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1. INTRODUCTION

Recent research [Bellantoni and Cook 1992; Bellantoni et al. 2000; Hofmann
1998] has provided many characterizations of the class PTiME of all polynomial
time computable functions by means of appropriate restrictions of the terms in
Godel’s T [Godel 1958]. Consider the following definition of an exponentially
growing function:

double([ ) :=1] exp([ D := [t]
double([a | £]) :=[a,a | double(?)], exp([a | £]) := double(exp(¥)).

Approaches based on predicative recursion [Simmons 1988; Bellantoni and
Cook 1992; Leivant 1991] argue that the exponential growth in this example is
due to the way double is called: the previous value exp(¢) of the outer recursion
is the recursive argument to the inner recursion.

Although predicative recursion characterizations can capture all func-
tions computable in polynomial time, many natural algorithms are excluded,
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particularly if they involve nested recursions. Standard examples are sorting
algorithms like insertion sort, which has a similar recursive structure as exp:

insert(a,[ ]) = [a]
insert(a,[b | £]) :=[b' | insert(a’,£)], a’,b a permutation of a, b with b’ <a/,

sort([ D :=1[]
sort([a | £]) := insert(a, sort(¥)).

Caseiro [1997] studied many related examples and reached some (partially se-
mantic) criteria for algorithms in order to ensure polynomial time complexity.
For the insertion sort algorithm the essential point is that insert does not in-
crease the size of its input. Hofmann [1999] took up this line of research and
formulated a new term system with a special type ¢ of tokens that accommo-
dates nested recursion, but only allows one to define non-size-increasing PTIME
functions. The basic idea is that if a function (like a successor) increases the
size of its argument, then one has to “pay” for the increase by providing a token,
that is, a term of type ©.

Hofmann [1999] proved this result by means of inherently semantic concepts,
such as the set-theoretic interpretation of terms. We present a new proof of his
main result, which apart from being simpler provides additional insight and
yields a construction of time-bound polynomials which is more explicit than
Hofmann’s.

The method developed here has several benefits:

—A reduction relation is defined in such a way that the term system is closed
under it. Therefore calculations can be performed within the system.

—We not only show that every definable function is polytime, but give explicit
polynomial bounds for the number of reduction steps that can be determined
easily for any given term.

—Hofmann’s [1999, §3.2] semantical size measure (minimal upper bound of
growth) is replaced by the syntactic concept of the number of free variables.
Hence the role of the o-type becomes more transparent, as we will show (in
Lemma 4.3) that there are no closed terms of this type.

A preliminary version [Aehlig and Schwichtenberg 2000] of this work has al-
ready been published. Apart from giving more technical details and elaborated
proofs, the following aspects are added:

—The previous estimate of the number of reduction steps referred to a fixed
reduction strategy. Here we show that this requirement can be relaxed some-
what, without loosing the sharp estimate on the length of reduction se-
quences. The main tool is an appropriate modification of the size measure
¥ ().

—1It is shown how the approach covers more complex data structures such as
binary labeled trees, for which iteration involves two recursive calls.

Hofmann’s [1999] work is of course the starting point of ours. In the journal
version of that work [Hofmann 2000a] some new aspects are added, among
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others the definition and justification of a similar system which captures PspAcE,
and an operator for divide-and-conquer recursion. We shall show in Section 5.2
that our simplified approach can deal with the latter; however, it is not known
whether it also suffices for Hofmann’s characterization of Pspack.

Jones [2001] directly related programming languages and complexity theory.
In previous works [Jones 1999, 1997] he had characterized the power of first-
order read-only programs in complexity terms, building on Cook [1971]; the
results are extended to arbitrary data orders and tail recursive programs.

Jones’ work is certainly related to our current work. In his approach it is
important whether constructors of structured data are allowed or not. Moreover,
Jones’ paper is written from a broader programming point of view, giving special
emphasis to the program control structure (general recursion, tail recursion,
or primitive recursion). The present paper (for simplicity) concentrates on the
effects of higher-order primitive recursion (i.e., Godel’s T').

Leivant and Marion [1993] gave a A-calculus characterization of PriME. The
main novelty was the use of the concept of “tiers” in the sense of different repre-
sentations of data: as words (i.e., terms of base type), or as Church-like abstrac-
tion terms (expressions of higher type). Leivant [1999] gave particularly ele-
gant proofs of characterizations of Jones [1999] for PTiME and of Beckmann and
Weiermann [2000] for the elementary functions. He also treated a control-based
subcalculus of the system in Bellantoni et al. [2000], and—more importantly—
obtained a characterization of Pspack along the same lines. This was achieved
by the notions of an “input-driven” term, that is, a term with the property that
no recursion argument has a free variable bound in the term, and the more
special notion of a “solitary” term, where every higher-type abstracted variable
has at most one occurrence in the kernel. The solitary terms are the ones used
for his characterization of PriME. As with all extensional characterizations of
PriME, the question remains as to whether interesting PTiME algorithms can be
represented directly.

2. TYPES AND TERMS

Definition 2.1 (Finite Types). The set of linear types is defined induc-
tively as

0, T i=¢|Bl1t—op|t®p|Txp|Lx).

So types are built from the base type B of Booleans and a special type ¢. L(t)
denotes the list-type over t. The type of binary numerals, as used by Hofmann
[1999], can be defined as L(B). The type ¢ may be interpreted as a pointer to
free memory [Hofmann 2000b]; Lemma 4.3 will show that no closed terms of
type ¢ exist. Canonical terms of data-types may still contain free variables of
that type. The type ¢ — t —o L(7) —o L(7) of the cons,; function together with
the linear typing discipline guarantees that the length of lists and the number
of free variables coincide.

T ® p and 7 x p both represent ordered pairs. However, the linear inter-
preatation of those types is different. A tensor product allows access to each of
its components whereas of an ordinary pair one can choose only one component.
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As can be seen from Definition 3.2, ® corresponds to —, while x corresponds
to B.

Terms are built from variables, denoted by x, y, z, and typed constructor
symbols c. Each variable has a type, and it is assumed that there are infinitely
many variables of each type. The notation x” expresses that the variable x has

type 7.

Definition 2.2 (Terms). The set of terms is inductively defined by
r,s,t n= x|c|Ax.t|{t,s)|ts]|{t}.

These terms should be seen as our raw syntax; only correctly typed terms (in
the sense of Definition 2.4) represent meaningful functions.

The {-} term construct is inspired by Joachimski and Matthes [1999]. Terms
of this form appear only as arguments in an L(t) elimination. This explicit
marking of the step term in iteration constructs is not only technically conve-
nient but also allows one to directly read off the time complexity: the degree of
the bounding polynomial is the nesting depth of braces and the symbols within
n braces contribute to the coefficient of X" (see Definition 4.5 for details).

The notations ¢5 and AX.t are defined as usual, so Ax, y.t is an abbrevia-
tion for Ax.(Ly.¢). Terms that only differ in the naming of bound variables are
identified. We also use a, d, i to denote terms.

Definition 2.3 (Constructor Symbols). The constructor symbols and their
types are

t, B,
fr, B,
nil, ’ L(T)}

cons; ¢ — 17 —o L(1t) — L(17),
®:p T—op—oTQp.

’

A context is a set of variables. For two contexts I'y and I'y the notation I'1, 'y
stands for the union, expressing that I'y and I's are disjoint. We also write x°
for the singleton context {x"}.

The next definition states which terms of our raw syntax are correctly typed.
' F¢7 is to be read as “t is a typed term of type t with free variables in I".”

Definition 2.4 (I' +=¢7). TherelationI" - ¢7 is inductively defined as follows:

c of type ©
— (Var), ———=—— (Const),
Ix®x® I'kec?

FU{x™}¢t° . [y trr Fgl—sf( 5
' Quxt.t) " ’ 'y, Do - (2s)° ’
¢t stp(ﬂ Fl—t”"(f) Fl—t”"(f)
— =, X —— (X —— (X
[k (¢, s)°%P T TRQEDT Y TR@H? 07
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I HtB Iyks? Tobrt B I Ht™® Tg, &%,y Fs°
Iy, To - (t (s, )" T Ty, To (@O, yr.s))’

(®),

- tL(r) () goT—op—op
L@ {shr™—*

It is crucial that the step term in (I.(r)7) is closed. Otherwise subject reduction
would fail, since free variables in the step terms would be duplicated.

The typing system is based on elimination rules: for every type different to
o there is a rule describing how to use terms of this type; in all these rules
the elimination is written as application.! For the right-hand side of such an
application a notation is chosen that expresses the computational behavior
of the terms used for the elimination. This avoids duplication of syntax, for
example, with the pair (¢, s) we have a notation expressing that exactly one of
the terms ¢ and s will be needed. This syntax is also used for the “if ... then ...
else ... ” construct ¢ (s, r).

Data-types, that is, types from which all the stored information can be re-
trieved by a single use of an object of this type, are introduced by constants. In
the system we have two forms of abstraction with special introduction rules:
the A-abstraction and the pair. Note that the pair really is an abstraction, as
only part of the stored information can be retrieved by a single use. The tensor
T ® p, however, is a data-type as a single use can access both components; hence
we have a constant ® , to introduce it.

This way of introduction allows the relatively simple Definition 3.3 of the
reduction relation expressing that we may reduce within data, but not under
abstractions.

Immediately obvious from the definition is

(L(o)7).

ProposiTiON 2.5 (WEAKENING). IfT ¢ and T C T then T = ¢7.

Rule (—™) could as well have been written
| A el
' Qx®.e) "

requiring that the bound variable does not occur in the context afterwards. In
our formulation it is easier to recognize weakening as a admissible rule. As we
identify a-equal terms, weakening holds in the alternative formulation as well
and both formulations are in fact equivalent.

It might seem odd that in this calculus a typed term can have an untypable
subterm {¢}. An obvious definition would introduce a new form of application,
for example, if r, s are terms then so is r {s}, rather than a new term former {s}.
However, the present approach is technically more convenient, since it allows
the simple classification of terms according to their head form (cf. Lemma 2.8).

It should be noted that with some technical overhead one could resolve this
problem by separating terms and so-called elimination terms, as in work of

1Tt should be noted that the same syntax would appear in the standard implementation in the
untyped A-calculus. For example one should think of ® as being Ax, y,z.zxy.
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Joachimski and Matthes [1999]. But in the present rather simple situation this
seems to be overkill.

The notation ¢* expresses that there is a I’ such that I' F £7. The smallest
such I' is called the set of free variables. By induction on the definition of T" I ¢°
one easily verifies:

LEmMA 2.6. For each term t there is at most one type t such that t*. In this
case thereis a smallest T with T + t* which coincides with the set of free variables
of t in the usual sense.

As already mentioned, the main restriction of the typing calculus is linearity,
that is, in an application ¢1¢5 the free variables of #; and #, have to be disjoint.
This is stated explicitly in the rule (— ™), but holds for all other “applications”
as well. More precisely:

Lemma 2.7 (LINEARITY). Assume (t1t2)". Then either ty = {t,} with closed
t, or else there are types " and t” and disjoint contexts I'y, 'y such that I'y - Ho
and I's - tgr//.

Proor.? The last rule of a derivation of I' + (¢1£2)° must be one of (—),
(xg), (x7), B7), (®), or ((r)7). In each of these cases the claim is trivial.
For example, in the case (® ) we conclude by two applications of (—*) that
o - (Ax®, y?.8)" 7. O

The fact that all eliminations are written as applications ensures that all
typed terms have a uniform appearance. As can easily be verified by induction
on the definition of the relation I, we have

LemMa 2.8 (Heap Form). If T & t° then t is of the form xt, ct, (\x”.s), or
(s,r) L.

It should be noted that this lemma, although technically trivial, turns out to be
crucial for the further development: as we are taking vector notation seriously
and only have constants for the introduction of data-types, case distinction
according to this lemma (and further according to the constant ¢ in the case
ct ) is essentially case distinction according to the “form of the next canonical
redex,” without the need of defining such a notion.

3. REDUCTIONS

The reduction rules to be defined are all sound with respect to the set-theoretic
semantics [Hofmann 2000a, §2.1]. In order to control the effects of recursion we
allow reduction of an iteration only if the argument is already calculated, that
is, if the argument is a list.

Definition 3.1. Lists £ (with n entries) are terms of the form
cons.d;ai(...(cons.d a nil,)),

where d1, ..., d, stand for arbitrary terms of type o.

21t should be noted that this is just an inspection of the rules and in particular no induction is
needed.
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It should be noted that we could also have required the d to be variables and
gotten the same results. However, this definition allows more reductions (see
Definition 3.2) and therefore is slightly more flexible when dealing with terms
that are not almost closed, that is, contain free variables of types other than o.

Definition 3.2 (Conversions). +> is defined as

(AxT.t)s — tls/x],

(t,s)t — t,

(t,s)f — s,

t(t,s) — ,

ff(t,s) s,

®rptsAx®, yP.r) > rlt,s/x, yl,

nil; {¢}s — s,

cons. d°al{t}s + td°a(l{t}s), { alist.

Although they look quite similar, the rules (¢,s)t — ¢ and t (¢, s) — ¢ actually
have very different meaning. The first rule says that we can unfold a projection
once the argument of the term of x-type is in canonical form, whereas the other
rule tells us to take the if-branch, once we know that the conditional evaluates
to t. Also notice the different typings of the two rules.

Definition 3.3. The reduction relation ¢ — ¢’ is inductively defined as
follows:
t—>t t—t s—>¢g

t—>t’ ts—>ts’ ts—ts

The requirement that we can only unfold one step of an iteration if the argument
is a full list (in the sense of Definition 3.1) is crucial for our method of estimating
the length of reduction sequences (cf. the introduction to Section 4). This can be
seen from the corresponding case in the proof of Theorem 4.8. Apart from this
restriction and the requirement that one cannot reduce under abstractions, the
reduction strategy is arbitrary.

As usual, we call a term ¢ normal if it cannot be further reduced, that is, if
there is no ¢’ such that ¢t — ¢'.

Lemma 3.4. IfT1U{x”} ¢t and I's + s and moreover I'y and T's are dis-
Jjoint, then I'1, Iy - (¢[s/x”])".

Proor. Induction on ¢, using Lemma 2.7: if ¢ is a variable or a constant the
claim is obvious. If ¢ is of the form ¢ = #¢t2 then by Lemma 2.7 either
tls/x] = tils/xlts or tls/x] = t1(tals/x]). We apply the induction hypothesis
to the corresponding subterm and can type ¢[s/x] by the same rule used to
type ¢. If ¢ is of the form ¢ = Ay .r, then ¢ must be typed due to (—™); hence
' U{x, y} - r” and we may apply the induction hypotheses to r (without loss
of generality y does not to occur in I's) and then conclude the claim by (— 7).
The proof is similar if ¢t = (¢1,%2). O

Lemma 3.5 (SuBJeEcT REpUCTION). If Tt and t — t/, then T - ¢'".

Proor. Induction on ¢ — ¢. The only nontrivial case is handled in
Lemma 3.4. O
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Next we show that we have sufficiently many reduction rules, that is, that
normal terms have the expected form. As the size of a term is its number of free
variables, we also have to consider nonclosed terms. Since ¢ is the only base
type without closed terms, we can restrict ourselves to almost closed terms,
which are defined to be terms with free variables of type ¢ only. It should be
noted that (for example) an arbitrary list can be encoded as an almost closed
term.

ProrosiTioN 3.6. Every normal, almost closed term of type L(t), B, or o isa
list, t or f, or a variable of type o, respectively.

Proof. Induction on ¢ and case distinction according to Lemma 2.8: If ¢ is
of the form x7 then x has to be of type ¢ and hence # has to be empty (since
there is no elimination rule for the type ¢). If ¢ is of the form (Ax.s) or (s,r)Z,
then 7 has to be empty as well, for otherwise the term would not be normal. So
the interesting case is if ¢ is of the form cZ. In this case we distinguish cases
according to c. If ¢ is tt or f, nil;, or ®- ,, then f can only consist of at most 0, 1,
or 2 terms, respectively (for otherwise there were a redex); hence we have the
claim (or the term is not of one of the types we consider). In the case cons.dart
the induction hypothesis for r yields that ¢ is of the form ¢ with a list ¢. So if
consists of more than one term, there would be a redex; but if  is a single term,
then the whole term would have arrow-type. O

It should be noted that in the above proof the only place where the induc-
tion hypothesis is actually needed is to argue that in cons.d °ar the subterm
r has to be a list as well (and hence the whole term is a list). In particular,
these statements need not all be proved simultaneously, but only simultane-
ously with the statement that every normal, almost closed term of list-type
is in fact a list (which is necessary due to the side-condition on the reduction
rules for lists). This modularity is a feature of the vector notation, that is,
the consistent use of elimination-rules written as applications: in this way the
(syntactical) Lemma 2.8 gives easy access to the canonical redex by showing
the corresponding introduction. It should be noted that the use of elimination-
constants (“iterators”) would have messed up this modularity, as in the case of
an elimination constant followed by some arguments one would in fact need
some form of induction hypothesis stating that the argument to be eliminated
is introduced canonically.

4. LENGTH OF REDUCTION SEQUENCES

Before continuing, we give a sketch of the main idea of the proof in order to
motivate the following definitions.

Since the system is linear, f-reduction reduces the number of symbols (the
A disappears). The same is true for the reductions due to projections and “if . ..
then ... else.” So the only case where the number of symbols is increased is the
case of iteration. However, if we unfold an iteration completely, that is, if we
reduce cons.d;r{(...(cons.d r;nil;)){h}t in n + 1 steps to hdri(...(Rdrt))
then the {-}’s disappear. So by making them “sufficiently heavy” the total weight
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of the term reduces. For the {-}-construct the weight has to depend not only on
the term within the braces but also on the length n of the numeral we iterate
on. So instead of a fixed number we assign a polynomial(ly bound function) to
this term. But what argument will this polynomial get? Noting that we have
n terms dy, ... ,d; of type ¢ and remembering the idea that terms of type ¢
always contain a free variable (as will be proved in Proposition 4.3), we find
that the number of free variables is just the right upper bound for the length n
(since the d appearin a joint application their free variables have to be disjoint).

This would lead to a proof that every reduction strategy that always
unfolds iterations completely is polynomially bounded. In order to get re-
sults for every reduction strategy we notice that within the subterm
cons.d;ri(...(cons.dr/nil,)) {h} ¢ the iteration unfolds at most n times, even
if the actual number of free variables in the whole term is larger.® Using this
information we can limit the assigned polynomial(ly bounded function) to get
a measure that actually decreases in every step (Theorem 4.8).

So we use three different measures for terms: the number of free variables,
which corresponds to the “size function” in Hofmann’s [1999] work; the length,
which is the number of symbols of a term that can be accessed (using the inter-
pretation that you can only access one component of an ordinary pair); and the
polynomial, which is the upper bound for the complexity of a function.

Definition 4.1 (Length). The length |¢| of a term ¢ is inductively defined as
follows:

le] :== x| : =1,

[¢s] = [t[+Isl,

[AxT.s| =|s|+1,

I{¢,s)l  :=max{lt], s} + 1,
{t} =0.

As the length || is essentially used to handle B-redexes, the length of {-}-terms
(which are closed terms!) is of no importance. So for simplicity, and to obtain
slightly sharper results (as the length occurs in the Definition 4.5 of the poly-
nomial bound), the value 0 has been chosen. It should be noted that all the
results would also hold with any other “reasonable” definition for |{¢}|, such
as |t|.

LEmma 4.2. IfT'1 F ¢° and T's = s and moreover I'1, 'y are disjoint, then
|tls/x]| < |t| + |s|. In particular, |(Ax".¢)s| > |t[s/x]|.

Proor. Induction on ¢, using the fact that ¢ is typed and therefore in the case
of an application only one of the terms can contain the variable x free (compare
Lemma 2.7).

3This subterm might not unfold at all if it is positioned under a A-abstraction that remains in the
normal form. We do not allow to reduce under A-abstractions (see Definition 3.3) since the number
of free variables under a A-abstraction is potentially higher and therefore numerals and lists are
potentially longer. This restriction corresponds to not allowing the use of a “potential resource,”
that is, a resource that is not yet present.
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For instance, if ¢ is 19, then the last rule of a derivation of I" I (¢1£2)7, must
be one of (—7), (x;), (x7), (B7), (®), or (L(r)7). In each of these cases the
claim is obvious. O

LeEmMA 4.3. Every term of type ¢ contains a free variable, that is, if T + t°,
then T #£ (.

Proor. Induction on |¢| and case distinction according to Lemma 2.8. The
case x7 is trivial. In the case (Ax.s)f the # cannot be empty (for otherwise the
term would have an arrow-type), so we can apply the induction hypothesis to
the (by Lemma 4.2) shorter term t[t;/x]ts - - - ¢,. Similarly for (r, s)f, where we
apply the induction hypothesis to rtg - - - ¢, or st - - - t, depending whether ¢; is
t or f (note that by ¢yping one of these has to be the case) and ®, ,f, where we
again use Lemma 4.2. For cons,? we use the induction hypothesis for ¢;. For
nil,7 use the induction hypothesis for ¢, - - - t,. In the cases tZ and fZ, by typing,
t1 has to be of the form (r, s) and we can apply the induction hypothesis to (say)
rtg---t,. O

The following corollary is formulated for type 1 functions only. However, if one
accepts the number of free variables as a reasonable size measure for definable
functions for higher types as well, then the corollary trivially remains valid for
every definable function.

CoOROLLARY 4.4 (NON-S1ZE-INCREASING PROPERTY). Every function of type
L(tr) — L(t) definable by a closed term has the property that the output is not
longer than the input.

Proor. Lemma 4.3 shows that for closed terms of type L(7) the usual length
and the number of free variables coincide (due to the typing ¢ — t — L(1) —
L(t) of the cons, function). The number of free variables trivially does not
increase when reducing the term to normal form. O

Let N be the set of natural numbers and NP°Y be the set of all functions from
N to N that are (pointwise) bounded by some polynomial. We write X for the
identity on the natural numbers, f + g and f - g for the pointwise sum and
product in NP°%Y  and X, for the minimum of the identity and n, that is, X ,,(m) =
min {n, m}. Nis treated as a subset of NP by identifying a natural number with
the corresponding constant function. Let < be the pointwise order on NP°%Y, Then
there exist finite suprema (the pointwise maxima) in NP°Y with respect to <,
denoted by sup {-}.

It seems that by considering functions we leave the realm of syntax. But
as we will only use functions that are explicitly defined by pointwise sum,
product, maximum, and minimum from the identity and constants we could as
well restrict ourselves to these functions only. It should be obvious how these
functions can be encoded by some finite (syntactical) object.
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Definition 4.5 (Polynomial Bound 9 (-) of a Term). For each (not necessar-
ily typed) term ¢ we define a polynomial ¥ (¢) € NP°%Y by recursion on ¢:
P (x):=9():=0,
)+ X, -0 h)+X, |kl iftisalist with n entries

B (£s) = and s is of the form {A},
D)+ 9 (s) otherwise,

9 (xt.t) =0 (),

¥ ({, ) == sup {# (¢), 9 ()},

3 ({h}) =X -0+ X -|h,

We write ¢ (£) for 3 0 (4).
i=1
Immediately from the definition (since X, < X) we get
ProrosiTION 4.6. ¥ (£s) <X O (£) + O ().
Lemma 4.7. IfT1+t¢7, e b s?, and 'y, T's are disjoint, then
B(tls/x]) < 9(@) + D (s).

Proor. We prove this by induction on ¢. The only nontrivial case is when ¢
is an application (note that the case {A} does not occur since ¢ is typed). So let
t be of the form rr'.

If r is a list with n entries then, as ¢ is typed, we know that ' must be of the
form r’ = {h} and therefore closed. r[s/x] is easiliy seen to be again a list with
n entries. Therefore we get

H(rr)s/x]) = 0 (rls/xIr’)
=9(rls/xD+ X, -9 (h)+ X, - ||
Kvr)+96)+X,-02h)+X,-|h byIH
=9@r')+ v (s).
If r is not a list, then at most one of the terms r, r’ contains the variable x free

for typing reasons. In the case x € FV (r) (the other case is handled similarly)
we have

Hrr)ls/x]) = v (rls/x1r')
< 0(r[s/x])+v(@') by Proposition 4.6
K 0(r)+9(s)+9@F') byIH
= 3(rr') + ¥(s).

This completes the proof. O
THEOREM 4.8. Assume D' +t" and N > |FV (¢)| where N € N. Ift — t'; then
@) (N) + [t > ENN) + |t'].
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In particular, any reduction sequence starting from t has length at most
P& AFV @)D + 1]

Proor. We prove this by induction on the definition of the relation ¢ — ¢'.

Casers — r'sviar — r'.

Subcase r is a list with n entries. Then by typing restrictions and from
Lemma 4.3 we know that n < |FV (¢)| < N. Also s has to be of the form s = {A}.
r’ is again a list with n entries, so

9 (rs)(N) + |rs]
Vr)YN)+n-9R)N)+n- |kl + |Ir|+|s]

@) N)+n-0h)N)+n-|hl + ||+ |s| byIH
Ir's)(IN) + |r's].

vl

Subcase r is not a list. Then

¥(rs)(N) + |rs]

VIrIN)+9(S)N) + |r|+ sl

(') N)+3()N) + |r'| +1s| by IH

?(r's)(N) + |r's] by Proposition 4.6.

v vl

Case rs — rs’ via s — s'. Then r is not a list, since otherwise, s were of
the form {-} and we must not reduce within braces. Therefore this case can be
handled as the second subcase above.

Caset — t’. We distinguish subcases according to the form of the conversion.

Subcase (\x.t)s — t[s/x]. We have

H(x.t)s)(N) + |(Ax.t)s]
= 0@ N)+0()N) + [t|+1+]s]
> 9(t[s/x](N) + |¢|+1+4s| by Lemma 4.7
> O(t[s/x](N) + |tls/x]| by Lemma 4.2.

Subcase ., ,rs(Ax, y.t) > tlr,s/x, y]is handled similarly.

Subcase cons.d°al {s}r — sd®a(l{s}r) with ¢ a list with n entries. Then by
Lemma 4.3 and the linear typing discipline n + 1 < |FV (cons.d°al {s}r)| < N.
Therefore we have

¥ (cons.dal {s}r)(N)
+ |cons.d°al {s}r|

= AN+ @) (N)+9 &) (N)
+ 4+ D) N)+m+1)|s|+ 3 F)(IN)
+1+|d|+lal+ 1€+ 1],
and on the other hand
v(sd®al{s}r)(IN)
+ [sd®a(€ {s}r)]
= D))+ 3Hd)N)+ 3a)N)+ )N )
+n-0@E)N)+n-|s|+0F)(N)
+ Isl+1dl+ el + £+ Ir],

which obviously is strictly smaller.
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Subcase t (r,s) — r. We have

v (t(r,s)(N) + [t(r, s)
= sup {9 (r), ¥ ()} (V) + 1+ max{|r|, |s]}
> 9 (r)(N) + 1+1r].

The remaining subcases are similar to the last one. O

COROLLARY 4.9. If @+ tUB—L®B) thon t¢ can be reduced to normal form in
polynomial many steps in the length of ¢ for any almost closed normal ¢.

Proor. Let ¢ be an almost closed normal list. Then ¢ (¢£) = 9 (¢), as 9 (£) = 0.
Therefore an upper bound for the number of steps is @ (¢) ((FV (£)]) + |t] + |4],
which is polynomial in the length of the input ¢. O

Strictly speaking, the above result does not show that functions definable by
closed terms are polynomial time computable, since no machine model has been
provided. However, it is obvious how these reductions can be implemented in
constant time (with respect to the size of the input): First note that the only
terms that have to be duplicated are the step terms of iterations which are not
part of the input and—as they are closed terms—no part of the input can become
substituted into them. Next remark that all 8-redexes are linear and hence can
be implemented by the usual pointer switching techniques. In the case of (., -)
an indirection node is used for the shared variables of the two components. Our
reduction strategy does not reduce within a pair until the projection or the “if
... then ... else” statement is resolved. As pairs are not part of the input, the
amount of extra work in each resolution step is independent of the input. Hence
we have

COROLLARY 4.10 (HoFMANN [1999]). If @ + tLB—L®) then t denotes a func-
tion computable in polynomial time.

Example 4.11 (INSERTION SoRrT). Let 7 be a type equipped with a linear
ordering. Assume that this ordering is represented by a term <, of type
T -7 —oB®(r®71), thatis, d.ts >* ®B 5. 1(®;ts), if ¢ is “smaller” than s,
and <.ts —>* ®B,:e:M(®:,ts) otherwise.

Using this function, we can define a sort function of type 1 7 o7 ® <
for two elements, that is, a function of two arguments that returns them in the
correct order:

<. = Apl, ps. <. p1pa(hy®, p™® . p(ApI, P3.¥ (@1, P1P2®1,: P2P1))-

Now define a function of type L(r) —o ¢ — 7 —o L(7) that inserts an element at
the correct position in a given sorted list. At each step we compare the argument
with the first element of the list, put the smaller element at the beginning of
the list, and insert the larger one in the rest of the list.

o—o1—oL(7)

insert = Al .U{Ax], y1, p X5, 5. <7 y1y2(A2], 25. cons, x121(pxaz2))}

(Ax°, y*.cons xynil,).
Then insertion sort is defined as usual:
sort = A7 1{xx°, y7, 1™ insertlxy}nil,.
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Using #(<’) = ¥#(<d,) and counting braces we get
¥ (sort) = X - 9 (insert) + O(X) = X2 . 9(d)+ O(X?) = X2 .9 (d,) + O(X?).

This reflects the fact that insertion sort is quadratic in the number of compar-
ison operations.

By simple modifications of Hofmann’s [1999, §4.3] proof we may conclude that
many “natural orderings,” for example, the normal ordering on binary coded
natural numbers, can be defined in the given term system.

However, it should be noted that it is not necessary that every interesting
ordering is definable in the given system. It would also be possible to just add
a new symbol <, with the conversion rules <.fs — ®p g:1(®:ts), if ¢ is
“smaller” than s, and <:ts — QB g:f(®-ts) otherwise. With |<;| := 4 the
above argument remains valid and shows that there are at most X? of the
newly introduced conversions in a normalizing sequence. Therefore this theory
can be used to calculate the number of calls to a subroutine, even if the sub-
routine itself is not definable in the given system, or not even polynomial time
computable.

5. EXTENSIONS OF THE SYSTEM

The syntactical analysis of the system allows various extensions that we only
sketch here, giving sufficient detail to reconstruct the proofs.

5.1 Full Polynomial Time

The system so far only contains non-size-increasing functions, and hence cannot
contain all PtiME functions. New results of Hofmann [2001] show that indeed
all non-size-increasing PTIME functions (and hence in particular all PTiME pred-
icates) are already definable within the present system.

Here we shall briefly sketch an approach to obtain all PTIME functions
in order to provide some insight into the way the restriction to non-size-
increasing functions works. Its motivation was to avoid explosion of growth
by iterating over already aggregated data-structures. Yet in the definition of
PrivE, the only large data-structure of a Turing machine is its tape. More-
over, a Turing machine does not iterate over its tape but instead modifies it
locally.

The central idea lies in the observation that size is represented by the num-
ber of free variables. Hence, we can add a type ¢ that allows closed terms for
objects that are semantically of arbitrary size. On this type, we can then define
functions that are semantically size-increasing, like the extension of a Turing
tape, but are from a syntactic point of view non-size-increasing, in that they do
not require an argument of type o.

Iteration on this new type  would lead beyond polynomial time, as the num-
ber of iterations that a loop (i.e., an L(r)-elimination) unfolds to is no longer
immediately related to the input (via the number of free variables).
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The term system is extended by adding a new ground type ¢ and the following
constants with types:

o P L —o1
50 L —o 1 iszero t—oB®L
51 t—ot head t—o(B®

> is enriched by
heado — Qg,flo

head(sot') — ®g,fi(sot")
head(sit') — Qg t(s1¢).

po = o iszeroo ~ ®g, to
p(st) — ¢ iszero(s;t') — ®g,f(s;¢")

The definitions of the relations I'  ¢* and ¢ — ¢’ remain unchanged. Proposi-
tion 2.5, and Lemmata 2.6, 2.8, 3.4, and 3.5 remain valid with almost identical
proofs.

We call terms of the form s;,(. .. (s; o)) short numerals. As in Proposition 3.6
we show that every normal, almost closed term of type ¢ is a short numeral (and
therefore closed).

The definition of the term length |¢| had the property that for all reduc-
tions except iteration the length decreased. To retain this property we define
liszero| = |head| = 3 and keep the rest of Definition 4.1. In particular, every
constant different from iszero and head still has length 1. Then Lemmata 4.2
and 4.3 remain valid.

The definition of ¥ (¢) is unchanged. Then (with identical proof) Lemma 4.7
holds and also the main Theorem 4.8. In particular, the extended system still
consists of PriME functions only.

To show that every PTiME function can be defined by a closed term of type N —o
t, we code the configuration of a Turing machine (with IV states {Sy, ..., Sn_1},
working over the alphabet {0, 1}) with the symbols i - - - i, before and including
the head and the symbols jj--- ji followed by the nonvisited positions after
the head and with current state S,, by

(s, (- (56,0)))  ®(so(- (550 0))) (®(®- - (Rtn_1t)))

with 7 the smallest number such that N < 2" and each of the 7 being t or f, so
that  is the binary coding of m. The closed terms sy and s; extend the Turing
tape where necessary, so we can define the one-step function of the Turing
machine by sufficiently many case-distinctions. Iterating this one-step function
polynomially many times (e.g., as done by Hofmann [1999, §4.3]) completes the
(sketched) proof.

5.2 Trees

We sketch how our technique applies to the data type of binary labeled trees,
studied also by Hofmann [2000a, §4.3]. Notice that the extension is not com-
pletely obvious, since iteration on trees involves fwo recursive calls. It turns
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out that the number of free variables in a term still is a good measure for the
number of unfoldings of an iteration.
The system is extended by

—a new type constructor T(z, p) for trees (with nodes labeled by elements of
type t and leaves labeled with elements of type p);

—new constants with their respective types

leaf,, p—T(z,p)
tree; , o —o 17 —0 Tz, p) — T(z, p) — Tz, p);

—a new term constructor {-, -} for iteration on trees;
—a new typing rule

r+ tT(f’p) w [ sowrwa—wawa (/) |- pp—o0
L E (s}

(T(z, p)7).
We inductively define the notion of a tree (with n nodes) by

—leaf, ,t” is a tree (with 0 nodes);

—if't; and £3 are trees (with n; and ng nodes) then tree, ,d °a’ti¢; is also a tree
(with n; + ng nodes).

The conversion relation — is augmented by

leaf, ,t {s,r} — rt,
tree, ,datits {s,r} — sda(ti{s,r)t2{s,r}) t1, to trees.

We extend the definition of the length by |{s,r}| := |r| and the definition of the
polynomial bound by

s, rHh =X -9+ X +D-2@)+ X -Is|+ X -],

@)+ X, 0h)+ X, |k if t is a list with n entries
and s is of the form {h},
(ts) =<0@)+X, - 96)+(X,+1)-0@F") iftis atree with n nodes
+ X, 18+ Xy - 1| and s is of the form {s’, r'},
?(t) + 9(s) otherwise.

Then the theory in Section 4 remains valid, with identical proofs. The new
nontrivial subcase in Theorem 4.8 is

tree, ,datits {s,r} > sda(ty {s,rD(t2 s, }),

where ¢; and ¢ are trees with n; and ng nodes, respectively. Then by
Lemma 4.3 and the linear typing discipline we know that n; + ng + 1 <
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|[FV(tree, ,datits {s,r})| < N, and hence

d(tree, ,datits {s,r}N(N)
+ |tree, ,datits {s, 7}
= Hd)N)+ 3@)N) + 9t1)(N) + 0 (E)(N)
+ (1 +ng+ DIS)N)+ (n1+n2+ 1+ D )IV)
+mi+ne+Dis|+(n1+n2+1Dir|
+ 1+ 1d| + lal + |t1] + lta] + I7]
and
H(sdalty {s,r})(E2 {s,rHIIN)
+ Isda(ty {s,r})(t2 {s,7})|
= 9(s)(N)+ 3 (d)N) + a)N)
+0EN)+n1-06N)+ 1+ 1) - 9@)IN)+nq-|s|+nq - |r]
+ 0@E)N)+ng - 0S)IN)+(ng+1)- 3T )N)+ng - |s|+ng - |r]
+ sl +Id| + la| + [t1] + Ir| + |t2] + |7,

which is strictly smaller.

It should be noted that, once iteration on labeled trees is available, “divide
and conquer” recursion can be implemented: given a data type r and starting
from a “divide function”

f: 7 — L(r) — 7 ® L(r) ® L(7)
we can construct a function §: L(r) — T(z, L(1)) with

E(l‘lllr) = leaf,,L(r)nilf,
f(cons.d°a’™t) = tree,yda (leaf, 1)¢1)(leaf 1 l2) iffal =a' ® (1 Q L.

To do so we first construct via iteration over lists a function g: L(zr) —o
L(t) x T(r, L(z)) with g(¢) = (£§¢). It should be noted that f is defined by
case analysis (iteration is only used to emulate the nil,/cons, case distinc-
tion). Iterating a function that applies f to (the label of) every leaf of a tree
sufficiently (i.e., linearly) often, using algorithms similar to those described
by Hofmann [1999, §4.3], we can define a function {”: L(r) — T(r, L(z)) such
that

2 (nil,) = leaf, 1)(nil,),
f?(cons.d°a’t) = tree, rda (fP¢1) (L) iffal =a' ® €1 ® Lo.

A final iteration over the created tree with an appropriate “conquer function”
and an appropriate initial value finishes the implementation of “divide and
conquer” recursion in the present system.

Following these lines, we can, for example, specify quicksort by providing

—a divide function of type 7 — L(7) — v ® L(7) ® L(7) splitting a list into two
sublists, one with the elements larger than the given one and the other with
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smaller elements

)»xt,lL(T). l{)\yg, yi’pr®L(r)®r. p()»xt,pL(ﬂ@L(r). p()»l/,l//.
d.xy1 (A28, p®.  p(axT, yi.
2( ®« LmeLoX (®Lx), L (cons, yoyil "),
®¢ LoeLmX (L Ll (cons. yoy11"))))) }
®r,LineLn)* (OLm,Lrnil il );

—a conquer function of type ¢ — t —o L(r) —o L(7) — L(7) taking two sorted
lists and joining them appropriately with the middle element

l /L(t) l L(t)

Ax®, yt appl’'(cons,xyl"),

where app is the append function, defined as usual,
—an initial case for the empty list, nil,.

However, as in this implementation of “divide and conquer” recursion, for each
unfolding step the whole (intermediate) tree structure has to be traversed, it
is less efficient than a “native” variant of “divide and conquer,” but, as shown,
still in polynomial time.
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