Lecture Notes on
Ordered Forward Chaining

15-816: Linear Logic
Frank Pfenning

Lecture 16
March 21, 2012

In the last lecture we saw ordered logic, which is in some sense even more
primitive than linear logic. We also saw a focusing system for it, which
is the basis for logic programming. We did not prove the completeness of
focusing with respect to the sequent calculus—it follows the same pattern
as for linear logic.

In this lecture we will develop some examples of forward chaining or-
dered logic programs. One example encodes Turing machines, another ex-
tends the ideas behind substructural operational semantics to the ordered
case, and a third concerns binary arithmetic.

1 Ordered Forward Chaining

Forward chaining interprets proofs search as a form of committed-choice
operational semantics. This can be justified by deriving complete sets of
rules from certain kinds of unrestricted hypotheses, collected in a program
of the form I'p. This is just like we developed in some detail in Lecture 13
except that now order must be preserved amont the ordered resources. A
state transition now has the form

(U;T;A;Q) — (VI A Q)

where ¥ C U’ contains parameters, I' C I’ unrestricted resources, A and
A’ linear resources, and 2 and €’ ordered resources.

To permit such an operational interpretation, the program clauses and
goals should be drawn from the following grammar. This can be obtained

LECTURE NOTES MARCH 21, 2012

http://www.cs.cmu.edu/~fp/courses/15816-s12/lectures/13-fwdchaining.pdf

Ordered Forward Chaining L16.2

by analyzing the focusing system in the style of Andreoli (and therefore
including the so-called atom optimization of Lecture 15).!

Clauses D == VYa:r.D|D1&D2|T|G—-D|G—D|H
Heads H == PY|HyeHy|HyoHy|1|3z:7.H|H ®Hy|0|;D|!D
Goals G = P+|G10G2’G10G2‘1‘31‘7’G|G1@G2‘0["P+|'P+]

The last two are not strictly conformant, but they are helpful for expressing
whether a positive atomic proposition P is supposed to be in the ordered,
linear, or unrestricted context. They could just be written as P, or we
could introduce additional focusing rules that allow them.

2 Turing Machines

In honor of the 100th birthday of Alan Turing? this year, we start with an
encoding of Turing machines in ordered logic. We will engineer this rep-
resentation so that forward chaining corresponds to the computation of a
Turing machine.

Be begin by considering the tape, which we assume is two-way infi-
nite. Because the tape has a definite notion of order and adjacency, it makes
sense to represent a tape with symbols

...|a1|aZ|a3|a4|a5|a6|a7|...

T

Read/write head

as an ordered context
Q = (a1, a2,as, a4, as, as, ar)

where each symbol is represented as an atomic proposition. To encode a
potentially infinite tape in a finite ordered context, we add a special propo-
sitions end (“end”) to mark the left and right end of the explored tape.

Q = (end7 ai, az,as, a4, as, ag, ar, end)

'The Ollibot implementation implements a slightly different fragment.
HJune 23, 1912 - June 7, 1954

LECTURE NOTES MARCH 21, 2012

http://www.cs.cmu.edu/~fp/courses/15816-s12/lectures/15-ordered.pdf

Ordered Forward Chaining L16.3

How do we represent the tape head? It would make sense to use a new
atomic proposition h to represent the position of the head, except that it
would have to be either to the left or right of the symbols that it reads.
Rather than fixing one or the other, we allow both, and have two differ-
ent special proposition representing the tape head: left for the left-looking
head, and right for the right-looking head. Therefore the tape above, while
reading a4, could be represented either as

Q ::(endvalaa2aa37a4Jeﬂ5a5aa6aa7vend)

or
Q= (end, a1, az,as, right, aq, as, ag, ar, end)

A Turing machine has a special blank symbol, which we write as b. If we are
looking right and see the end of the tape, we create a new square containing
the blank symbol, without moving the tape head.

right e end —» right e b @ end
We have a symmetric rule if we are the left end, looking left.
end e left — end e b e left

Before we move on to encode the transitions themselves, let’s think about
why we wrote A — B instead of A — B or A — B (where the latter could
be written as jA — B or jA — B). Note that the rules above are unrestricted
or persistent resources, so they are used via the ordered copy rule:

T A;QL[A,Qr - C A€l
F;A;QL,QR%C

copy

This rule can place A somewhere in the ordered context. So if we have a
persistent clause a; ® a; — by ® by somewhere in I';,, we must place it to the
left of the atoms a; and ax:

Ips-sa1,a0 = [areas] Ty A;Qp, [byeby),Qr—C

rimpL
Iy A Qp,far eaz — by eby],a1,a2,Qr — C

Fp a A 7 QL,(Il,QQ,QR%C

copy

But if we formulate the clause with a left implication we can just place it to
the right of the propositions in question, resulting in the same premises.

Lpi-sar,ag = [areas] Tps AsQp,[byebo],Qr — C

limpL
Iy A Qp,ar,a2,[ar @ az — by @ bs], Qg — C

Ly AsQr,ar,a2,Qr = C

copy

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.4

This exemplifies the observation that a for a persistent clause with a top-
level ordered implication, it does not matter if it is written as a left impli-
cation or a right implication. The same is true for linear clauses, since they
also can be placed at an arbitrary position in the ordered context.

We prefer to use right implications, because we are used to write new
antecedents of sequents at the right end on the context.

A Turing machine program has a finite number of states qo, . .., gn—1. In
each state, for each symbol on the tape at the position of the tape head, a
particular action is described. The action has three parts: writing a symbol
back to the tape, moving the tape head left or right, and going into a next
state.

For each state ¢; of a machine we have an atomic proposition q;. In
order not to interfere with the contents of the tape, we keep the state as the
only proposition in the linear context.

For example, in state g; we might read the symbol 0, write 1, move to the
right, and enter state ¢o. If we face to the right, this would be represented
as

iq1 @ right €0 — jq2 @ 1 e right

If we face to the left the move is represented simply by a reversal of the
direction.
iq1 ® 0 e left — jqo @ 1 e right

In both cases, q; in the premise is guaranteed to be in the linear context
since the state always has the form

I'y;q;;end,a_g,...,a0,left,... a;,end

or
I'y;q;;end,a_yg,...,right,ap,...,a;,end

I', are the clauses representing the Turing machine program, ¢; is the cur-
rent state, the tape has symbols a_y,...,a; (and blanks everywhere else)
and the head reads ay.

If the transition function is represented in this manner, with each pos-
sible transition being represented by two clauses, computation steps of the
Turing machine correspond almost exactly to forward chaining steps. The
only difference is due to the steps that extend the tape on either end, which
happen silently in Turing’s definition. We could obtain an exact correspon-
dence of computation steps by adding more clauses (see Exercise 1).

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.5

Assume we have an input ay, . . . a,—1. We start the machine in the start-
ing state qo and the following configuration

I'y 5 qo ; end, right, ag, . .. an—1,end

where I, represents the transition function as sekteched above. A Turing
machine also has a set of final or accepting states, say, fo, ..., fr—1. We want
to be able to prove halt if we have reached a final state. This is encoded by
the clause

ifo® - ®ifr—1 — jhalt

Then, overall, the Turing machine succeeds if and only if
I'y;q0;end,ag,...,a,—1,end — jhalte T

where we use T to ensure that the non-empty tape contents does not pre-
vent the halt from being proven.

Since the halting problem for Turing machines is undecidable, this demon-
strates that the theorem proving problem for propositional ordered logic is
also undecidable. This is in contrast to traditional classical or even intu-
itionistic propositional logics, which are decidable. Linearity by itself is
already enough to prove undecidability [LMSS92].

3 Ordered Substructural Operational Semantics

Can we exploit order in substructural operational semantics? The answer is
“yes”: many specifications become more concise. As an example, we revisit
the operational semantics of our earlier linear A-calculus. In many parts of
this specification, we can replace uses of destinations simply by exploiting
order [PS09].

We start with a version of evaluation where we use explicit substitu-
tions for variables, instead of binding variables to values. This is for a call-
by-value language.

eval(A\x. M, d) —o retn(Az.M,, d)

eval(M N,d) — 3d;.eval(M,d;) ® cont(dy,_ N,d)

retn(V1, d1) ® cont(dy, _ N, d) —o Jdy.eval(N, ds) ® cont(da, V1 _,d)
retn(Va, da) ® cont(da, (Ax. M) _,d) —o eval([Va /x| M, d)

We assume an initial state eval(M,dp) and expect a final state retn(V, dp).
Then the linear state always has one of the following two forms:

eval(M7 dn)v Cont(dna fna dnfl)a cont(dnfla fnfla dan)a ceey cont(dla f17 dU)
retn(v7 dn)7 Cont(dn7 fﬂn dn—1)7 Cont(dn—17 fn—17 dn—2)7 ceey Cont(d17 f17 dO)

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.6

This state invariant is easy to check by going through each of the rules. The
first rule transitions from a state of the first kind to the second. The second
rule creates a new continuation, but otherwise stays within the first of the
possible kinds of state. The third rule transitions from a state of the second
kind to the first, and so does the last rule.

Notice in particular that the threading of destinations through the con-
tinuations is precisely as described: continuations form a stack, whose
structure is maintained by a threaded sequence of continuations. Using
order, we can eliminate these destinations and use the relative position of
the propositions instead. Then the ordered state will be one of

eval(M), cont(f,),cont(frn—1),...,cont(f1)
retn(V'), cont(f,,), cont(fn—1),...,cont(f1)

and the linear clauses above become the following ordered clauses:

eval(Az.My) — retn(Az. M)

eval(M N) — eval(M) e cont(_ N)

retn(V}) e cont(_ N) — eval(IV) e cont(V; _)
retn(V3) e cont((A\x. M) _) — eval([Va/z| M)

This is generally referred to as a stack machine, implemented here in an ex-
tremely concise manner in the forward-chaining fragment of ordered logic.

In order to avoid the explicit appeal to substitution, we can combine
this with the use of destinations (also called channels or variables) by us-
ing mobility. For this, we need a mobile version of return with a second
argument, which we write here as retns. This change replaces the last rule
above by the last two rules below.

eval(Ax.My) — retn(Az. M)

eval(M N) — eval(M) e cont(_N)

retn(V1) e cont(_ N) — eval(N) e cont(V; _)
(
(

retn(Va) e cont((Ax.My) _) — Fz. jretny(V, z) @ eval(My)
eval(z) e jretny(V,) — retn(V)

If variables are not necessarily linear, we can use persistent returns instead,
replacing the last two rules by:

retn(Va) e cont((Ax.My) _) — Fz. Iretny(V, z) @ eval(M,)
eval(z) e Iretny(V,) — retn(V)

At this point, it should be relatively straightforward to complete refinement
of the earlier semantics to exploit order so as to avoid a proliferation of

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.7

destinations. Some care is nevertheless necessary. For example, it may
be tempting to recover some parallelism in evaluation with rules like the
following:

eval(A\x.M,) — retn(Az.M,)

eval(M N) — eval(M) e eval(N)

retn(Az.M,) e retn(V') — eval([V/z]M,)

The problem here is that the ordered conjunction is still associative, so if we
had eval((M; M2) N), it could turn into eval(M;), eval(Mz), eval(N) in two
steps. Now a value returned by N might interact with a value returned by
M, which is incorrect. It may be possible to use this kind of representation
if we reject associativity as well, in which case the context will have a tree-
shaped form, but it does not seem particularly straightforward to define
the right modalities to recover order, linearity, or persistence.

4 Subcomputations

When programming with functions, computations naturally decompose
into subcomputations. For example, under call-by-value, an expression
such as f(g(x)) will first compute g(x) to a value v and then compute f(v).
The arguments passed (here only x) and the value returned (here v) consti-
tute the interface to a well-defined subcomputation.

In a forward-chaining operational semantics, whether it is persistent,
linear, or ordered, a decomposition of an overall computation into sub-
computations is much less obvious. We have a global state, and the se-
mantics dictates that any any point during the computation, any rule that
applies can fire, possibly consuming part of the state and replacing it with
something new. This models concurrency and parallelism quite well, but
it complicates reasoning about programs modularly or clearly identifying
subcomputations.

As an example, imagine we would like to extend our little functional
language with natural numbers in binary representation and some opera-
tions such as addition. We use the syntax

Nats n == €|n0|nl

where we interpret bitstrings n as numbers Ln_ as follows:

LEL =0
tn0y = 2% Lng
wtnly = 2%xina+1

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.8

In other words, we represent a natural number as a bitstring with the least
significant bit written last. Bitstring are not unique, because we can always
add leading zeroes without changing its value. In an explicit term repre-
sentation we might write n0 as zero(n) or as bit(n, 0).

In order to evaluate addition, we have to evaluate the two summands
to number first:

eval(M + N) — eval(M) e cont(_ + N)
retn(m) e cont(_ + INV) — eval(IN) e cont(m + _)
retn(n) e cont(m + _) — plus(m,n)

Now we need some way to compute plus(m, n) for bit strings m and n. We
can define this based on the structure of m and n.

plus(e,n) — retn(n)

plus(n, €) — retn(n)

pIus(nO m0) — plus(n, m) e cont(_0)

plus(n0, m1) — plus(n, m) e cont(_1)

plus(nl, m0) — plus(n, m) e cont(_1)

plus(nl, m1) — plus(n, m) e cont(inc _) e cont(_0)

The first two clauses overlap when n = ¢, but since we are working in a
committed choice forward-chaining language, this might be acceptable.

In the last line, the continuation cont(inc _) instructs the computation to
increment the result of adding n and m in order to account for the carry
that arises from adding the two 1 bits. The continuations work as follows:

retn(n) e cont(_0) — retn(n0)
retn(n) e cont(_1) — retn(nl)

retn(n) e cont(inc _) — inc(n)

inc(€) — retn(el)
inc(n0) — retn(nl)
inc(nl) — inc(n) e cont(_0)

Instead of an explicit increment operation, we could also add another argu-
ment bit to plus indicating the presence or absence of a carry (see Exercise 4).

The state of computation is now a little harder to characterize, because
we either are performing ordinary evaluation steps, or we are in the middle
of an addition or an increment. Also, the steps of the addition or increment
operations can be interleaved with other operations, in case there is any

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.9

parallelism in the language. If possible, we would like to specify addition
as an atomic step. That is, we would like to replace

retn(n) e cont(m + _) — plus(m,n)
by something like
retn(n) e cont(m + _) e plus(m, n,r) — retn(r)

where plus(m,n,r) is now a three-place relation that holds iff m + n =
r. Under the pure forward-chaining semantics we have worked with so
far, this would be problematic because we would have to have potentially
infinitely many propositions plus(m, n,) in the context.

Fortunately, we can exploit the flexibility behind polarity and focusing
and make plus(m,n,r) a negative atom. If we play through the focusing
rules, we see that focusing on the above clause leads to the following de-

rived rule:
- — plus™(m,n,r) Qr,retn™(r),Qr — C

Qp,retnt(n),cont™(m + _),Qr — C

We have elided there I and A and also assumed that the proof of plus(m, n,)
requires no ordered or linear resources.

In the next lecture we will see how to write the plus™ (m, n,) predicate
so that it properly computes r from m and n under a backward-chaining
operational semantics.

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.10

Exercises

Exercise 1 Modify the encoding of Turing machine transitions so that we
can eliminate the two generic rules that extend the tape head. Make sure
your encoding still only uses the propositional fragment, that is, no vari-
ables or quantifiers.

Exercise 2 Modify the undecidability proof for propositional ordered logic
to show that propositional linear logic is also undecidable.

Exercise 3 Develop non-associative logic in which we also reject the law of
associativity. Non-associative antecedents would form a kind of tree struc-
ture. Develop enough of the proof theory to see what kinds of implications,
conjunctions, and modalities might be available. Use your logic to specify
parallel evaluation, as attempted at the end of Section 3.

Exercise 4 Rewrite the forward-chaining code for addition to that it takes
the carry bit as another argument and avoid explicit uses of increment.

Exercise 5 Rewrite the code for addition assuming a unary representation
of numbers as we have introduced it in earlier lectures.

Exercise 6 Rewrite the code for addition assuming two’s complement ar-
bitrary precision arithmetic. In this representation, the most significant bit
indicates the sign of the number. We can always replicate the most signifi-
cant bit without changing the value of a number.

LECTURE NOTES MARCH 21, 2012

Ordered Forward Chaining L16.11

References

[LMSS92] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan
Shankar. Decision problems for propositional linear logic. An-
nals of Pure and Applied Logic, 56:239-311, April 1992.

[PS09] Frank Pfenning and Robert J. Simmons. Substructural opera-
tional semantics as ordered logic programming. In Proceedings
of the 24th Annual Symposium on Logic in Computer Science (LICS
2009), pages 101-110, Los Angeles, California, August 2009.
IEEE Computer Society Press.

LECTURE NOTES MARCH 21, 2012

	Ordered Forward Chaining
	Turing Machines
	Ordered Substructural Operational Semantics
	Subcomputations
	Exercises
	References

