follows. First (in Section 8.2.1) we construct an IT -

model out of bounded contexts (as defined in Section 7.3.1), where the bounding

depth is determined by the modal depth of A. The model has the property that,

whenever A is not a theorem of L, it invalidates A. (Thus we reprove known com-

pleteness results using a ‘bounded’ model.) Although the constructed model is in

general infinite (which Proposition 8.2.2 shows to be unavoidable), the bounded-

ness enables the eventual construction of a finite birelation model to go through.

From the IT -model we obtain a birelation model of L using the construction of

Section 8.1. Again this model is, in general, infinite. The desired finite model

is obtained by quotienting the infinite one by a preorder (actually the preorder

on pcontexts used in the decidability proof of Section 7.3). In Section 8.2.2 we

present the general quotienting technique applied. The application of the tech-

nique to obtain the required finite model from our constructed model is given in

Section 8.2.3.

8.2.1 Constructing a bounded model

In this subsection we construct an infinite IT model, K, in which, whenever A

is not a theorem of L, there is a world w with an element e ∈ Dw such that

w, e 6
K A. The construction closely follows the earlier completeness proof of

Section 5.3. However, this time we build the model out of the bounded contexts

introduced in Section 7.3.1. From it we obtain an infinite birelation model of L

by the construction of Section 8.1

Henceforth we fix: G = τ (the trivial graph); X = {x} (its underlying set);

Θ = {A,♦>}. (The inclusion of ♦> in Θ is to enable a smooth treatment of
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seriality, as will be seen below.) Recall the notation for modal depth and (bounded)

subformula closure on page 133. Define d = ||Θ||. The model will be constructed

out of bounded contexts as defined on page 134. However, as G = τ we can give

the following simplified definition of bounded contexts. A bounded context is a

pair (H, ∆) (with all prefixes in ∆ contained in H) such that:

1. H is a finite tree of depth ≤ d with root x, and

2. if y :B ∈ ∆ then B ∈ Θ∗d−n where n is the depth of y in H.

As in Section 5.3, we write (H, ∆) ⊆ (H′, ∆′) to mean that H ⊆ H′ and ∆ ⊆ ∆′. A

bounded context (H, ∆) is said to be T -prime if it satisfies the following conditions.

1. If y has depth n in H and B ∈ Θ∗d−n then ∆ `TH y : B implies y : B ∈ ∆.

(Bounded deductive closure.)

2. ∆ 6`TH x :⊥. (Consistency.)

3. If y :B ∨ C ∈ ∆ then y :B ∈ ∆ or y :C ∈ ∆. (Disjunction property.)

4. If y :♦B ∈ ∆ then there exists z such that yRz in H and z :B ∈ ∆. (Diamond

property.)

Lemma 8.2.4 (Bounded prime lemma) If (H, ∆) is a bounded context and

∆ 6`TH y :B then there is a T -prime bounded context (H′, ∆′) with (H′, ∆′) ⊇ (H, ∆)

such that ∆′ 6`TH′ y :B.

Proof. Suppose (H, ∆) is a bounded context and ∆ 6`TH y : B. We define a

sequence of bounded contexts: (H−1, ∆−1) ⊆ (H0, ∆0) ⊆ . . . ⊆ (Hd, ∆d) starting

with (H−1, ∆−1) = (H, ∆). Then we define (H′, ∆′) = (Hd, ∆d).

Each (Hm, ∆m) (where 0 ≤ m ≤ d) is itself defined by iterative approximations

from (Hm−1, ∆m−1). Consider the finite set:

{x′ :A′ ∈ Θ∗d−m|x′ has depth m in Hm−1}
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which we write as {x1
m : A1

m, . . . , xnmm : Anm
m }. The approximations, (Hi

m, ∆i
m)

(0 ≤ i ≤ nm) are defined by:

(H0
m, ∆0

m) = (Hm−1, ∆m−1)

(Hi+1
m , ∆i+1

m ) =



(Hi
m, ∆i

m) if ∆i
m, xi+1

m :Ai+1
m `THim y :B,

(Hi
m, ∆i

m ∪ {xi+1
m :Ai+1

m }) if ∆i
m, xi+1

m :Ai+1
m 6`THim y :B and

Ai+1
m is not of the form ♦A′,

(Hi
m ∪ {xi+1

m Rz}, ∆i
m ∪ {xi+1

m :Ai+1
m , z :A′})

if ∆i
m, xi+1

m :Ai+1
m 6`THim y :B and Ai+1

m is of the form ♦A′, where

z is any chosen variable not in Hi
m.

(Hm, ∆m) is defined to be (Hnm
m , ∆nm

m ).

By construction (Hd, ∆d) is clearly a bounded context. Before showing that it

is T -prime, we prove a useful property. Suppose that x′ has depth m in Hd and

A′ ∈ Θ∗d−m. Then:

x′ :A′ ∈ ∆d if and only if ∆d, x
′ :A′ 6`THd y :B. (8.1)

For the ‘if’ direction suppose that ∆d, x
′ : A′ 6`THd y : B. We must have that

x′ : A′ = xi+1
m : Ai+1

m for some i (0 ≤ i ≤ nm − 1) so, by the assumption, it is

clear that ∆i
m, x′ : A′ 6`THim y : B. Then, by the definition of ∆i+1

m , we have that

x′ :A′ ∈ ∆i+1
m . Therefore x′ :A′ ∈ ∆d.

The converse just says that ∆d 6`THd y : B. For this it is enough to show that

∆i+1
m 6`THi+1

m
y :B given that ∆i

m 6`THim y :B. This is clear if (∆i+1
m , Hi+1

m ) is obtained

by either of the first two clauses in its definition. For the third clause we have

that ∆i
m, xi+1

m : ♦A′ 6`THim y : B, that Hi+1
m = Hi

m ∪ {xi+1
m Rz} for some z not in

Hi
m, and that ∆i+1

m = ∆i
m ∪ {xi+1

m : ♦A′, z : A′}. Suppose, for contradiction, that

∆i+1
m `THi+1

m
y :B. Then ∆i

m, xi+1
m :♦A′, z :A′ `THim∪{xi+1

m Rz} y :B from which it follows

by the (♦E) rule that ∆i
m, xi+1

m :♦A′ `THim y :B, giving the required contradiction.

We now prove that the bounded context (Hd, ∆d) is indeed T -prime. We have

just seen that ∆d 6`THd y :B from which consistency trivially follows. For deductive
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closure, suppose that ∆d `THd x′ :A′ where x′ has depth m in Θ∗ and A′ ∈ Θ∗d−m.

Then clearly ∆d, x
′ : A′ 6`THd y : B. So, by (8.1) above, x′ : A′ ∈ ∆d as required.

For the disjunction property, suppose, for contradiction, that x′ : A′ ∨ B′ ∈ ∆d,

x′ : A′ 6∈ ∆d and x′ : B′ 6∈ ∆d. Then, by (8.1) above, ∆d, x
′ : A′ `THd y : B and

∆d, x
′ : B′ `THd y : B. But trivially ∆d `THd x′ : A′ ∨ B′ so, by the (∨E) rule,

∆d `THd y :B, giving the required contradiction. Lastly, for the diamond property,

suppose that x′ : ♦A′ ∈ ∆d. Then, setting m to be the depth of x′ we have

x′ :♦A′ = xi+1
m : Ai+1

m for some i (0 ≤ i ≤ nm − 1). It is clear, from the definition

of ∆i+1
m by the third clause, that for some z, z :A′ ∈ ∆i+1

m ⊆ ∆d. �

The bounded IT -model will be constructed out of T -prime bounded contexts

analogously to the construction of KT on page 93. However, for non-empty T ,

it necessary first to complete H from a T -prime bounded context, (H, ∆), into

a classical model of T . Let Y be the underlying set of H. The T -completion,

T -Comp(H), of H is the graph whose underlying set is Y and whose relation is

defined by: yRz in T -Comp(H) if one of:

1. yRz in H,

2. y = z and either χT ∈ T or both χD ∈ T and y has depth d in H,

3. zRy in H and χB ∈ T .

Thus if χD 6∈ T then T -Comp(H) is the T -closure of H as defined on page 129.

Note that if yRz in T -Comp(H) and if the depths of y and z in H are dy and dz

respectively then dz ≤ 1 + dy (cf. Lemma 7.3.4). Note also that H ⊆ H′ implies

T -Comp(H) ⊆ T -Comp(H′).

Lemma 8.2.5 If (H, ∆) is a T -prime bounded context then T -Comp(H) |=CL T .

Proof. It is easy to see that T -Comp(H) is reflexive if χT ∈ T and is symmetric

if χB ∈ T . We show that if χD ∈ T then T -Comp(H) is serial. Let y be any node

in H. We must show that there exists z such that yRz in T -Comp(H). If y has

depth n < d then ♦> ∈ Θ∗n−d and `TH y :♦>. So, by bounded deductive closure,

y :♦> ∈ ∆. But then, by the diamond property, there exists z such that yRz in
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H. So yRz in T -Comp(H). Otherwise, if y has depth d then yRy in T -Comp(H).

�

We now construct the bounded canonical model,

K = (W, ≤, {Dw}w∈W , {Rw}w∈W , {αw}w∈W ).

Define:

W = the set of T -prime bounded contexts,

(H, ∆) ≤ (H′, ∆′) iff (H, ∆) ⊆ (H′, ∆′),

D(H,∆) = the underlying set of H,

R(H,∆)(x, y) iff xRy in T -Comp(H),

α(H,∆)(x) iff x :α ∈ ∆.

Clearly all the conditions on being a IT -model are satisfied by K, in particular,

by Lemma 8.2.5, each (D(H,∆), R(H,∆)) is a classical model of T

Lemma 8.2.6 (Bounded canonical model lemma) Let (H, ∆) be any T -prime

bounded context. If y has depth n in H and B ∈ Θ∗d−n then (H, ∆), y 
K B if and

only if y :B ∈ ∆.

Proof. As in the proof of Lemma 5.3.2, we show, by a case analysis on the struc-

ture of B, that the inductive clauses defining the satisfaction relation (H, ∆), y 
 B

are mimicked by the membership relation y : B ∈ ∆ (where y has depth n in H

and B ∈ Θ∗d−n). The cases in which the main connective in B is not a modality

are similar to their counterparts in Lemma 5.3.2. So we consider only the modal

cases, which differ because of the definition of R(H,∆).

�B. We show that y :�B ∈ ∆ if and only if, for all (H′, ∆′) ≥ (H, ∆) and all z,

yRz in T -Comp(H′) implies z :B ∈ ∆′.

=⇒ Suppose y :�B ∈ ∆, (H′, ∆′) ≥ (H, ∆) and yRz in T -Comp(H′). Let

dy and dz be respectively the depths of y and z in H′. Note that, as

y :�B ∈ ∆, we have that dy < d. We shall show that ∆′ `TH′ z :B, from

which z :B ∈ ∆′ follows by bounded deductive closure, as dz ≤ dy + 1.
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Clearly ∆′ `TH′ y :�B. The derivation of ∆′ `TH′ z :B from this depends

on the reason why yRz in T -Comp(H′). If yRz in H′ then ∆′ `TH′ z :B

is derived by an application of (�E). If y = z then, as dy < d, we have

χT ∈ T , so ∆′ `TH′ z :B is derived by (�E) followed by (RT ). Similarly

if zRy in H′ then χB ∈ T and the consequence is derived by way of

(�E) and (RB).

⇐= Suppose that, for all (H′, ∆′) ≥ (H, ∆), we have that yRz in H′ implies

z :B ∈ ∆′. Let z be some variable not in H. Suppose, for contradiction,

that ∆ 6`TH∪{yRz} z : B. Then, by the bounded prime lemma, there

is a T -prime bounded context (H′, ∆′) ⊇ (H ∪ {yRz}, ∆) such that

∆′ 6`TH′ z :B. But then (H′, ∆′) ≥ (H, ∆), and yRz in H′ and z :B 6∈ ∆′,

contradicting the initial supposition.

So ∆ `TH∪{yRz} z : B where z not in H. Hence, by (�I), we have that

∆ `TH y :�B. So, by deductive closure, y :�B ∈ ∆.

♦B. We show that y : ♦B ∈ ∆ if and only if there exists z such that yRz in

T -Comp(H) and z :B ∈ ∆.

=⇒ Immediate from the diamond property of (H, ∆).

⇐= Suppose, for some z, yRz in T -Comp(H) and z :B ∈ ∆. Then using the

(♦I) rule together with, when appropriate, (RT ) or (RD), one derives

that ∆ `TH y :♦B. So, by deductive closure, y :♦B ∈ ∆.

�

For the proof of the finite model property we begin with the cartesian birela-

tion model constructed from K above by the method of Section 8.1.1. A more

explicit description of this model, BK = (WK, ≤K, RK, VK), is (recall the definition

of pcontext on page 138):
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WK = the set of pcontexts, (H, ∆, y), such that

(H, ∆) is T -prime,

(H, ∆, y) ≤K (H′, ∆′, y′) iff (H, ∆) ⊆ (H′, ∆′) and y = y′,

(H, ∆, y)RK(H′, ∆′, y′) iff (H, ∆) = (H′, ∆′) and yRy′ in T -Comp(H),

V (H, ∆, y) = {α | y :α ∈ ∆}.

By the remarks in Section 8.1.3, BK is indeed a birelation model of L.

By its construction, BK is, in general, infinite. Just as in the earlier proof of

decidability we had to contend with a possibly infinite number of sequents, here

we have a possibly infinite number of (T -prime) pcontexts. Once more we appeal

to the preorder on pcontexts defined in Section 7.3.2. We shall use this to quotient

BK into a finite model.

8.2.2 Quotienting a birelation model

First we describe the general quotienting technique. Let B = (W, ≤, R, V ) be

an arbitrary birelation model. Let - be any preorder on W . We write h for

the equivalence relation induced by -. We say that - is a birelation simulation

(henceforth just simulation) if the conditions below are satisfied.

1. w - w′ implies V (w) ⊆ V (w′).

2. w ≤ w′ implies w - w′.

3. w - w′ implies there exists w′ such that w ≤ w′ h w′.

4. w - w and wRv implies there exists v such that v - v and wRv.

5. w - wRv implies there exist w′, v′ such that w ≤ w′Rv′ - v.
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Diagrammatically, 3, 4 and 5 are:

w′ . . . . . . . . . .
h

w′ w . . . . . . . . . . .
R

- v w
R - v

3.

...
...
...
...
...
...
...
...
...
...
...
..

≤

5.

4. w′ . . . . . . . . . .
R

- v′

.........

-

...
...

...
...

..

≤

w

-

w

-

R - v

.......................

-

w

-

The reason for imposing these conditions is that they are the weakest, natural

conditions we could find that both apply to our intended application (the pcontext

preorder on the birelation model BK) and which enable the following construction

and ‘quotient lemma’ to go through.

Henceforth let - be a simulation. Define B/- = (W/h, -/h, R, V ) where:

[w]R[v] iff there exist w′, v′ such that w h w′Rv′ h v,

V ([w]) = V (w).

(Henceforth we write - for -/h.) That V is well defined follows from condition

1 on - being a simulation. To see that the frame conditions hold:

(F1) Suppose [w] - [w′] and [w]R[v]. Consider the diagram:

w′ . . . . . . . . . . . . . . . . . . . . . . . . .
R

- v′

w

-

h
w

R - v

..........

-

h
v

Here w and v exist because [w]R[v]. Then w - w′ so, by condition 4, there

exists v′ such that v - v′ and w′Rv′. But then [v′] is the required world as

[v] - [v′] and [w′]R[v′].
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(F2) Suppose that [w]R[v] - [v′]. Consider the diagram:

w′ . . . . . . . . . .
R

- v′ . . . . . . . . . . .
h

v′

w
h

w

≤

.......... R - v

≤

.......... h
v

-

Here w and v exist because because [w]R[v]. Then v - v′, so v′ can be found

by condition 3. w′ is then found by (F2) in B. Now [w] - [w′]R[v′], so [w′]

is the required world.

Note that (F1) for B/- can also be proved using condition 3 together with (F1)

for B in a manner analogous to the proof of (F2) above.

Next we show that if B is a birelation model of L then so is B/-.

Lemma 8.2.7 If R is serial, reflexive or symmetric then R is serial, reflexive or

symmetric respectively.

Proof. Seriality and reflexivity are trivially inherited. For symmetry, suppose

that [w]R[v]. Then there exist w′, v′ such that w h w′Rv′ h v. So v′Rw′, by the

symmetry of R. Thus v h v′Rw′ h w and indeed [v]R[w]. �

Interestingly, it is not in general the case that R is transitive if R is. However, we

are not dealing with any logic requiring a transitive visibility relation.

The important connection between B and B/- is:

Lemma 8.2.8 (Quotient lemma) For all w ∈ W , w 
B B if and only if

[w] 
B/- B.

Proof. By induction on the structure of B. We consider a selection of cases.

α. For atomic α we have w 
B α if and only if α ∈ V (w) if and only if α ∈ V ([w])

if and only if [w] 
B/- α.

B ⊃ C. =⇒ Suppose w 
B B ⊃ C, i.e. for all w′ ≥ w, w′ 
B B implies w′ 
B C.

Consider an arbitrary [w′] % [w] such that [w′] 
B/- B. We must show

that [w′] 
B/- C.
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By condition 3 there exists u such that w ≤ u h w′. Now [u] 
B/- B

(as [u] = [w′]) so, by the induction hypothesis, u 
B B whence, by the

initial supposition, u 
B C. Thus, again by the induction hypothesis,

[u] 
B/- C, i.e. [w′] 
B/- C as required.

⇐= Suppose [w] 
B/- B ⊃ C, i.e. for all [w′] % [w], [w′] 
B/- B implies

[w′] 
B/- C. Consider an arbitrary w′ ≥ w such that w′ 
B B. We

must show that w′ 
B C.

Now, by condition 2, [w′] % [w] and, by the induction hypothesis,

[w′] 
B/- B so [w′] 
B/- C. Thus, again by the induction hypothesis,

w′ 
B C.

�B. =⇒ Suppose w 
B �B, i.e. for all w′, v′, w ≤ w′Rv′ implies v′ 
B B.

Consider an arbitrary [w′], [v′] with [w] - [w′]R[v′]. We must show

that [v′] 
B/- B.

As [w′]R[v′], there exist w′, v′ such that w′ h w′Rv′ h v′. Now w - w′

so, by condition 5, there exist w′′, v′′ such that w ≤ w′′Rv′′ - v′.

But then, by the initial assumption, v′′ 
B B. So, by the induction

hypothesis, [v′′] 
B/- B. But [v′′] - [v′] so, by the monotonicity lemma,

[v′] 
B/- B.

⇐= Suppose [w] 
B/- �B, i.e. for all [w′], [v′], [w] - [w′]R[v′] implies

[v′] 
B/- B. Consider an arbitrary w′, v′ with w ≤ w′Rv′. We must

show that v′ 
B B.

By condition 2, [w] - [w′] and clearly [w′]R[v′] so [v′] 
B/- B. Thus,

by the induction hypothesis, v′ 
B B as required.

♦B. =⇒ Suppose w 
B/- ♦B, i.e. there exists v such that wRv and v 
B B.

Then [w]R[v] and, by the induction hypothesis, [v] 
B/- B so indeed

[w] 
B/- ♦B.

⇐= Suppose [w] 
B/- ♦B, i.e. there exists [v] such that [w]R[v] and [v] 
B/-
B. So there exist w, v such that w h wRv h v. Then, by condition

4, there exists v′ % v such that wRv′. But clearly v - v′ so, by the
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monotonicity lemma, [v′] 
B/- B. Hence, by the induction hypothesis,

v′ 
B B and thus w 
B ♦B as required.

�

Note that condition 4 was only used in the, apparently weaker, form: if w h w

and wRv then there exists v such that v - v and wRv. However, using condition 3

together with (F1) for B, it can be shown that the two formulations are equivalent.

8.2.3 Applying the quotienting technique

We now proceed with the proof of the finite model property. The preorder on BK
is just the preorder, -, on pcontexts defined on page 138.

Lemma 8.2.9 - is a simulation on BK.

Proof. We show that conditions 1–5 are satisfied.

1. Immediate from the definitions of - and VK.

2. Trivial as the inclusion function gives the required morphism.

3. Suppose that (H, ∆, y) - (H′, ∆′, z) on account of the pcontext morphism f .

We define a world, (H′′, ∆′′, y), in BK such that (H, ∆, y) ≤K (H′′, ∆′′, y) h

(H′, ∆′, z).

Let Y and Z be the underlying sets of H and H′ respectively. We assume

(for notational convenience) that Y ∩ Z = {x}. We use y′, y′′, . . . to range

over Y and z′, z′′, . . . to range over Z. Let y0Ry1 . . .Rym be the unique

sequence in H such that y0 = x, yi+1 ∈ Y \{x} and ym = y. The underlying

set of H′′ is:

W = Y ∪ {z ∈ Z | z 6= f(yi) for any i such that 0 ≤ i ≤ m}.

The relation on H′′ is:

{〈y′, y′′〉 | y′Ry′′ in H} ∪ {〈z′, z′′〉 | z′Rz′′ in H′} ∪ {〈yi, z′〉 | f(yi)Rz′ in H′}.
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We define functions g : W → Z and h : Z → W by:

g(w) =

 f(w) if w ∈ Y ,

w if w ∈ Z;

h(z′) =

 yi if z′ = f(yi) for some i (1 ≤ i ≤ m),

z′ otherwise.

These are well defined: g because f(x) = x, and h because f(yi) = f(yj)

implies i = j = depth of f(yi). Further, it is clear from the definition of H′′

that g is a graph morphism from H′′ to H′ and h is one from H′ to H′′. Note

also that g(h(z′)) = z′, for all z′ ∈ Z.

Define ∆′′ by:

∆′′ = {w :B | g(w) :B ∈ ∆′}.

We must show that (H′′, ∆′′, y) is indeed a pcontext. By its construction, it

is clear that H′′ is a finite tree of depth ≤ d with root x. That w : B ∈ ∆′′

implies B ∈ Θ∗d−n, where n is the depth of w in H′′, follows because n is the

depth of g(w) in H′ and (H′, ∆′) is a bounded context.

For (H′′, ∆′′, y) to be a world in BK we must show that (H′′, ∆′′) is T -prime.

For bounded deductive closure, consider any B ∈ Θ∗d−n, where n is the

depth of w in H′′, such that ∆′′ `TH′′ w : B. Then, by Proposition 4.4.1,

g(∆′′) `TH′ g(w) : B, and so (by the definition of ∆′′) ∆′ `TH′ g(w) : B.

But (H′, ∆′) is T -prime so, by bounded deductive closure, g(w) : B ∈ ∆′.

Thus (again by the definition of ∆′′) w : B ∈ ∆′′ as required. For the

diamond property, suppose w : ♦B ∈ ∆′′. Then g(w) : ♦B ∈ ∆′. So, by

the diamond property for (H′, ∆′), there exists z′ ∈ Z such that g(w)Rz′ in

H′ and z′ : B ∈ ∆′. Then clearly h(z′) is the required element of W such

that wRh(z′) in H′′ and, as g(h(z′)) = z′, we have that h(z′) : B ∈ ∆′′.

Consistency and the disjunction property are shown (more easily) by similar

arguments.

It is now obvious that (H, ∆, y) ≤K (H′′, ∆′′, y). To see that (H′′, ∆′′, y) h

(H′, ∆′, z) we show that g and h give the required pcontext morphisms. We
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already know that g is a graph morphism from H′′ to H′. Also, if w :B ∈ ∆′′

then g(w) : B ∈ ∆′ by the definition of ∆′′. Lastly, g(y) = z because

g(y) = f(y) and f is a pcontext morphism from (H, ∆, y) to (H′, ∆′, z).

Similarly, we already know that h is a graph morphism from H′ to H′′. Also,

if z′ : B ∈ ∆′ then, as g(h(z′)) = z′, we have that h(z′) : B ∈ ∆′′ by the

definition of ∆′′. Lastly, h(z) = y by the definition of h.

4. Suppose that (H, ∆, y) - (H′, ∆′, z) on account of the pcontext morphism f .

Suppose further that (H, ∆, y)RK(H, ∆, y′) (it is immediate from the defin-

ition of RK that this is the most general case). Then yRy′ in T -Comp(H).

So, depending on T , one of the following holds: yRy′ in H, or y = y′, or

y′Ry in H. Thus, correspondingly, one of the following holds: zRf(y′) in

H′, or z = f(y′), or f(y′)Rz in H′. So zRf(y′) in T -Comp(H′). Therefore

(H, ∆, f(y′)) is the sought world as (H, ∆, z)RK(H, ∆, f(y′)) and, again on

account of the morphism f , (H, ∆, y′) - (H′, ∆′, f(y′)).

5. Suppose that (H, ∆, y) - (H′, ∆′, z) on account of the pcontext morphism

f , and that (H′, ∆′, z)RK(H′, ∆′, z′). Then zRz′ in T -Comp(H′), and, de-

pending on T , one of the following holds: zRz′ in H′, or z = z′, or z′Rz in

H′. We consider each case separately.

If zRz′ in H′ then consider the world (H′′, ∆′′, y) constructed as in the

proof of 3 above. We know already that (H, ∆, y) ≤K (H′′, ∆′′, y). It is

clearly the case that (H′′, ∆′′, y)RK(H′′, ∆′′, z′). It is also clear that the

function g, defined in the proof of 3, is a pcontext morphism witnessing that

(H′′, ∆′′, z′) - (H′, ∆′, z′). Thus (H′′, ∆′′, y) and (H′′, ∆′′, z′) are the required

worlds.

If z = z′ then yRy in T -Comp(H) and we have that:

(H, ∆, y) ≤K (H, ∆, y) RK (H, ∆, y) - (H′, ∆′, z′).

So both the required worlds are given by (H, ∆, y).

Lastly, if z′Rz in H′ then consider the unique node y′ such that y′Ry in H.

Now f(y) = z and z′ is the unique node such that z′Rz in H so, as f is a
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graph morphism from H to H′, it must be the case that f(y′) = z′. Also,

yRy′ in T -Comp(H), as χB ∈ T . Therefore we have that:

(H, ∆, y) ≤K (H, ∆, y) RK (H, ∆, y′) - (H′, ∆′, z′),

the last of these on account of f . So (H, ∆, y) and (H, ∆, y′) are the required

worlds.

�

Proof of Theorem 8.2.1. Suppose that A is not a theorem of L. We show that

A is not valid in BK/-, which, by Proposition 7.3.6, is finite.

First, by Theorem 6.2.1, we have that 6`Tτ x : A. So, by the bounded prime

lemma, there exists a T -prime bounded context, (H, ∆), such that ∆ 6`TH x : A.

Now A 6∈ ∆ so, by the bounded canonical model lemma, (H, ∆), x 6
K A. Then, by

Lemma 8.1.2, (H, ∆, x) 6
BK A. So, by the quotient lemma, [(H, ∆, x)] 6
BK/- A.

Thus indeed A is not valid in BK/-. �

Note that an effective way of computing a bound on the size of BK/- from A is

implicit in the proof of Proposition 7.3.6.

8.3 Discussion

In Section 8.1 we presented some of the difficulties inherent in using birelation

models to directly interpret N��(T ). In view of these problems, we believe that

IT -models are preferable for this purpose. Indeed, we have only been able to use

birelation models to interpret (a restriction of) the natural deduction consequence

relation in those cases in which we also happen to have axiomatizations of the

theorems of the natural deduction system.

However, in Section 8.2, we showed that birelation models do have one signific-

ant advantage over IL-models. With them, it is possible to obtain the finite model

property.

Again, it is embarrassing that our method of proving the finite model property

does not readily extend to other intuitionistic modal logics, especially IK4, IKD4
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and IS4. As in Section 7.3, the technique falls down because of the impossibility of

bounding contexts. It seems as though some sort of construction involving cyclic

visibility relations ought to work. But so far, we have been unable to succeed in

finding one that does.

As in Section 7.3, our techniques do extend to establish the known result

that IS5 has the finite model property. Again, the proof for IS5 is quite simple,

because contexts can be set-indexed rather than tree-indexed (cf. the discussion

on page 147). The potential problem noted on page 169, that the quotient of

a transitive birelation model by a simulation need not be transitive, does not

arise because for the particular model and simulation of interest the quotient is

transitive.

It is interesting to note that, despite appearances, the proof of the finite model

property is intuitionistically acceptable. The only non-overtly intuitionistic steps

are in the proofs of the bounded prime lemma and the bounded canonical model

lemma. However, the intuitionistic validity of these proofs is ensured by the de-

cidability of the modal consequence relation (which was established in Chapter

7 by an intuitionistically acceptable argument). Specifically, in the proof of the

bounded prime lemma, decidability rescues the definition of (Hi+1
m , ∆i+1

m ) which is

by case analysis. Decidability must also be used in establishing the disjunction

property for (Hd, ∆d) later in the lemma. In the proof of the bounded canonical

model lemma, decidability is required in the uses of the bounded prime lemma,

which are by contraposition. Lastly, decidability is used once more in obtaining

the statement of completeness from its contrapositive.

From a classical point of view, however, no part of the proof of the finite model

property relies on the earlier decidability result. Therefore, the proof of the finite

model property gives an alternative classical proof of decidability.



Chapter 9

Conclusions and further work

9.1 Conclusions

In this thesis we have defined and analysed the proof theory and semantics of

a family of intuitionistic modal logics. Moreover, we have presented arguments

justifying the naturalness of the particular family of logics considered. As well

as resolving open technical questions, we believe that the thesis has provided a

valuable structured and coherent account of intuitionistic modal logic.

Our methodology was motivated by the desire to present an account of intu-

itionistic modal logic acceptable to an intuitionist. This was more than a philo-

sophical whim. It gave crucial orientation when sorting through the many in-

tuitionistically inequivalent choices available. Thus the philosophical desire had

direct bearing on the technical development. Our presentation, however, has not

always been intuitionistically acceptable. Nevertheless, we have at least taken

some care to point out the classical steps in proofs and, whenever possible, how

they could be avoided.

Methodologically, the major contributions of the thesis are the two different

ways of defining intuitionistic modal logics: by way of the natural deduction sys-

tem and by way of the translation into intuitionistic first-order logic, and their

subsequent equivalence.

176
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Technically, the major contributions of the thesis are: the proof theory of

geometric theories; the uniform family of natural deduction systems for intuition-

istic modal logics (based on geometric theories) and their normalization results;

the meta-logical completeness of the natural deduction systems; the equivalence

(and inequivalence) between natural deduction systems and axiomatizations; and,

above all, the proofs of decidability and the finite model property.

9.2 Further work

The natural deduction systems presented in this thesis were restricted to intu-

itionistic modal logics generated by geometric theories of the visibility relation.

Similarly, the translational definition of intuitionistic modal logics was restricted

to those given by first-order theories. It would be nice to be able to relax these

restrictions to yield intuitionistic analogues of classical modal logics defined via

higher-order conditions on the visibility relation. One tentative proposal was dis-

cussed in Section 5.4. However, we have not investigated this in any depth. Also,

we have not investigated ways of extending the natural deduction systems beyond

geometric theories of the visibility relation.

However, even remaining within the paradigm of geometric theories, there are

natural ways of generalizing the conditions that may be expressed. One such

generalization is to geometric theories in the language obtained by extending Lf
with equality. Then, in order to induce corresponding natural deduction rules, it is

necessary to extend the natural deduction systems with a third form of judgement

of the form x = y. Again, such judgements need only appear as assumptions.

Associated with them is the new inference rule:
x = y x :A

y :A

Then inference rules expressing basic geometric sequents can be be induced exactly

as before. One (perhaps not very intuitionistic) example requiring equality is the

trichotomy property:

∀xy. xRy ∨ yRx ∨ x = y,
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which is represented by the rule:

[xRy]....
z :A

[yRx]....
z :A

[x = y]....
z :A

z :A

We believe that the meta-theoretic properties of N��(T ) should extend easily to

the system with equality.

Another direction for generalization would be to consider other modal oper-

ators. For example, the intuitionistic tense logics of Ewald [20] have ‘backwards’

necessity and possibility operators. These are easily dealt with. The rules for a

backwards necessity operator are:

[yRx]....
y :A

x :�A
x :�A yRx

y :A

where the restriction on the introduction rule is that y must not appear in any open

assumptions other than the distinguished occurrences of yRx. The rules for the

backwards possibility operator can be easily imagined. Again, the meta-theoretic

properties of N��(T ) should extend easily to cover the new operators.

We do not really know what the overall limitations of the approach are. But

at least the examples above demonstrate some of its potential flexibility.

One major open question left by this thesis is the decidability of those in-

tuitionistic modal logics we were unable to deal with in Chapter 7. We now

sketch an alternative approach, which we hope will lead to a proof of the decid-

ability of IS4. We believe that it should be possible to develop a standard cut-

free sequent calculus for IS4 (not using relative truth) satisfying the subformula

property. Decidability would be an immediate consequence. The major problem

with developing a cut-free sequent calculus seems to be the IK axiom schema:

(♦A ⊃ �B) ⊃ �(A ⊃ B). However, if we define two subclasses of formula by

mutual induction:

P ::= ⊥ | P1 ∧ P2 | P1 ∨ P2 | Q ⊃ P | �A

Q ::= ⊥ | Q1 ∧ Q2 | Q1 ∨ Q2 | P ⊃ Q | ♦A
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and then extend Gentzen’s one-sided sequent calculus for IPL with the rules:

P1, . . . , Pk ` A
P1, . . . , Pk ` �A

A1, . . . , Ak, A ` B
A1, . . . , Ak,�A ` B

A1, . . . , Ak ` B

A1, . . . , Ak ` ♦B
P1, . . . , Pk, A ` Q

P1, . . . , Pk,♦A ` Q

then, together with the cut rule, the resulting system is sound and complete for

IS4. The soundness of the modal rules relies on:

Lemma 9.2.1 P ⊃ �P and ♦Q ⊃ Q are theorems of IS4.

This is proved by a straightforward induction on the structure of P and Q. The

system is obviously closed under necessitation and closure under modus ponens is

by an application of cut. So completeness follows from easy (cut-free) derivations

of the axioms of IS4. But, unfortunately, the cut rule is not eliminable from the

system. For example, it is required to derive the sequent:

A, ♦B ⊃ (A ⊃ �C) ` �(B ⊃ C).

However, we have strong reasons (based on a preliminary analysis of a correspond-

ing natural deduction system) to believe that a generalization of the system to one

using higher-order sequents (of the form considered in Avron [1]) will satisfy cut-

elimination. We also have tentative proposals for extending this approach to IK4,

IKD4 (and, indeed, the known cases of IK, IKD and IKT).

We do not, however, have any positive suggestions to make regarding the finite

model property for IK4, IKD4 and IS4. We believe that it might be possible to

extend the techniques of Chapter 8 to deal with these cases. But we have not seen

how to do so. In fact we believe that it is plausible, though unlikely, that the finite

model property fails for (some of) these logics.

Lastly, we suggest how some of the techniques used in the thesis may be of use

in computer science. Modal logic has proved to be a useful tool for the specification

of properties of processes arising from process calculi such as Milner’s CCS [58].

Processes are modelled by labelled transition systems, which are, in turn, models

of (multi-)modal logic (see, e.g., Stirling [75]). Thus one naturally ascribes modal
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properties to processes, and one may speak of a process satisfying a formula of a

modal program logic such as Hennessy-Milner logic [42].

A typical use of such a modal logic is to formally verify that a process p satisfies

a formula A. Therefore it is natural to formulate proof systems manipulating

judgements of the form p :A, to be used in establishing such satisfaction relations.

For example, Stirling [74] goes to some length to provide such a proof system for

CCS processes. However, Stirling’s proof rules are rather ad hoc and it is not clear

how they generalize to different process combinators and other process calculi.

We propose to use natural deduction rules like those of N�� as part of a generic

proof system for arbitrary process calculi. The idea is to combine such rules for

the connectives and modalities with new introduction and elimination rules for

each combinator of the process algebra. The envisaged proof system has two

forms of judgement: prefixed formulae of the form p : A where p is any process

term (possibly with free variables); and relational judgements of the form p
a=⇒ p′

(where p and p′ are process terms). Intuitively, the former states that p satisfies

A, the latter that p can perform an action a to become p′.

The rules for the connectives and modalities are similar to those of N��. As an

example, we give the introduction rule for the necessity modality, [a], of Hennessy-

Milner logic [42]. The rule is:
[p a=⇒ x]....

x : A
p : [a]A

where the process variable x must not occur free in any open assumptions other

than in the distinguished occurrences of p
a=⇒ x.

The introduction and elimination rules for the process combinators are more

interesting. These are derived from the operational semantics of the process cal-

culus. Indeed, the introduction rule for a combinator is taken directly from the

operational semantics. For example, the introduction rule for the ‘prefixing’ com-

binator of CCS is:

a.p
a=⇒ p.
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which is just the usual rule defining its operational behaviour [58, p. 46]. The elim-

ination rules for a combinator can be derived automatically from the introduction

rules. In the case of prefixing these are:

a.p
a=⇒ q c[p] : A

c[q] : A

a.p
b=⇒ q

c[q] : A
b 6= a

where c[·] is an arbitrary processor context. The elimination rules express that

the transition relation is inductively defined as the least relation closed under the

rules of the operational semantics.

The proposed proof system is both modular and generic. It is modular in that

each connective, modality and process combinator has its own independent set of

inference rules and can therefore be included or not as desired. It is generic in

that a wide class of process combinators (any whose operational semantics is given

in a certain general format) can be provided with introduction and elimination

rules in a uniform way. From preliminary investigations, it seems that the ad hoc

inference rules of Stirling [74] can be recovered in our system. Moreover, we do

not need special tricks to deal with CCS features such as ‘parallel composition’

and ‘restriction’.

Our system also provides an interesting approach to the old problem of ‘com-

positionality’. A compositional proof system is one which establishes that p sat-

isfies A by establishing appropriate properties of the subprocesses out of which p

is constructed. In our proof system a form of compositionality should follow from

a proof normalization result eliminating introduction/elimination combinations in

both the logical and process fragments.

However, it is not clear that intuitionistic modal logic is the appropriate basis

for such a proof system. Therefore, it might be preferable to add a classical rule

such as reductio ad absurdum, or even to work with a classical sequent calculus.

Nevertheless, whether intuitionistic modal logic is used or not, we hope to have

at least hinted at the potential applicability of some of the methods considered in

the thesis.



Appendix A

Proofs of strong normalization
and confluence for NIL(T )

In this appendix we give the deferred proof of Theorem 2.3.2. It is quite easy to

reduce strong normalization for NIL(T ) to strong normalization for NIL using the

translation defined in the proof of Proposition 2.3.1 (page 25). The reduction is

similar to that used to prove the strong normalization of N��(T ) in Section 7.1.

However, to make the thesis self-contained, we give, in Section A.1, a direct proof

of strong normalization for NIL(T ). (This is also worthwhile because we have not

found a proof of strong normalization for NIL in the literature that uses exactly

the same reduction relation as ours.) The confluence of reduction in NIL(T ) is

proved in Section A.2.

Because of our definition of strong normalization in terms of reduction depth

(page 17), the proofs in this appendix are all intuitionistically acceptable.

A.1 Proof of strong normalization

The proof of strong normalization for NIL given by Prawitz [66, §A.3] (see also

Troelstra [78, §IV.1] for a more detailed exposition of the same proof) adapts easily

to NIL(T ). We give essentially the same proof, but we reformulate the definitions

and the statements of the lemmas to bring out more clearly the uniformity in the

182
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proof. (In this respect, our definition of ‘computability’ is a particular improve-

ment on Prawitz’ definition of ‘strong validity’.) The proof is uniform enough that

we need never treat applications of (Rχ) explicitly. Instead, the required properties

of applications of (Rχ) follow from general properties of indirect rules.

We shall use Π, Σ, Υ, . . . to range over derivations, Λ, . . . to range over deriv-

ations ending in the application of an introduction rule and Ξ, . . . to range over

finite sequences of derivations. If Ξ is Π1, . . . , Πi, . . . , Πn then we write Ξ =⇒ Ξ′

to mean that Ξ′ is Π1, . . . , Π′i, . . . , Πn where Πi =⇒ Π′i. An immediate reduction

of Π is one such that the maximum or permutable formula removed is the major

premise of the last rule in Π.

The indirect contexts of Π are defined inductively by:

1. Π is an indirect context of itself.

2. If Σ is an indirect context of Π then so is any derivation ending in the

application of an indirect rule with Σ as the derivation of one of its minor

premises.

Note that if Σ is an indirect context of Π then the conclusions of Σ and Π are the

same. We write Ind [Π] for an arbitrary indirect context of Π.

We now define the notion of the ‘computability’ of a derivation by induction

on the logical structure of its conclusion. A derivation, Π, is computable if it is

strongly normalizing (SN) and, whenever Π =⇒∗ Ind [Λ], it holds that the relevant

condition below is satisfied:

1. If Λ is
Σ1
φ1

Σ2
φ2

φ1 ∧ φ2

then Σ1
φ1

and Σ2
φ2

are computable.

2. If Λ is
Σ
φi

φ1 ∨ φ2

then Σ
φi is computable.
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3. If Λ is

[φ1]
Σ2
φ2

φ1 ⊃ φ2

then, for every computable derivation Σ1
φ1

, the derivation

Σ1
φ1
Σ2
φ2

is computable.

4. If Λ is
Σ
φ

∀x.φ
then, for all terms t, the derivation

Σ[t/x]
φ[t/x] is computable.

5. If Λ is
Σ

φ[t/x]
∃x.φ

then Σ
φ[t/x] is computable.

Lemma A.1.1 (Properties of computability)

1. If Π is computable and Π =⇒ Π′ then Π′ is computable.

2. Each trivial derivation, φ, is computable.

3. If the last rule applied in Π is a non-introduction, (r), then Π is computable

if and only if it satisfies both the following conditions:

(a) If Π =⇒ Π′ then Π′ is computable.

(b) If (r) is indirect then the derivation of each of its minor premises is

computable.

Proof. 1 and 2 are trivial. For the ‘only if’ direction of 3, suppose that Π is

computable. Then (a) holds by virtue of 1. For (b) suppose that (r) is indirect.

Let Σ be the derivation of a minor premise. It is SN because it is a subderivation

of Π and Π is SN. And if Σ =⇒∗ Ind [Λ] then, by applying the same reductions,

Π =⇒∗ Ind [Λ] so Λ satisfies the required property because Π is computable.

For the converse, suppose that (a) and (b) hold. We must show that Π is

computable. First, it is SN because, by (a), every one-step reduct of it is SN.

Suppose then that Π =⇒∗ Ind [Λ]. If the reduction path has length ≥ 1 then we

have Π =⇒ Π′ =⇒∗ Ind [Λ], in which case Λ satisfies the required property as,
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by (a), Π′ is computable. Otherwise, if the reduction path has length 0 then Π

is itself Ind [Λ]. So, as the last rule in Λ is an introduction, (r) must be indirect

with a minor premise whose derivation is an indirect context of Λ. So, by (b), Λ

satisfies the required property. �

Lemma A.1.2 If the last rule applied in Π is a non-introduction, (r), then Π is

computable if the following three conditions are satisfied:

1. The derivation of each premise of (r) is SN.

2. If (r) is indirect then the derivation of each of its minor premises is comput-

able.

3. If (r) is an elimination, in which case Π is of the form
Σ Ξ

φ where Σ is the

derivation of the major premise and Ξ is the sequence of derivations of the

minor premises, then, whenever Σ =⇒∗ Ind [Λ], it holds that the immediate

proper reduct of
Λ Ξ

φ is computable.

Proof. Let Π be a derivation, whose last rule is a non-introduction (r), satisfying

1–3. The complexity of Π is a triple d1, h, d2 where: d1 is the sum of the reduction

depths of the major premises of (r), h is the maximum height of a derivation of

a major premise of (r), and d2 is the sum of the reduction depths of the minor

premises of (r). We shall prove that Π is computable by lexicographic induction on

its complexity. As condition 2 is satisfied, by the ‘if’ direction of Lemma A.1.1(3),

we need only show that Π =⇒ Π′ implies that Π′ is computable. There are 4 cases.

Case 1. Π′ is obtained by a reduction in one of the major premises of (r).

Clearly Π′ satisfies 1–3. Moreover its complexity is d′1, h
′, d2 where d′1 < d1. It

is therefore computable by the induction hypothesis.

Case 2. Π′ is obtained by a reduction in one of the minor premises of (r).

Clearly Π′ satisfies 1. It satisfies 2 by Lemma A.1.1(1). For 3, suppose that (r)

is an elimination. Then Π′ has the form
Σ Ξ′

φ where Ξ =⇒ Ξ′. Suppose that
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Σ =⇒∗ Ind [Λ]. We must show the computability of the immediate proper reduct,

Υ′, of
Λ Ξ′

φ . But the immediate proper reduct, Υ, of
Λ Ξ

φ is computable,

because Π satisfies 3. Moreover, Υ =⇒∗ Υ′ (see the second paragraph in the proof

of Proposition A.2.1). So, by Lemma A.1.1(1), Υ′ is indeed computable. So Π′

satisfies 3. Lastly, the complexity of Π′ is d1, h, d′2 where d′2 < d2. Therefore, by

the induction hypothesis, Π′ is computable.

Case 3. Π′ is obtained by an immediate proper reduction.

The computability of Π′ follows immediately from Π satisfying 3.

Case 4. Π′ is obtained by an immediate permutative reduction.

Then (r) is an elimination, and the reduction of Π to Π′ has the form:

Ξ1 Σ1 . . . Σn

ψ
(r′) Ξ2

φ
(r) =⇒ Ξ1

Σ1 Ξ2

φ
(r)

. . .
Σn Ξ2

φ
(r)

φ
(r′)

where Ξ1 is the sequence of derivations of the major premises of the indirect rule

(r′), and Σ1, . . . , Σn are the derivations of the minor premises of (r′), and where Ξ2

is the sequence of derivations of the minor premises of (r). We shall show below

that Π′ satisfies 1–3. Then its complexity is d′1, h
′, d′2 where d′1 ≤ d1 and h′ < h.

So it is computable, by the induction hypothesis.

It remains to show that Π′ satisfies 1–3.

1. Clearly the derivations in Ξ1 are SN. That
Σi Ξ2

φ is SN for 1 ≤ i ≤ n will

follow when we establish 2.

2. We must show that
Σi Ξ2

φ is computable. It clearly satisfies 1 and 2,

because they were satisfied by Π. Moreover its complexity is d′1, h
′, d2 where

d′1 ≤ d1 and h′ < h. So the computability of
Σi Ξ2

φ will follow from

the induction hypothesis when we show it satisfies 3. For this, suppose

that Σi =⇒∗ Ind [Λ]. Then
Ξ1 Σ1 . . . Σn

ψ =⇒∗ Ind [Λ], by the same

reductions. Therefore the computability of the required proper reduct follows

from Π satisfying 3.
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3. If (r′) is an elimination then it is one of: (⊥E), (∨E) or (∃E). The (⊥E) case

is trivial. Of the other two cases, we just consider (∨E), the argument for

(∃E) being similar. The reduction of Π to Π′ is of the form:

Σ
θ1 ∨ θ2

[θ1]
Σ1
ψ

[θ2]
Σ2
ψ

ψ Ξ2

φ
(r)

=⇒ Σ
θ1 ∨ θ2

[θ1]
Σ1
ψ Ξ2

φ
(r)

[θ2]
Σ2
ψ Ξ2

φ
(r)

φ

Suppose that:

Σ =⇒∗ Ind

 Σ′
θi

θ1 ∨ θ2


We must show that the derivation:

Σ′
θi
Σi

ψ Ξ2

φ
(r)

(which we henceforth call Υ), obtained by the application of the appro-

priate proper reduction, is computable. Note first that, by applying some

permutative reductions followed by a proper reduction, we have that

Σ
θ1 ∨ θ2

[θ1]
Σ1
ψ

[θ2]
Σ2
ψ

ψ

=⇒+ Ind


Σ′
θi
Σi

ψ

. (A.1)

Therefore the major premise of Υ is SN and its reduction depth is d′1 < d1.

So Υ satisfies conditions 1 and 2, because, for the minor premises, Π does.

Moreover its complexity is d′1, h
′, d2, which is below the complexity of Π. So

the computability of Υ will follow from the induction hypothesis when we

establish that it satisfies 3. For this, suppose that

Σ′
θi
Σi

ψ

=⇒∗ Ind [Λ].

Then, by (A.1),

Σ
θ1 ∨ θ2

[θ1]
Σ1
ψ

[θ2]
Σ2
ψ

ψ

=⇒∗ Ind [Λ].
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Therefore the computability of the required proper reduct follows from Π

satisfying 3.

�

A derivation is said to be a substitution instance of Π if, for some t, it is

obtained from Π[t/x] by replacing some of the open assumptions with computable

derivations of them. We say that Π is computable under substitutions if every

substitution instance of Π is computable.

Proposition A.1.3 Every derivation in NIL(T ) is computable under substitu-

tions.

Proof. By induction on the structure of derivations, Π, in NIL(T ). The base

case, in which Π consists of a single assumption, is trivial by the definition of

computability under substitution and by Lemma A.1.1(2).

Of the cases in which the last rule is an introduction, we consider only (⊃I),

the arguments for the other introduction rules being similar. We use without

comment some trivial properties of reduction (see Prawitz [66, Lemmas 4.4.1–2,

p. 294]). Π has the form:
[φ1]
Σ2
φ2

φ1 ⊃ φ2

where, by the induction hypothesis, Σ2 is computable under substitutions. Let Π̃

be any substitution instance of Π. We must show that Π̃ is computable. Now Π̃

has the form:
[φ1]
Σ̃2
φ2

φ1 ⊃ φ2

where Σ̃2 is a substitution instance of Σ2. So Σ̃2 is computable and hence SN.

Therefore Π̃ is SN. Now suppose that Π̃ =⇒∗ Ind [Λ]. Then Λ has the form:

[φ1]
Σ̃2
′

φ2

φ1 ⊃ φ2
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where Σ̃2 =⇒∗ Σ̃2
′
. We must show that, for every computable Σ1

φ1
, the deriva-

tion:
Σ1
φ1

Σ̃2
′

φ2

is computable. However, the derivation:

Σ1
φ1

Σ̃2
φ2

is computable, as it is a substitution instance of Σ2. And, because Σ̃2 =⇒∗ Σ̃2
′
,

we have that:

Σ1
φ1

Σ̃2
φ2

=⇒∗

Σ1
φ1

Σ̃2
′

φ2

So the latter derivation is indeed computable by Lemma A.1.1(1). Thus we have

shown that Π̃ is computable, as required.

Lastly, suppose that Π has the form
Ξ
φ

(r) where (r) is a non-introduction.

Then any substitution instance, Π̃, of Π has the form Ξ̃
φ

(r) where Ξ̃ is a sequence

of substitution instances of the derivations in Ξ. We use Lemma A.1.2 to show

that Π̃ is computable as required. By the induction hypothesis, every derivation

in Ξ̃ is computable so conditions 1 and 2 of Lemma A.1.2 are satisfied. It remains

to show that Π̃ satisfies condition 3. We consider only the case in which (r) is

(∨E), the other cases being proved by similar arguments. Π has the form:

Σ
φ1 ∨ φ2

[φ1]
Σ1
ψ

[φ2]
Σ2
ψ

ψ

and Π̃ has the form:

Σ̃
φ1 ∨ φ2

[φ1]
Σ̃1
ψ

[φ2]
Σ̃2
ψ

ψ



Appendix A. Proofs of strong normalization and confluence for NIL(T ) 190

where the premises are substitution instances of the corresponding premises in Π.

Suppose that:

Σ̃ =⇒∗ Ind

 Σ′
θi

θ1 ∨ θ2


By the induction hypothesis, Σ̃ is computable. So, by Lemma A.1.1(1) and the

‘only if’ direction of Lemma A.1.1(3), we have that:

Σ′
θi

θ1 ∨ θ2

is computable, whence Σ′ is too (by the definition of computability). We must

show that the derivation:
Σ′
θi
Σ̃i

ψ

obtained by the application of the appropriate proper reduction, is computable.

However, as Σ′ is computable, this is just a substitution instance of Σi. So, by the

induction hypothesis, it is indeed computable. �

It is an immediate consequence that every derivation in NIL(T ) is computable and

hence strongly normalizing.

A.2 Proof of confluence

We outline the easy proof that =⇒ is weakly confluent:

Proposition A.2.1 If Π =⇒ Π1 and Π =⇒ Π2 then there exists a derivation Π′

such that Π1 =⇒∗ Π′ and Π2 =⇒∗ Π′.

Proof. By induction on the structure of Π.

Suppose that Π =⇒ Π1 and Π =⇒ Π2 and Π1 is different from Π2. If neither

of these reductions is immediate then both must be in the premises of the last rule

and the required Π′ is found easily using the induction hypothesis.
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If one reduction, that to Π1 say, is an immediate proper reduction then an

immediate permutative reduction is not possible so Π2 must be obtained by a

reduction in one of the premises of the last rule in Π. Let Π′ be the immediate

proper reduct of Π2 (it is easily seen that an immediate proper reduction of Π2 is

possible). We claim that Π1 =⇒∗ Π′ as required. The claim is proved by a case

analysis on the last rule in Π, which must be an elimination. For example, if the

rule is (⊃E) then Π has the form

[ψ1]
Σ2
ψ2

ψ1 ⊃ ψ2

Σ1
ψ1

ψ2

and Π2 is, for example,
[ψ1]
Σ2
ψ2

ψ1 ⊃ ψ2

Σ′1
ψ1

ψ2

where Σ1 =⇒ Σ′1 (although it may be obtained by a reduction in Σ2 instead).

Thus indeed Π1 =⇒∗ Π′ as this is just:

Σ1
ψ1
Σ2
ψ2

=⇒∗
Σ′1
ψ1
Σ2
ψ2

The cases for the other elimination rules are proved similarly.

Lastly, suppose that one reduction, again that to Π1 say, is an immediate

permutative reduction. Then the reduction of Π to Π1 has the form:

Ξ1 Σ1 . . . Σn

ψ
(r′) Ξ2

φ
(r) =⇒ Ξ1

Σ1 Ξ2

φ
(r)

. . .
Σn Ξ2

φ
(r)

φ
(r′)

where (r) is an elimination and (r′) is an indirect rule. Again the reduction of

Π to Π2 must be obtained by a reduction in one of the premises of (r). If this

reduction is not an immediate reduction of the major premise, then it must be via

a reduction in one of the derivations in Ξ1, Σ1, . . . , Σn, Ξ2. In which case, define Π′

by making the corresponding reductions in Π1. Then it is easy to see Π2 reduces
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to Π′ by a permutative reduction. If, instead, the reduction of Π to Π2 is obtained

by an immediate reduction of the major premise of (r) then there are two cases to

consider depending on whether the reduction is proper or permutative.

In the first case we have that (r) is either (∨E) or (∃E). If it is (∨E) then the

reduction of Π to Π1 is of the form:

Σ′
θi

θ1 ∨ θ2

[θ1]
Σ1
ψ

[θ2]
Σ2
ψ

ψ Ξ2

φ
(r)

=⇒
Σ′
θi

θ1 ∨ θ2

[θ1]
Σ1
ψ Ξ2

φ
(r)

[θ2]
Σ2
ψ Ξ2

φ
(r)

φ

and that of Π to Π2 is of the form:

Σ′
θi

θ1 ∨ θ2

[θ1]
Σ1
ψ

[θ2]
Σ2
ψ

ψ Ξ2

φ
(r)

=⇒

Σ′
θi
Σi

ψ Ξ2

φ
(r)

Thus Π2 is the required derivation as Π1 =⇒ Π2 by a proper reduction. The case

of (∃E) is treated similarly.

It remains to deal with the case in which Π2 is obtained by an immediate

permutative reduction of the major premise of (r). Then Π has the form:

Ξ′1 Σ′1 . . . Σ′m
θ

(r′′) Σ1 . . . Σn

ψ
(r′) Ξ2

φ
(r)

where (r) is an elimination, (r′) is an indirect elimination and (r′′) is an indirect

rule with Ξ′1 the sequence of derivations of its major premises. So Π1 has the form:

Ξ′1 Σ′1 . . . Σ′m
θ

(r′′)
Σ1 Ξ2

φ
(r)

. . .
Σn Ξ2

φ
(r)

φ
(r′)

and Π2 has the form:

Ξ′1

Σ′1 Σ1 . . . Σn

ψ
(r′)

. . .

Σ′m Σ1 . . . Σn

ψ
(r′)

ψ
(r′′) Ξ2

φ
(r)
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Then define Π′ to be:

Ξ′1

Σ′1
Σ1 Ξ2

φ
(r)

. . .
Σn Ξ2

φ
(r)

φ
(r′)

. . .

Σ′m
Σ1 Ξ2

φ
(r)

. . .
Σn Ξ2

φ
(r)

φ
(r′)

φ
(r′′)

and indeed Π1 =⇒ Π′ by a single permutative reduction, and Π2 =⇒+ Π′ by a

sequence of m + 1 permutative reductions. �

By Newman’s Lemma (see Klop [48, Theorem 2.0.7(2), p. 7]), confluence follows

from weak confluence and strong normalization.



Appendix B

Sequence prefixes

In this appendix we show how the basic system N�� could be reformulated without

relational assumptions, more in the traditional style of proof systems based on

relative truth. The reformulation will illuminate some interesting problems that

arise in adapting the traditional systems to intuitionistic modal logic.

As we commented in Section 4.6, the traditional natural deduction systems for

modal logic based on relative truth do not use relational assumptions. Instead

they use ad hoc notations for prefixes together with a convention determining the

visibility relation between the different prefix notations. The visibility convention

depends on the modal logic considered, but each prefix notation has a basic con-

vention common to all modal logics and used alone in the system for K. Actually,

Fitch [26,27], Siemens [71] and Fitting [29, Ch. 4, §12–16] do not use prefixes

at all, but write their proofs in a nested sequence of boxes (called ‘strict subor-

dinate proofs’), which serve the same purpose. Their visibility convention is that

any given proof box ‘sees’ the box nested immediately inside it. Masini [55] uses

natural numbers to prefix formulae, as, in effect, do Benevides and Maibaum [4].

Their visibility convention is that a natural number ‘sees’ its successor. Gonzalez

[39] and Tapscott [77] use finite sequences of natural numbers as prefixes, an idea

which first appears in the prefixed tableau systems of Fitting [28](1972) (see also

[29, Ch. 8]). Their visibility convention is that a given sequence sees any sequence

obtained by appending one natural number to its end.

194
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Some of these differences in prefix notation are inessential. The systems using

proof boxes could equally well be formulated using natural numbers and vice-versa.

(This is due to the linear presentation of derivations used by the Fitch school, by

which the proof boxes are nested in sequence. A natural generalization would use

derivation trees through a tree structure of nested proof boxes. This generalization

would then be equivalent to the use of sequences of natural numbers for prefixes.)

Further, the systems using natural numbers can be easily translated into systems

using sequence prefixes (just by translating the prefix n as, e.g., the sequence of

n zeros). However, we shall see below that the use of sequence prefixes is more

powerful than the use of natural numbers.

In this appendix, we develop a variant of N�� based on sequence prefixes.

We write s, t, . . . for finite sequences of natural numbers, using ε for the empty

sequence. The concatenation of two sequences s and s′ is written ss′. The sequence

obtained by adjoining a number i to the end of a sequence s is written si. To aid

understanding, we shall give the proof systems interpretations in modal models.

For this purpose, we use X to range over sets of sequences closed under initial

subsequences (i.e. sets such that ss′ ∈ X implies s ∈ X, and, in particular,

ε ∈ X). An X-interpretation in a modal model (W, R, V ) is a function [[·]] from X

to W such that, for all si ∈ X, [[s]]R[[si]].

First we consider a simple system for the ♦-free fragment. The inference rules

for the propositional connectives are just the natural generalizations of the usual

ones to formulae prefixed by sequences. However, with the (⊥E) and (∨E) rules

there is a choice in formulation depending on whether restrictions are placed on

the prefix of the conclusion. We begin by considering the ‘local’ formulations:

s :⊥
s :A

s :A ∨ B

[s :A]....
s :C

[s :B]....
s :C

s :C

which are the ones used in most of the literature (the only exception being Masini

[55]). The rules for � are:

si :A
s :�A

s :�A
si :A
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where the (�I) rule has the restriction that si : A must not depend on any open

assumption prefixed by si. We say that A is a theorem of the system is there is a

derivation of ε :A with no open assumptions.

To explain the meaning of the rules, we give an interpretation of the induced

consequence relation in modal models. A derivation of s : A from open assump-

tions s1 : A1, . . . , sn : An says that, for all modal models M, for all X contain-

ing s, s1, . . . , sn, for all X-interpretations, [[·]], in M, if [[s1]] 
M A1 and . . . and

[[sn]] 
M An then [[s]] 
M A.

An important observation about this system is that, in any derivation with

conclusion s : A, all the open assumptions are prefixed by initial subsequences of

s. Because of this, any derivation can be rewritten to an ‘equivalent’ one using

just sequences of zeros as prefixes. Thus the system could be formulated equally

well using natural number prefixes. Similarly, the semantic interpretation can be

reformulated using finite chains of worlds through modal models.

In its natural number formulation, the system is essentially that of Benevides

and Maibaum [4] (but without their unnecessary additional rules [4, §3.2.2]). To-

gether with a classical rule, such as reductio ad absurdum, the system is essentially

the standard Fitch-style system for K that one finds in Siemens [71] and Fitting

[29][Ch. 4, §15].

Regarding normalization, a maximum formula involving the modal rules is

removed by the proper reduction:

Π
si :A
s :�A
sj :A

=⇒ Π[sj/si]
sj :A

(Again this reduction applies equally well to the formulation using natural number

prefixes.) However, the local formulation of the (⊥E) and (∨E) rules prevents

the commuting conversions from working. For example, one cannot perform a

commuting conversion on the derivation:

s :⊥
s :�A
si :A
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In fact, there is no derivation of si :A from s :⊥ satisfying the subformula property.

However, the subformula property does hold for theorems: if there is a derivation

of s : A with no open assumptions, then there is a derivation in which only sub-

formulae of A appear. (This fact is essentially due to Luciano Serafini, private

communication.) To obtain a full subformula property for arbitrary consequences,

the (⊥E) and (∨E) rules should be generalized to:

s :⊥
ss′ :A

s :A ∨ B

[s :A]....
ss′ :C

[s :B]....
ss′ :C

ss′ :C

The addition of rules for ♦ complicates matters. Indeed all the systems for

classical modal logic in the literature have exploited the classical interdefinability

of � and ♦. However, in a system for intuitionistic modal logic, it is necessary to

have independent primitive rules for ♦. The only other work in which such rules are

considered is that of Masini [55]. However, his system has some strong restrictions

on the application of rules, resulting in a system with different properties from

that presented below.

To begin with we just consider the introduction rule for ♦:

si :A
s :♦A

Now the system no longer satisfies the property that the prefixes of the open

assumptions are subsequences of the prefixes of the conclusions. This has serious

ramifications concerning soundness. Consider the derivations below corresponding

to (4.1) and (4.2) on page 67.

s :�(A ∧ B)
si :A ∧ B

si :A
s :�A

s :�A
si :A
s :♦A

We wish to draw similar conclusions from these derivations to those drawn earlier

from (4.1) and (4.2). Thus in the first case we wish to conclude that if �(A ∧ B)

holds at any world (denoted by s) then �A also holds there. In the second case we

wish to conclude that if �A holds at any world (denoted by s) that can see another

world (denoted by si) then ♦A also holds there. Therefore we have to distinguish
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between si being irrelevant to logical consequence in the first case, but relevant in

the second case. This distinction can be made using a mechanism for discharging

prefixes from derivations, similar to the usual discharge of assumptions. Thus we

consider derivations in which, as well as marking assumptions as discharged, we

also mark certain prefix occurrences as being discharged. Before describing the

rules which discharge prefixes, we give the interpretation of derivations involving

discharged prefixes. A derivation of s :A from open assumptions s1 :A1, . . . , sn :An

says that, for all modal models M, for all X containing every undischarged prefix

in the derivation, for all X-interpretations, [[·]], in M, if [[s1]] 
M A1 and . . . and

[[sn]] 
M An then [[s]] 
M A. (The prefixes s1, . . . , sn, s are necessarily in X as

it will never be the case that the the prefix of an open assumptions or of the

conclusion is marked as discharged.) As a result of this interpretation, we say

that A is a theorem if there is a derivation of ε : A with no open assumptions in

which all occurrences of prefixes other than ε are discharged. (Incidentally, the

need for discharging prefixes disappears if the visibility relation is assumed to be

serial. Indeed Masini [55] accepts �A ⊃ ♦A as a theorem, and thus avoids the

complications of prefix discharge.)

The discharge of prefixes is performed by applications of (�I) and (♦E). In an

application of (�I), in order to register that the prefix of the premise represents an

arbitrary world, all occurrences of the prefix are discharged from the derivation.

We write the resulting rule thus:
[si] :A
s :�A

Further, it is necessary to strengthen the restriction on the application of (�I).

The new restriction is: si must be the only undischarged prefix of the form sis′ in

the derivation of si :A and it must not occur as the prefix of an open assumption.

Similarly, the (♦E) rule is:

s :♦A

[[si] :A]....
t :B

t :B

with the restriction: si must be the only open prefix of the form sis′ in the

derivation of t : B, it must not occur as the prefix of an open assumption other
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than si : A, and t must be different from si. An application of the (♦E) rule

discharges all occurrences of the prefix si in the subderivation of t :B.

For an example of prefix discharge, consider the new version of the earlier

derivation of s :�A from s :�(A ∧ B):

s :�(A ∧ B)
[si]1 :A ∧ B

[si]1 :A
s :�A

1

So the unwanted prefix is discharged from the derivation, which is therefore inter-

preted correctly.

Note that the (♦E) rule has been formulated as a non-local rule whose conclu-

sion can have an (almost) arbitrary prefix t. Similarly, because the assumptions

are not necessarily prefixed by initial subsequences of the prefix of the conclusion,

the (⊥E) and (∨E) rules should be generalized further to:

s :⊥
t :A

s :A ∨ B

[s :A]....
t :C

[s :B]....
t :C

t :C

Whereas, in the ♦-free system, non-local elimination rules were only needed for

the subformula property, once ♦ is included they seem essential for completeness.

In Figure B–1 we give derivations of the IK axioms in the system using sequence

prefixes (these should be compared with the derivations in Figure 4–2 on page 71).

The non-locality of (⊥E) is used in the derivation of ¬ ♦⊥ and the non-locality

of (∨E) is used in the derivation of ♦(A∨ B) ⊃ (♦A ∨♦B). Note that no prefixes

are used other than ε and 0. Indeed, it is easily shown that all the theorems of IK

can be derived using only sequences of zeros. (Sequences of arbitrary length are

needed for iterated applications of necessitation.) Thus a complete system could

be formulated using natural numbers for prefixes.

However, in the system with ♦, the full generality of sequence prefixes is ne-

cessary for proof normalization. The proper reduction of a maximum formula
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1. �(A ⊃ B) ⊃ (�A ⊃ �B).

[ε :�(A ⊃ B)]3

[0]1 :A ⊃ B

[ε :�A]2

[0]1 :A
[0]1 :B
ε :�B

1

ε :�A ⊃ �B
2

ε :�(A ⊃ B) ⊃ (�A ⊃ �B)
3

2. �(A ⊃ B) ⊃ (♦A ⊃ ♦B).

[ε :♦A]2

[ε :�(A ⊃ B)]3

[0]1 :A ⊃ B [[0]1 :A]1

[0]1 :B
ε :♦B

ε :♦B
1

ε :♦A ⊃ ♦B
2

ε :�(A ⊃ B) ⊃ (♦A ⊃ ♦B)
3

3. ¬ ♦⊥.

[ε :♦⊥]2
[[0]1 :⊥]1

ε :⊥
ε :⊥

1

ε :¬♦⊥
2

4. ♦(A ∨ B) ⊃ (♦A ∨ ♦B).

[ε :♦(A∨ B)]3
[[0]2 :A ∨ B]2

[[0]2 :A]1

ε :♦A
ε :♦A ∨ ♦B

[[0]2 :B]1

ε :♦B
ε :♦A ∨ ♦B

ε :♦A ∨ ♦B
1

ε :♦A ∨ ♦B
2

ε :♦(A ∨ B) ⊃ (♦A ∨ ♦B)
3

5. (♦A ⊃ �B) ⊃ �(A ⊃ B).

[ε :♦A ⊃ �B]3
[[0]2 :A]1

ε :♦A
ε :�B
[0]2 :B

[0]2 :A ⊃ B
1

ε :�(A ⊃ B)
2

ε : (♦A ⊃ �B) ⊃ �(A ⊃ B)
3

Figure B–1: Derivations of the IK axioms using sequence prefixes.
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involving the ♦-rules is:

Π1
si : A
s : ♦A

[[sj] : A]
Π2

t : B
t : B

=⇒
Π1

si : A
Π2[sis′/sjs′]

t : B

In order for the restrictions on the (�I) and (♦E) rules to be satisfied in the

rewritten derivation it may be necessary to rename some of the discharged prefixes

in Π2 (this corresponds to the renaming of the closed variables in NIL(T ) and

N��(T ) derivations). (Similar renamings may also be required in the proper

reductions of ⊃ and ∨.) Thus even when the original derivation uses only sequences

of zeros, the rewritten derivation may require other forms of sequence. Indeed,

there are examples of valid consequences between formulae prefixed by sequences of

zeros which have no normal derivation involving only such prefixes. For example,

the normal derivation:
0 :A
ε :♦A ε :♦A ⊃ �(B ∧ C)

ε :�(B ∧ C)
[1]1 :B ∧ C

[1]1 :B
ε :�B

1

makes crucial use of the distinct prefixes 0 and 1. Another example is given by

the theorem

( ((♦A ∧ ♦B) ⊃ �C) ∧ (�(A ⊃ C) ⊃ �D) ) ⊃ �(B ⊃ D)

which also has no normal derivation using only sequences of zeros. Therefore,

in order treat normalization, it is essential that the system is formulated using

sequences for prefixes rather than natural numbers. (Interestingly, Masini [55]

does prove normalization for a system with natural number prefixes. We believe

that the problems highlighted above explain the need for the strong restrictions

that Masini places on the application of his rules. His restrictions prevent him

from deriving axioms 4 and 5 of IK.)

This completes our reformulation of N�� using sequence prefixes. One reason

for preferring the original presentation with variables and relational assumptions

is that the usual natural deduction mechanism of discharging assumptions suffices.
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However, as remarked above, prefix discharge is unnecessary if the seriality of the

visibility relation is assumed. Thus the prefix system for IKD is rather simpler

than that for IK.

It is possible to generalize the approach to give systems for other intuitionistic

modal logics. Many simple conditions on the visibility relation, such as reflexivity

and transitivity, can be incorporated by minor modifications to the modal intro-

duction and elimination rules (see the prefixed tableau systems of Fitting [28] and

[29, Ch. 8] for hints on how to do this). However, it is not clear that there is a

similar uniform way of dealing with such a wide class of visibility conditions as

those handled by N��(T ). In particular, the sequence prefixes seem tied down

to visibility relations generated by a tree structure on worlds. So conditions such

as directedness would probably be hard to incorporate. However, we believe that

sequence prefixes can be used to give a proof system for any intuitionistic modal

logic induced by a arbitrary Horn-clause theory, TH , in Lf (possibly together with

seriality), by formulating the modal rules in terms of the TH -closure of the basic

visibility relation on prefixes (much as in Section 7.2).
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