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Abstract

The deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation,
free from implementation details which are, by nature, oriented and non symmetrical. 1 propose here one such
model, in the area of Logic Programming, where the basic computational principle is

Computation = Proof search.

Proofs considered here are those of the Gentzen style sequent calculus for Linear Logic. However, proofs in
this system may be redundant, in that two proofs can be syntactically different although identical up to some
irrelevant reordering or simplification of the applications of the inference rules. This leads to an untractable proof
search where the search procedure is forced to make costly choices which turn out to be irrelevant. To overcome
this problem, a subclass of proofs, called the “focusing” proofs, which is both complete (any derivable formula
in Linear Logic has a focusing proof) and tractable (many irrelevant choices in the search are eliminated when
aimed at focusing proofs) is identified. The main constraint underlying the specification of focnsing proofs has
been to preserve the symmetry of Linear Logic, which is its most salient feature. In particular, dual connectives
have dual properties with respect to focusing proofs.

Then, a programming language, called LinLog, consisting of a fragment of Linear Logic, in which focusing
proofs have a more compact form, is presented. LinLog deals with formulae which have a syntax similar to
that of the definite clauses and goals of Horn logic, but the crucial difference here is that it allows clauses with
multiple aloms in the head, connected by the “par” (multiplicative disjunction). It is then shown that the
syntactic restriction induced by LinLog is not performed at the cost of any expressive power: a mapping from
full Linear Logic to LinLog, preserving focusing proofs, and analogous to the normalization to clausal form for
Classical Logic, is presented.
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1 Introduction

Linear Logic [18] has been used in various areas of computing. Its computational appeal basically stems from its
deep symmetry, expressed by the duality operator * and the De Morgan laws (which hold without precluding the
logic from being constructive). In the case of Functional programming, for instance, this symmetry leads to a
formulation of the cut elimination procedure (based on proof nets [22], or proof expressions [1]) in which the role of
input and output of a computation are blurred. Instead, a computation is viewed as a manipulation of resources:
“input” corresponds to a consumption of a resource and “output” to a production, and these two operations are
strictly dual. This mechanism of consumption-production of resources, which is inherently concurrent, is analogous
to applications of rewrite rules, formalized in the (non-equational) framework of rewrite logic [25]. Concurrent
resource manipulations also lie at the core of the applications of Linear Logic to Petri nets [12, 23] and can be
given a metaphorical interpretation in terms of chemical reactions [9, 10].

A similar, resource based, approach to computation applies in the area of Logic Programming, especially to
concurrent logic programming systems. In this framework, a computation consists of a set of processes running in
parallel, possibly exchanging information. Each process is entirely characterized, at any given time, by its state,
which is a collection of available resources. State transitions, i.e. the elementary steps in a process evolution,
consist of resource manipulations, such as production, consumption, duplication.. .

Sequent style proofs offer a satisfactory tool to formalize the history of an execution during a certain time
interval. Tndeed, the evolution of each computational process present at the beginning of the interval can be
represented as a proof-tree, read bottom-up, whose root (conclusion) represents the state of the process at the
beginning of the interval, and whose leaves (hypotheses) represent the resulting states at the end of the interval.
The nodes inside the proof represent the intermediate states of the evolution of the process during the interval.
There might be more than one resulting state in a transition, or none at all. This corresponds to the possibility
for a process either to create several new processes or to terminate. A sequent system, which describes the correct
inferences in proofs, can therefore be viewed as a formal specification of allowed process state transitions.

This process view of logic programming has already been taken in such systems as Concurrent Prolog [30, 29],
Parlog {13, 15] or GHC [31]. However, these languages, based on Classical Logic (more precisely, its fragment
restricted to Horn clauses), offer a very limited structure for representing process states. Indeed, a state must be
encoded as a simple atom, i.e. a first-order term. It has been shown in {3, 4, 7, 6] that this kind of representation
is inadequate both from the point of view of knowledge sharing and communication between processes, mainly
because the tree structure of terms enforces an artificial hierarchical order on their components and this, in turn,
results in unwanted sequentiality in the access to these components. On the other hand, Linear Logic offers a far
richer structure for process state representation: a state is encoded as a sequent, i.e. a multiset of formulae (being
unordered, multisets are more suited to concurrent access).

By precluding the possibility of freely duplicating or deleting formulae in sequents, by application of the struc-
tural rules of Contraction and Weakening, Linear Logic bestows on formulae the status of restricted resources.
Hence, this status is explicit in Linear Logic, and does not derive, as in Prolog, from an interpretation of a frag-
ment of the logic (Horn clauses and goals). Therefore, it becomes realistic to think that a proof search procedure,
as “efficient” in terms of resource manipulations as SLD-resolution for Horn clauses, can be devised for full Linear
Logic, without any syntactical restriction. This paper attempts to devise such a procedure.

The basic procedure could be described as follows: given an initial sequent &,, it incrementally builds a proof
Il of oy, in a Prolog-like fashion. Initially II is assigned to a single (open) node labeled with o,, and the process
SEARCH(@,) is started.

Procedure SEARCH(o: open node of II)

1. Select an instance of an inference figure of the sequent system with bottom sequent equal to o and
top sequents oy, ..,0, (with n > 0);

2. Expand proof I at node ¢ with n branches to new open nodes labeled respectively with oy,. .., on;

3. For each k = 1...n, Start SEARCH(0%);

At step 3 of procedure SEARCH, the newly created open nodes {0k }x=1..n can be searched simultaneously. This form
of parallelism is called “global”, since it concerns all the branches of the proof, as opposed to “local” parallelism,
introduced below, and which occurs within a single branch of proof.

Step 1 of procedure SEARCH is not completely determined, in that the criterion for the selection of an inference
figure is not specified. But, if we assume that all the possible choices at this step are explored (by a choice
enumeration procedure for example) then all the possible proofs of the initial sequent are generated.

However, it appears that many of these generated proofs are redundant. Of course, syntactically speaking, all
of them are different, since, by construction, they correspond to different sequences of application of the inference
figures. But it may happen that the order in which these inference figures are applied turns out to be irrelevant,



or could be simplified, so that two (syntactically different) proofs built by the procedure SEARCH may in fact be
equivalent in the following sense: '

Definition 1 Two proofs are said to be P-equivalent if each of them can be obtained from the other by simple
permutations of inference figures and elimination or introduction of useless loops.

This equivalence relation is denoted <.

o Permutations of inferences in a proof are characterized by a situation of the following kind:
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Here, the sequent o’ is derived in two different ways from the same premisses (0;)i=1..» simply by permuting
the application of inference rules R and S (this is not possible with any two inferences rules R, S). From the
point of view of the search process, this means that the inference rules R and S could in fact be selected (and
applied) simultaneously at step 1 of procedure SEARCH, instead of sequentially, as required by the definition
of this procedure. This provides a new form of parallelism, called “local” parallelism, which complements the
“global” parallelism already mentioned above.

e Similarly, useless loops in a proof are characterized by the following situation:
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where one sequent inside a proof is identical to the root of the proof (and hence, the sub-proof starting from
that internal sequent could replace the overall proof).

Typical instances of these two cases of P-equivalence, which disturb the search procedure, are presented and
analyzed in the next sections.

The solution adopted here to deal with the problem of redundant P-equivalent proofs is to modify the procedure
SEARCH in such a way that, instead of trying to build all the possible proofs of a sequent, it generates only a subset
of these proofs, from which all the others could be mechanically derived. The idea is that, within this subset, the
number of distinct P-equivalent proofs should be null (ideally) or at least reduced. In other words, proofs from
this subset can be viewed as “normal” tepresentatives of the classes of P-equivalent proofs, and only these normal
proofs are searched. T propose here a complete subset of proofs for Linear Logic, called the “focusing” proofs, which
does not rely on any syntactic restriction (unlike, for instance, resolution, which applies only to clauses in Classical
Logic).

2 Focusing Proofs

The class of focusing proof is defined below using an indirect method. It starts with the standard sequent system
of Linear Logic, as can be found in [18] (see Fig. 1), and called, here, the “Monadic” system X; (this terminology is
justified below). A first step of proof normalization is defined using an other sequent system, called the “Dyadic”
systemn Iy, together with a (possibly non deterministic) transformation from monadic to dyadic proofs such that:

If two monadic proofs can be mapped into the same dyadic proof, then they are P-equivalent.

Hence, each dyadic proof I represents a subset of a P-equivalence class of monadic proofs, consisting of all the
monadic proofs which can be mapped into II. Tt constitutes a first approximation of this P-equivalence class. A
better approximation is obtained during the second step of proof normalization, which is specified in exactly the
same way, i.e. using another inference system, called the “Triadic” system L3, and a mapping from dyadic to triadic
proofs verifying: if two dyadic proofs can be mapped into the same triadic proof, then they are P-equivalent.

The first normalization step is concerned with the inference rules of Contraction and Weakening, whereas the
second normalization step deals with all the other inference rules. Tt could have been possible to merge the two
steps and go directly from the Monadic to the Triadic sequent system, but at the price of some clarity.

The procedure SEARCH becomes much more tractable when applied to the Triadic sequent system, since it
avoids to generate all the redundant P-equivalent monadic proofs which correspond to the same triadic proof.



F, G stand for formulae, T, A stand for multisets of formulae.
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Figure 1: The Monadic Sequent System ¥;

2.1 The Dyadic System ¥,

In the Monadic sequent system i, a sequent consists of a single multiset (i.e. unordered list, denoted with Greek
uppercase letters T', A) of formulae (i.e. resources). Linear Logic is characterized by the fact that the two inference
figures of Contraction and Weakening cannot be applied freely to any formula in a sequent. This means that
formulae are viewed as restricted (bounded) resources. However, some resources may need to be unrestricted, so
that they can be used in a proof an unbounded number of times (including 0). This is achieved by explicitly
prefixing these formulae with the modality ?, and the inference figures of Contraction [>] and Weakening [<] apply
only to such modalized formulae, allowing unbounded duplication or deletion of the corresponding resource.

These two rules are immediate sources of P-equivalence. Indeed, any proof of a sequent T', ? F' (i.e. with at
least one modalized formula), is P-equivalent to the proof simply obtained as follows:

S
FT.7F,7F :
Pl—F 7 — = 177

This is a typical case of a useless loop: the two steps of Contraction and Weakening above just cancel each other.
Similarly, Contraction and Weakening lead to permutations of inference figures, for instance:

-T,G H -FT,G,H

m”dFR?RGH - k“mFRG@H
FT.7FGRH FT. 7RG H

The proof normalization proposed here to deal with these problems can be summarized informally as follows:

Applications of Contraction and Weakening should be delayed as much as possible in the search proce-
dure and applied only when needed.

Given that the search is performed from the root of the proof towards its leaves, this means that, in normal proofs,
occurrences of Contraction and Weakening should be permuted as much as possible towards the leaves. This is



F, G stand for formulae, ©, T, A stand for multisets of formulae.

e Identity [I] and Cut [C]
FO:T,F FO:AFL

[I]I-@:F,FJ- (€] FO:T,A
e Absorption
[A]I-G,F:I‘,F
FO,F:T
o Logical inference rules
FO:T FO:T,FG FO,F:T
3T ] 3
['L]I-G:I’,_L Pﬂl—@:l",F%’G [']I-Q:I‘,?F
FO:T,F FO:AG FO:F
) ¥ '_____
Nre S B WY U eir
FO:T,F +O:T,G FO:T, Flc/z]
[T]I—(-D:I‘,T [&] FO:T,F&G v FO:T,Vz F
FO:T,F Fo:T,G FO:T, F[t/z]
@l o T roc D ey e Bl reotamF

Figure 2: The Dyadic Sequent System X,

always possible with Weakening; Contraction can also be permuted, except when it appears immediately before! an
occurrence of the inference figure [®], [C] or [?]. In terms of resource manipulation, this means that an unrestricted
resource should not be touched until it is actually required in the proof, or when it can be discarded because a
terminal node has been reached and it was never used.

These notions are formalized in the Dyadic system.

Definition 2 A dyadic sequent is a pair of multisets of formulae.

The dyadic sequent made up of the pair of multisets © and T is written © : T'. In fact, it stands for the monadic
sequent ?©,T obtained by prefixing all the formulae of the first field © with the modality ?. In other words, ©
represents a tank of unrestricted resources in which the proof search process can help itself at any time.

By definition, Contraction and Weakening could be applied freely on the formulae of ©, but, in normal proofs,
they are allowed only at the leaves of a proof (for Weakening) and immediately before the inference figure with
which they do not permute (for Contraction). This is captured in the Dyadic sequent system I, given in Fig. 2,
which uses dyadic sequents. The fundamental relation between the Monadic and the Dyadic systems is captured
by the following theorem, proved in appendix A.1.

Theorem 1 Let © and T' be multisets of formulae. The sequent © : T' s derivable in Xy if and only if the
(corresponding) sequent 7O, T is derivable in ¥,. Formally,

FO:T ifand onlyif F 70,T

The demonstration of this theorem is given in a constructive way, so that it would be possible (if not easy) to
extract from it the specification of a mechanical (possibly non deterministic) transformation, mapping monadic
into dyadic proofs. It could then be shown that this mapping satisfies the property: if two monadic proofs can be
mapped into the same dyadic proof, they are P-equivalent (simply because the demonstration of the theorem relies
on trivial permutations and simplifications of inferences).

A reverse transformation from dyadic to monadic proofs is defined in Fig. 3 using simple rewrite rules on proofs.
It shows that, in fact, the inference figures of the Dyadic system are simply obtained from those of the Monadic
system by adding an extra field to each sequent, except for those dealing with the modalities.

1Proofs are built bottom-up from the root to the leaves; an inference is “before” another if it is closer to the root on the same
branch.
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For all the other inference figures ([T], [&],[V], (@], [®+], (3]), the mapping simply replaces each dyadic sequent
© : T in the inference figure by its corresponding monadic sequent 7O, T.

Figure 3: Canonical injection Xy — 34

e As expected, Contraction and Weakening have disappeared in the Dyadic system (at least as explicit rules).
Weakening is implicit in the terminal inference rules [1],{T], [I] (with no premiss) of the Dyadic system,
which have been obtained as combination of the corresponding rule of the Monadic system and occurrences
of Weakening. Contraction is implicitin the inference rules [®], [A], [C] of the Dyadic system which correspond
to those inferences of the Monadic system with which Contraction does not permute.

Thus, the rule [?] of the Monadic system (a.k.a. Dereliction), which allows to effectively use a modalized
formula (unrestricted resource) by stripping off its modality, is implicitly combined with a Contraction in the
structural rule of Absorption [A] of the Dyadic system.

+FO,F:T,F

FO,F:T
This just means that when an unrestricted resource is to be used, it can systematically be duplicated before-
hand, using Contraction, even when this is not strictly needed (if the resource is not to be reused): anyway,

the possibly useless Contraction thus introduced will automatically be canceled by a Weakening when a leaf
is reached.

[A]

On the other hand, the rule [?] of the Dyadic system
7] FO,F.:T
“FO:T,?F
corresponds to no rule in the Monadic system: mapped to monadic sequents, the top and bottom sequents of

this inference figure are exactly the same. It allows to dynamically “fill the tank” of unrestricted resources,
but locally only, i.e. in the branch of proof where it is applied.



2.2 The Triadic System X3

The Dyadic system deals with P-equivalent proofs of the Monadic system caused by unrestricted use of the inference
figures related to the modalities. But all the other inference figures are also sources of redundant P-equivalent proofs.
2.2.1 Cut and Identity

One typical case of useless loops in proofs (and hence inefficiency in the search) comes from the Cut rule [C].
Indeed, consider the following proofs:

7 - F FL 7 FG,GL

FFLeGLFG
FT,F,G - :
FOLLFR G FT,FR G

T rag @

[€]
(%]

The application of the Logical inference rule [%] at the root is immediately cancelled by the Cut [C] which returns
the Toot sequent on its left premiss (hence a loop); the same problem occurs with the inference rule [&]. This
problem can be dealt with by an already well known proof normalization result, namely the Cut-elimination
theorem, proved, for the Monadic system, in [18]. This theorem also holds in the Dyadic system.

Furthermore, we can assume without loss of generality that the Identity rule [I] is always applied on atomic
formulae. Indeed, non atomic occurrences of the Identity can be reduced to atomic one, by repeatedly applying
simple transformations such as

w7 Uirger
FFG FLleCL
FFRGFLGL

[®]

= [%]

[HFF@GJ“®GL
Finally, we make the following convention:

In the sequel, we consider only proofs in the Dyadic system which are Cut-free and contain only atomic
occurrences of the Identity.

2.2.2 The Problem of the Principal Formula

The Logical inference rules lead to multiple cases of permutations of inferences, as for instance

o) FLEHLK FAG
FT,AFQG, H K
FT,A,FRG,HB K

FT,F HK
FT,FHRK FA,G
FT,AFRG HB K

[%]

[®] (%]

From the point of view of the procedure SEARCH, the problem could be stated as follows. When a Logical inference
is to be applied at a given node, two choices must be made: (i) choice of a (non atomic) “principal formula”
(underlined in the proofs above) in the sequent at that node; (ii) choice of an instance of the Logical inference
figure associated with the topmost connective of the selected principal formula. Although all forms of “don’t know”
non-determinism cannot be eliminated in these choices (a search procedure is intrinsically non deterministic), the
permutation of inferences above shows that some of these choices are not significant and either need not be
considered at all or could be treated deterministically (“don’t care” non-determinism).

The linear connectives can be partitioned into two groups which behave differently with respect to the choice
of the principal formula.

o The “asynchronous” connectives:
— Multiplicative: L, ®, 7
— Additive: T, &,V

o The “synchronous” connectives:

— Multiplicative: 1, ®, !
— Additive: 0, &, 3



This terminology is not standard and will be justified below. Notice that the dual of an asynchronous connective is
synchronous and vice versa. A non-atomic formula whose top-most connective is synchronous (resp. asynchronous)
is called a synchronous (resp. asynchronous) formula. The difference in search behavior between these two groups
can be characterized as follows.

If the principal formula which has been selected in a sequent is asynchronous, then there is one and only
one applicable instance of the corresponding inference figure, whereas if it is synchronous, one among
several (or sometimes no) instances has to be selected.

Thus, if the synchronous formula F ® G is selected as principal formula in the sequent T', F ® G, many possible
instances of the corresponding inference figure [®] can be applied, corresponding to the different partitions of T'
along the two branches. Similarly, a principal formula of the form F @ G requires the choice between the left ([@1])
" and right ([®,]) instances of the corresponding inference figure. On the other hand, when an asynchronous formula
is selected as principal formula, there is a unique applicable instance of the corresponding inference figure and its
application is therefore deterministic.
We can summarize these properties as

o Asynchronous — Determinism
¢ Synchronous — Non-determinism

which replaces the usual Prolog characterization where determinism is accounted for by the conjunction and non-
determinism by the disjunction; Linear Logic features a “non deterministic” conjunction ® and a “deterministic”
digjunction 7.

Another, related, characterization of the difference between synchronous and asynchronous connectives con-
cerns the reversibility of the inference figures: the conclusion of the logical inference figure associated with an
asynchronous connective is derivable if and only if all its premisses are derivable. This property does not hold for
synchronous connectives. In fact, in the Monadic system, it does not even hold for the asynchronous modality 7:
Dereliction is not reversible. However, it is interesting to notice that this exception disappears in the Dyadic system,
where the inference rule [?] is reversible. This is not surprising since, in the Dyadic system, rule [?] simply moves
a formula prefixed with the modality inside the tank of unbounded resources, thus enabling future Dereliction on
that formula (implicit in the structural rule of Absorption), but it does not actually perform a Dereliction (so that
it remains reversible).

2.2.3 Triadic Sequents

Potential permutations of inferences such as those mentioned in the previous section would induce limited pertur-
bation in a proof search procedure, were it not allowed to select the principal formula anywhere in the sequent.
The proof normalization proposed here precisely imposes constraints on the way such selection is performed. Tt
can be summarized informally as follows:

o If the sequent contains some asynchronous formulae (at least one), then any one of them can be immediately
and randomly selected as the principal formula (“don’t care” non-determinism). Furthermore, as the formula
thus selected is by hypothesis asynchronous, the instance of inference figure to apply is completely determined.
Consequently, as long as the sequent contains an asynchronous formula, the search can be made completely
deterministic.

o When all the asynchronous formulae have been decomposed, then a principal formula must be selected non
deterministically. But, as soon as one formula has been selected, the search can focus on it, i.e. subsequently
select systematically as principal formula the subformula stemming from the initial one, and do so as long as
this subformula 1s synchronous.

Asynchronous formulae are decomposed immediately as soon as they appear in the sequent (hence their name
“asynchronous”). Synchronous formulae are delayed until all the asynchronous formulae have been decomposed,
and must be non deterministically selected to be processed: in other words, synchronous connectives synchronize the
selection process and the decomposition process (hence their name “synchronous”). But once a synchronous formula
starts being decomposed, it keeps on being decomposed till a non synchronous (i.e. atomic or asynchronous) formula
is teached. This means that in a normal proof, each formula is viewed as a succession of layers of asynchronous
connectives and of synchronous connectives; each synchronous layer is decomposed in a critical section (i.e. which
cannot be interrupted), called a “critical focusing section” of the proof. For example, with this respect, the following



F, G stand for formulae, X stands for a positive atom, T', A, © stand for multisets of formulae (T', A containing no
asynchronous formula) and L stand for an ordered list of formulae.

e Logical inference rules
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Figure 4: The Triadic Sequent System Zj

proof is not normal

@ FB.D.C_FCH
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aF Y TEsC,DeB.CH
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since, after the formula A® (B ® C), is selected as principal formula at the root, its synchronous subformula B® C'
should be immediately selected as principal formulain the right branch, instead of the formula D@ E. To normalize
the previous proof, the inferences should at least be permuted as follows, so as to obtain a critical focusing section
on the right branch (assuming B is not synchronous, otherwise, again, it should be selected as principal formula,
instead of D @ E):

@) I B:D.G :
. FB.D&EC FCH
raF ®TBscpoEGH
FA®(B®C),DOE,FG H

[®]

Furthermore, if one of the formulae F, G, H is asynchronous, then even the latter proof is not normal, since in this
case, one asynchronous formula among F, G, H should be immediately selected as principal formula at the root.

10



“Don’t know” non-determinism appears in the search only during the critical focusing sections, which involve
synchronous connectives (asynchronous connectives generate only “don’t care” non-determinism). However, non-
determinism can be considerably reduced by the following condition imposed on normal proofs. Let’s partition
arbitrarily the atomic formulae into two dual disjoint classes: positive atoms X and negative atoms X L. Ina
normal proof, when a critical focusing section reaches a negative atom, then the inference figure of Identity [I] must
be applied. This condition lies at the core of the language LinLog, and will be discussed in the next section.

These notions are formalized in the Triadic system.

Definition 3 A triadic sequent is of one of the following two forms:
e O :T 1t L where L is an ordered list of formulae;
e ©:T | F where F is a formula;
and where © and T are multisets of formulae, T containing no asynchronous formula.

Thus, a triadic sequent is a dyadic sequent in which either an ordered list of formulae (f--case) or one formula
(U-case) has been singled out in the second field. In fact, © : T {t L stands for the dyadic sequent © : T, L (in
which the order of L is “forgotten”) and © : T |} F stands for the dyadic sequent © : T, F'. The role of the arrows
is explicited in the Triadic system 3, given in Fig. 4, which uses triadic sequents:

e A sequent © : T {} L corresponds to the case where the sequent possibly contains an asynchronous formula
(in L). The third field of the sequent L acts then as a stack. Each formula from L is popped and, if it is
asynchronous, it is immediately decomposed, and its components are pushed back into the stack; otherwise
it is simply added to the second field of the sequent T which, consequently, never contains any asynchronous
formula. Thus, fj-sequents handle the layers of asynchronous connectives, which involve only “don’t care”
non-determinism treated deterministically.

e A sequent © : T' | F corresponds to the case where all the asynchronous formulae have been decomposed and
a formula F has been selected as principal formula. The subformulae of F' are then systematically selected as
principal formulae (since they are put back in the third field of the sequent) till a non synchronous formula
is reached. Thus, |-sequents handle the layers of synchronous connectives which are processed during the
critical focusing sections. Real “don’t know” non-determinism occurs only in such sections.

The fundamental relation between the Dyadic and the Triadic systems is captured by the following theorem, proved
in appendix A.2.

Theorem 2 Let © and T be multisets of formulae, T containing no asynchronous formulae, and let L be an ordered
list of formulae. The sequent © : T fy L is derivable in 3 if and only if the (corresponding) sequent © : T, L is
derivable in Xo. Formally,

FO:THL ifandonlyif FO:T,L

The demonstration of this theorem is given in a constructive way, so that it is theoretically possible to extract from
it the specification of a possibly non-deterministic transformation, mapping dyadic proofs into triadic proofs and
satisfying the property: if two dyadic proofs can be mapped into the same triadic proof, they are P-equivalent.

A reverse transformation from triadic to dyadic proofs is defined in Fig. § using simple rewrite rules on proofs.
It shows that, in fact, the Logical inference figures of the Triadic system are simply obtained from those of the
Dyadic system by splitting the sequents with an arrow (ff for inference figures corresponding to asynchronous
connectives and |} for the synchronous case). But the Triadic system also contains some specific structural rules
which become trivial when mapped into the Dyadic system and which handle the initialization and termination of
critical focusing sections.

e The “Reaction” rule [R 1] is triggered from a sequent © : T' ff L, F' when the last formula F is not asyn-
chronous. In this case, F is just added to the second field of the sequent, T', for future use, when all the
remaining asynchronous formulae of L will have been decomposed. Had F been asynchronous, then it would
have immediately been decomposed using the Logical rule corresponding to its topmost connective.

o When all the asynchronous formulae have been decomposed in an f}-sequent (i.e. L is empty) a principal
formula must be non deterministically selected, starting a new critical focusing section (of {}-sequents). This
is the role of the “Decision” rules. The principal formula may be picked either inside the second field of the
sequent, containing the non-asynchronous formulae which have been delayed by the Reaction rule [R {}] above
(Decision [D]), or in the first field, i.e. the “reserve tank” of unrestricted formulae (Decision [D,]) where it
is not discarded. The search then proceeds with a critical section focusing on the selected formula.
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For all the other (Logical) inference figures ([L], [®], [ 7], [T], [&], [¥], (1], [®], [, [®:], [®-], [3]) the mapping simply
replaces each triadic sequent (resp. © : T ft L or © : T | F) in the inference figure by its corresponding dyadic
sequent (resp. @ : ', Lor ©: T, F).

Figure 5: Canonical injection 3 — X

e The “Reaction” rule [R |}] is triggered when an asynchronous formula, or a positive atom, is reached at the
end of a critical focusing section. The arrow is just turned upside down, which means that the critical section
is terminated and the asynchronous formulae must be decomposed.

e When a negative atom X' is reached at the end of a critical focusing section, the Identity must be used,
so that X must be found in the rest of the sequent, either as a restricted resource in the second field
(Tdentity [I1]), or as an unrestricted resource in the first field (Identity {/5]). This considerably reduces the
amount of non-determinism involved in the critical sections.

Finally, the modalities have a peculiar behavior in the triadic system:

e When a formula prefixed with the asynchronous modality ? is encountered, it is immediately stored in the
first field of the sequent for possible future (unbounded) use, instead of being put back in the third field of
the sequent for further decomposition of asynchronous connectives, as in the standard asynchronous case.

¢ The modality !, unlike standard synchronous connectives, terminates a critical focusing section (see rule [1]),
but it enforces that at the moment of the interruption, the second field of the sequent is empty (i.e. the
sequent contains only unbounded resources).

2.3 Summary

In this section, we have introduced the two sequent systems Xy, X3 together with:

1. An injection from Xo-proofs into XL;-proofs (Fig. 3) which is a canonical morphism, in that it works at
the inference level (the image of a combination of two inferences is a combination of the images of these
inferences).

2. A projection from Z;-proofs into Xs-proofs, which is a mechanical, non-deterministic, transformation (speci-
fiable from the demonstration of theorem 1) and is a reverse of the previous canonical injection. Tt is defined
in terms of some more or less complex rearrangement of the inferences in the proofs (permutations of infer-
ences and eliminations or introductions of useless loops), so that if two X;-proofs are mapped into the same
Yo-proof, then they are necessarily P-equivalent.

3. A similar canonical injection from Tg-proofs into Eo-proofs (Fig. 5).

4. A similar reverse projection from Is-proofs into L3-proofs (obtained from the demonstration of theorem 2).

12



— projection (non deterministic, mechanical transformation)

< ---- injection (deterministic, canonical morphism)

Figure 6: The sequent systems and their relations.

This situation is summarized in Fig. 6. The term “focusing” proof denotes, depending on the context, either any
triadic proof (in £3), or the canonical image of a triadic proof in Xy, or the canonical image of such a dyadic proof
in £ (in other words, the canonical injections are treated as identities).

The notion of focusing proofs is characterized by the following properties.

e Focusing proofs form a complete subset of proofs for Linear Logic, i.e. each derivable formula in this logic
has a focusing proof. This is a direct consequence of theorems 1 and 2.

e Focusing proofs respect the overall symmetry of Linear Logic, in that dual connectives have dual focusing
properties. This duality is best visualized in the structure of the sequents of the Triadic system (resp. {} and
1)), which handle the dual groups of linear connectives (resp. called here asynchronous and synchronous).

Given that many P-equivalent proofs become identical when mapped into focusing proofs, the procedure SEARCH
defined in the introduction becomes much more tractable when constrained to aim at focusing proofs. Furthermore,
given the completeness of focusing proofs, all the other proofs which could have been generated by the procedure
SEARCH if it had not been thus constrained, could be obtained from the generated focusing proofs by application
of the reverse of the projections from X; to X3.

However, notice that not all P-equivalent proofs become identical when mapped to focusing proofs. For example,
the following (monadic) proofs are distinct focusing proofs, although they are P-equivalent.

Fblt,b Fel®dL c,d Fal,a Fel®dl,d,c
Fal,a Fel@di,c,bt®db — Fbl b Fel@di,dat®c,a
Fel@dl,al @c, bt ®d ab Fel®dtal @c, bt ®d a,b

They just differ in the order of application of the inference rule [®]. The cause of this problem can be identified
in the Triadic system: when one of the Decision rules is used, to select a principal formula to focus on, this choice
is completely free and is not influenced by previous steps in the proof. In fact, it may happen (as in the proofs
above) that the order in which these choices are made is irrelevant and could be permuted. The Triadic system is
not able, in its current stage, to handle this case of permutation of inferences.

3 The Logic Programming Language LinLog
Focusing proofs have a very simple and computationally significant interpretation, which appears clearly when

they are applied to a fragment of Linear Logic, called LinLog, and presented below. Furthermore, the syntactic
restrictions defining this fragment do not induce any restriction on the expressiveness of the language. Indeed,
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it is shown that any formula of Linear Logic can be mapped into LinLog. This mapping can be viewed as a
normalization procedure, analogous to the transformation to clausal form for Classical Logic. The main difference
is that the latter transformation preserves only provability whereas the former preserves also the structure of the
(focusing) proofs.

3.1 LinLog Syntax and Operational Semantics
3.1.1 Methods and Goals
LinLog is based on two classes of formulae, called the “methods” and the “goals”. Goals have a two-layer structure:

e Elementary goals are combinations of positive atoms connected with asynchronous connectives, and where
the modality ? applies only to atoms. The class g of elementary goals can thus be specified by

g=X|?X|L|gBg|Tlg&kygl|Vzyg

o Goals are combinations of elementary goals connected with synchronous connectives, and where the modality !
applies only to elementary goals. The class G of goals can thus be specified by

G=g|'g|1|G®CG|0|GOG|IzC

In other words, a goal is a positive formula (containing no negative atom) in which a synchronous connective may
never occur in the scope of an asynchronous one, and no connective may occur in the scope of the modality of the
same class (asynchronous or synchronous). Methods are ground formulae of the form

VE(G— X1 % B X,)

where X1,..., X, are positive atoms (r > 1) called the head of the method, and G is a goal called the body of
the method. —o is the Linear implication defined as A —0 B =4 At % B. As with Horn clauses, the universal
quantifier V in front of methods is often omitted (assuming an implicit typographical convention for variable names)
and the implication is written in reverse notation:

X1 % %X, 0-G

Definition 4 A LinLog query is a pair (P;g) where P is a set of methods (called the program) and g is an
elementary goal.

3.1.2 Triadic Sequents in LinLog

Let (P; g) be a LinLog query. A LinLog execution consists of searching proofs of the sequent Pt g, ie., using one
sided sequents (Monadic system), F 2P+ g. Using the Triadic system and theorems 1 and 2, this can be achieved
by applying procedure SEARCH to the sequent PL :ft g. In other words, the program P (or, more precisely, its
dual) acts as a set of unrestricted resources which provides the executing process with an everlasting source of
computing energy, and the goal g acts as the initial state of the process in terms of restricted resources.

The syntax of goals and methods has been designed in such a way that triadic proofs of LinLog queries have a
characteristic structure: they are repeatedly composed of

1. one layer of Logical inference rules mixed with the Reaction rules [R ] and [R {}], and containing only

sequents of the form
FPLU:®30G or FPLU:B31G

where ¥ and & are multisets of positive atoms, G is a goal and G an ordered list of elementary goals;
2. one layer of inference rules starting with a sequent of the form
FPL U O
where ¥ and @ are multisets of positive atoms.

In fact, the second layer, which is the only one in which the methods of the program play a role, can be given a
compact representation consisting of a single inference step, called a Progression step, described below.

Definition 5 Let M be the method X1 % --- % X, o~ G. An instance of M is a pair written &, o~ G, where @, 1s
a multiset of ground positive atoms and G, is a ground goal, such that there exists a ground substitution o verifying

o{X1,..., X} =@, and .G =G,
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Let P be a LinLog program. ¥, ¥,, ®, &, ®, stand for multisets of positive atoms, g, g1, g2 stand for elementary
goals, G stands for an ordered list of elementary goals and G, G, G2 stand for goals. X stands for a positive atom.

¢ Progression
FE,¥,:® )G,

[o-] ,
FO,%,:9,0,

where ¥,, ®, o— G, is an instance of a method in P

o Logical inference rules

FE¥:®MG F¥:®11G,01,92 o F¥,X:d0NG

[_L]I-\D:Qﬂg,_L [W]F\F:Qﬂg,glﬁgz [‘]F\Il:@ﬂg,?X

[T] ————— [&]F\P:Qﬂg,gl F¥:21G,g0 [V]I-\Ilzq)ﬂg,g[c/z]

F®:®#4G, T F®:ON1G, g1 &g92 F¥:o1G, Vo g
1] [®]I-\II:CI>1UG’1 FY:®, Y Gy [ F¥ g
F¥Yl FU:d, 02 | G1®Ge ROty

'—\I’!‘I)UGl

- FO:d UGy
"FoV UGG,

F¥: UG8 G,

F¥:o | G[t/z]

(@] F o 003z C

El

e Reactions
FE®: 3, XL

F¥: oL, X

FU:Ddqfg

(R A Foalg

(R

Figure 7: The Sequent System of LinLog X3[P]

The Progression inference rule is defined by

FPL e, v,:34G,
FPL O, 9,:d,®, 10

[o-]

where ¥,, ®, o— G, is an instance of a method in P.

Therefore, it is possible to specialize the inference system X3 into an inference system X3[P], given in Fig. 7, where
the single inference rule of Progression [o—] above replaces those of Decision [D], [D2] and Identity [11], [/2] of the
general system. In X3[P]-proofs, the occurrences of PL . which appear in the first field of all the sequents, are
omitted (they are implicit).

¥3[P] is the inference system of the programming language LinLog, and is justified by the following theorem,
which derives quite straightforwardly from theorems 1 and 2 (see appendix A.3 for a demonstration).

Theorem 3 Let (P;g) be a LinLog query. The sequent !P & g is derivable in Linear Logic if and only if the
sequent :fy g is derivable in X3[P]. Formally,

P+ g ifand only if Fp it g

Given a triadic sequent o in LinLog, b o is taken to mean that o is derivable in a[P].

3.1.3 Computational Interpretation

The inference system of LinLog has a very natural computational interpretation. It manipulates sequents which,
when mapped to monadic sequents, are of the form ?2P+L,C, where C, called the context, is a multiset of ground
goals containing at most one non elementary goal 2,

Definition 6 A context is said to be flat if it contains only flat goals, i.e. positive atoms, possibly prefized with
the modality 7.

The inference mechanism of LinLog can then be informally characterized in two clauses:

2More precisely, it can be shown that if C does contain a non elementary goal, then the rest of the context is flat
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o If the context is not flat, then select at random a non flat goal in the context and decompose it using
the inference rule corresponding to its topmost connective. The selection step involves “don’t care” non-
determinism. The decomposition step may involve “don’t know” non-determinism if the selected goal is not
elementary (hence synchronous).

o If the context is flat, then find an instance of a method in the program such that its head matches exactly
a submultiset of the atoms (modalized or not) of the context. Then replace in the context those (and only
those) atoms of this submultiset which are not modalized, by the body of the method. Then proceed with
the context thus updated. The selection of the method, as well as that of the submultiset of the context to
match its head, involve “don’t know” non-determinism.

From that point of view, standard Prolog appears as the degenerated case of LinLog in which the contexts are
singletons and the heads of the methods contain themselves only one atom; in this case, the distinction between
asynchronous and synchronous connectives in the goals becomes meaningless (as well as the modalities).

The computational model of LinLog is especially suited for concurrency. First, of course, the different branches
of proof can be searched concurrently (“global” parallelism). Furthermore, on one branch, several strategies can be
devised for the selection of the method to apply at each step of the computation. Once the set of candidate methods
(and matching subcontext) has been determined, one of them can be picked at random and applied (committed
choice strategy); an other solution is to apply simultaneously all the candidate methods whose heads match disjoint
submultisets of the context (“local” parallelism); intermediate solutions are also possible. Once the method(s) is
(are) applied, the goals introduced in the context can, in turn, be decomposed in parallel. The determination of
the strategy can be made at compile time, so as to make optimal use of the available parallel processing facilities.

LinLog supports various inter-process communication mechanisms. Communication is viewed here as exchange
of resources between processes. Goals connected by the multiplicative connectives % and ® yield processes which
compete for resources from their context, whereas the additive connectives & and @ support resource sharing (in
which each process gets a separate copy of the resources). On the other hand, the asynchronous connectives %
and & support deterministic and immediate communication whereas synchronous connectives ® and & lead to non
deterministic, possibly deferred, communication.

These different computational behaviors are directly significant in the framework of concurrent object-oriented
systems, especially in the actors tradition. With this perspective in mind, the subset of LinLog called LO (for
Linear Objects), in which goals are built only from the asynchronous connectives % and &, has been studied
in [3, 7, 4, 6, 8], where computational examples can be found. For instance, dynamic programming techniques
find a very natural concurrent implementation in LO, as shown in [6, 8]. LO has also been applied in 7] to
the optimization of Horn clause programs which have an exponential complexity when executed by the standard
Prolog strategy. Using program transformation techniques, they can be converted into more tractable LO programs,
switching from backward to forward chaining strategies. Various toy applications of full LinLog (including all the
connectives) have been devised, but a clear characterization of the class of applications thus covered has yet to be
stated.

3.2 Normalization to LinLog Form

Let F be a formula. The procedure SEARCH could be used to build the focusing proofs of F'. However, its specialized
LinLog version, which has been tailored for computational efficiency, cannot be used as such if F' does not satisfy
the syntax of a LinLog query. It is shown here that this syntactical restriction is not bought at the price of
generality. Indeed, this section presents a mechanical transformation, analogous to the transformation to clausal
form for Classical Logic, and which maps any formula F' into a LinLog query such that the focusing proofs of F
are isomorphic to the LinLog proofs of the corresponding query, up to some irrelevant name conventions.

3.2.1 An Example

Let F = (a* ®b) B a ® b+. Formula F violates the syntax of LinLog elementary goals since the synchronous
subformula Fy = a ®b and the negative atom F; = b* occur in the scope of an asynchronous connective. However,
were F), and F, positive atoms, F' would be an elementary goal, and the first steps of its LinLog proof would be
the same as the first steps of the focusing proof of F' (there is only one focusing proof here), i.e. a sequence of
simple applications of the inference rules [%] and [R {}]:

l‘: Fl,a,Fgﬂ
P F Bad F,
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In the focusing proof of F, the next step consists of the selection of Fy as principal formula, using Decision rule [D1],
followed by a (short) critical focusing section:

(1] Fialal I—:F;Ub

Fea, Fo  Fi
F: Fl,a,F2ﬂ

[®]

(D1]

We now want to map this critical section into a LinLog Progression step [o—]. To achieve this, let’s replace F; by
a new positive atom, say u;, and let’s try to view the formula u; o— F; as a method M;. Thus, the selection of
formula F; by the decision rule [D;] above could as well be seen as the triggering of method M; by u;. Here, we
simply have M; = u; % a o— b and the critical section above can be mapped into the LinLog single Progression
step using method M; (doing as if F, were a positive atom):

I‘Z Fgub
[o-] F:uy,a, Foft

Then, the focusing proof as well as the LinLog proof proceed in the same way:

F: F;,bﬂ
STy

[ U] FFRUb

At this point, the focusing proof of F proceeds in selecting formula F; using decision rule {D] and starting a new
critical focusing section (which completes the proof):

(71] [TNTI-Y

Pl R

There again, we can map this critical section into a LinLog Progression step [o—]: let’s introduce a new positive
atom u, and let’s try to view ug o— Fy as a method Ms. Here My = uz @ bo— 1 and the critical section above is
mapped into a LinLog Progression step using method Mj:

U =
-] - ul—.{il
- U2, ﬂ
Finally, let g be the formula obtained by replacing in F' its subformula F; by u; and its subformula F by uy. As
intended, the formula g = u; % a ® u, is now a LinLog elementary goal and we have mapped the focusing proof
of :ft F (in £3) into the following LinLog proof of :ft g (in £3[P]) where P is the LinLog program containing the
methods M, and Ms.

[ ][o—] F:ug, bt
-] Frug b
[.] F:uy,a,us Y
Fftuy Ba?® u,

The fact that atoms u;, 1, are “new” (i.e. do not occur anywhere else in F when they are introduced) ensures that,
conversely, any LinLog proof of :f} g in £3[P] can be mapped back into a focusing proof of :fy F'. Indeed, it ensures
that the methods of P can only be used in the situations above, so that the proof of :f} F' can be reconstructed. In
fact, the atoms u;, us are identifiers of the syntactic occurrences of, respectively, subformulae Fy, F in F, and, by
definition, syntactic occurrences are unique.

The operation of “naming” Fy by u; (or F3 by u3) is strictly similar to the Skolemization step in the classical
clausal transformation; only, Skolemization occurs at the term level whereas here, naming occurs at the subformula
level.
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3.2.2 The Algorithm

We present the LinLog normalization algorithm here in the propositional case (no variables nor quantification), but
it can casily be extended to the first-order case (see below). Let F, be a formula. The computation of its LinLog
normal form, which is a LinLog query, can be informally described as follows:

1. Try to view F, as an elementary goal, i.e. determine the deepest subformulae in F, which preclude it from
being an elementary goal in LinLog syntax.

2. Let g be the formula obtained by replacing in F, each of the subformulae computed at step 1 by a fresh
positive atom (a different one for each subformula). By construction, g is an elementary goal, which defines
the goal component of the normal form.

3. For each atom u introduced in F, to replace a subformula F, try to view (as in step 1) the formula wo- F
as a set of LinLog methods (connected by &). This may lead to new replacements of subformulae by new
atoms, which are recursively treated in the same way and which may produce more methods.

4. The set of all the methods produced at step 3 forms the program component of the normal form.

The formula u o— F can be interpreted as the “definition”- of the atom u by the formula F' (which u replaces in
F,). The algorithm attempts to translate this definition into a LinLog program, possibly recursively introducing
new definitions. Notice that such definitions are unrestricted resources with global scope: they are just naming
conventions which can be reused as many times as needed anywhere. This is why they are mapped into the program
component of the query.

To specify the algorithm formally, we introduce “quasi-methods”, which are like methods, except that they may
have an empty head, and their body is a multiset of goals® (implicitly connected by ®).

Definition 7 A quasi-method is a pair [®; Y] where ® is a multiset of positive atoms and T a multiset of goals.
A quasi-method is said to be strict if ® is non-empty.

The LinLog normalization algorithm is given by the function NORMALIZE in Fig. 8. This algorithm uses three side
functions, NGOAL, NATOM and NMETH, which try to view the formula passed in their argument as, respectively, an
elementary goal, a positive atom and the dual of a set of quasi-methods ('in the last case, the function returns this
set, whose elements are taken to be implicitly connected by &).

o The function NGOAL is trivial: it recursively scans its argument formula F till it reaches the occurrences
where, for F to be an elementary goal, the subformulae at these occurrences have to be positive atoms.
These subformulae are then replaced by positive atoms obtained by applying the function NATOM to each of
them. .

e The function NATOM is also elementary: if its argument F' is already a positive atom, it simply returns it;
otherwise, it introduces a new Skolem constant X, which it returns, and maps the definition of X by F, i.e.
the formula X o— F, into a set of methods, which are added to P. In fact, to avoid multiple dualization inside
F, it is easier to try to map the dual formula X+ ® F into the dual of a set of methods (obtained by calling
the function NMETH).

e The definition of the function NMETH must be understood as follows: any critical section of proof focusing
on F can be mapped into a LinLog Progression step (extended trivially to deal with non necessarily strict
quasi-methods) using one of the quasi-methods of NMETH(F). Thus, for example, if F is of the form F; & F,
a critical section focusing on F necessarily goes on with a critical section focusing either on Fy or on F.
Therefore, if we assume that, in both cases i = 1, 2, the critical section focusing on F; can be mapped into a
Progression step using a quasi-method in NMETH(F;), then the critical section focusing on F' can be mapped
into a Progression step using a quasi-method in NMETH(F;) UNMETH(F3). This justifies the definition of
NMETH(F) in that case. The treatment of the connective ® is a bit more complex and makes use of the
operator % on sets of quasi-methods, defined as follows. Let 81,83 be sets of quasi-methods; §1 * S2 denotes
the set of quasi-methods defined by pairwise combining the elements from each set:

Sl *82 = U {[¢11¢2 ) Tl:'r?]}
[#1;7:] € 8; and [®2;75] € 53

Combining two quasi-methods yields a quasi-method obtained by respectively merging their heads and their
bodies.

3Tn fact, elementary goals, possibly prefixed with the modality !, are sufficient.
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Global P: LinLog program,;

Function NORMATIZE(F: formula) returns a LinLog query

P =0
g := NGOAL(F);
Return (P; g};

Function NGOAL(F: formula) returns an elementary goal

Select

Case ' = Return
FL R Fy NGOAL(F1) & NGOAL(F3)
Fi & Fy NGOAL(F1) & NGOAL(F3)

1 1
T T
?F ?NATOM(F”)
Otherwise NATOM(F)

Function NATOM(F': formula) returns a positive atom

If F is a positive atom Then
Return F;
Else
Let X be a new positive atom (Skolem constant);
P :=PUJ|INMETH(X ' @ F)||;
Return X;

Function NMETH(F': formula) returns a set of quasi-methods

If F is a negative atom X+ Then
Return {[X;0]};

Else
Select
Case F = Return
Fi @ F, NMETH(F; ) * NMETH(F3)
Fi & F, NMETH(F;) UNMETH(F3)
1 {[0; 0]}
0 )
LF {[@; 'NnGgoaL(F")]}
Otherwise {[#;NGoaAL(F)]}

Figure 8: The LinLog normalization algorithm
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Function NATOM may add, when called, new eclements (methods) to P (which works as an accumulator). These
methods are obtained using the operator || —|| defined as follows: let S be a set of strict quasi-methods; ||S|| denotes
the set of corresponding methods, trivially defined as

sl = U (X1 BX, -G8 ®G,}
[X1,..,Xr ; G1,..,Gs] € 8

When s = 0 in this definition, the body of the method is reduced to the logical constant 1. We have to make
sure that when this operator is used in the definition of the function NATOM, its argument S = NMETH(X ! ® F)
contains only strict quasi-methods (otherwise the definition above does not make sense). This directly results from
a simple application of the definition of NMETH in this case:

S ={[X,®; Y] such that [®; T] € NMETH(F)}

Hence, the head of each quasi-method in § contains at least X (i.e. the defined atom) and is not empty.
The normalization algorithm is justified by the following result, proved in appendix A.4.

Theorem 4 Let F be a formula and (P;g) be its LinLog normal form (computed by the function NORMALIZE). F
1s derivable if and only if g is derivable in LinLog using program P.

F F if and only if Fp:f}g

The demonstration of this theorem shows that, furthermore, not only is provability preserved in the normalization,
but also the structure of the focusing proofs.

The algorithm can easily be adapted to the non propositional case. Only, when evaluating NATOM(F') in the
case where F is not already a positive atom, instead of simply introducing a new constant, we introduce a new
functor f and return the positive atom f(Z) where £ is the set of free variables in F. This is strictly analogous to
the way Skolemization works, at the term level, in the clausal transformation. Furthermore, we have

NGOAL(Vz F') = Vz NGOAL(F)
NMETH(3z F) = NMETH(F)

3.3 Focusing and Cut reduction

Focusing has been described here in a Cut-free system. However, it can easily be extended to a system with Cut.
Indeed, consider a proof IT of a sequent @, : T, (in the Dyadic system), possibly containing Cuts. Let ©, be the
set of all the formulae of the form H @ HL such that H is a Cut formulain II. By appending ©, to the first field of
all the sequents in II, we obtain a proof of ©,,0, : T',. Now, each occurrence of a Cut in this proof can be replaced
as follows:

FO:T,H FO:AHL
FO:TVH +FO:AH FO:T,AJH® HL
FO:T,A Fo:T,A

The occurrence of the Absorption rule [A] here is justified, since the formula H ® HL which is absorbed is, by
construction, in ©, and hence in ©. Thus, we obtain a Cut-free proof of ©,, 0. : T',, which can in turn be focused.
We can now go back to the original proof by removing ©, from the first field of each sequent. This is always
possible except in steps where a formula in ©, is selected by the Decision rule [Ds] for decomposition. Given
that the formulae of ®, are synchronous, and that decision rules start critical focusing sections, such steps are
necessarily of the form

(®]
[C]

[A]

FO:TYH FO:AYH?L
FO: T AYH@HL
FO:T,Aqf
They can be replaced by introducing the following Cut rule for the Triadic system:

[®]

(D]

FO:TYH +FO:AYH!L

€] FO:T,Af

In other words, in the Triadic system, the Cut-rule starts a critical section focusing on the Cut-formula in each of
its premisses. This is one aspect of the analogy between the Cut rule and the Logical rule for the connective ®
mentioned in [18]. Now, from the discussion above, we can straightforwardly generalize the main result of this
paper, namely that any proof (possibly containing Cuts) can be mapped into a focusing proof (possibly containing
focused Cuts).
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Naturally, the Cut elimination theorem holds in the Triadic system, since it already holds in the Dyadic system.
Basically, the direct demonstration of this result, which is given in appendix A.5, is adapted from the classical one
(see [16] or [20], for example). It mainly consists of a sequence of interleaved permutation steps and reduction steps
on Cut formulae. In the usual case, the reduction step is possible only when the Cut formula is selected as principal
formula in both premisses of a Cut, and the permutation steps are meant to obtain this condition. In the case of a
focused proof, this condition is already ensured, but it might be violated once a reduction is performed. In fact, it
can be shown that, given that the Cut formula is necessarily synchronous in exactly one of the premisses (except
in the trivial case where it is atomic), the reduction of its whole topmost synchronous layer can be performed “in
one step” in that premiss (following the critical focusing section). Matching permutations must be performed in
the other premiss, but when the critical section is terminated in the first premiss, then it is the Cut formula in the
other premiss which becomes synchronous, and can in turn be reduced.

But there is another interesting property relating Cut reduction and Focusing. Indeed, the crucial part of
Focusing, captured by the Progression rule [o—] of the inference system of LinLog, can be expressed in terms of
a Cut reduction property. Consider a method M = X; % --- ® X, o— G in LinLog. A Progression step using this
method can be mapped into a Cut using a non logical axiom equivalent to M, namely Gt X1,..., X

— G Xy, X s
FC,G Go Xy X

v c
FC X1,..., X, €]

[ FC X1,..., X,
Thus, we obtain a new justification of the Progression rule* of LinLog through the following result, which is a
variant of Cut reduction:

Any proof using (non logical) axioms of the form X;,..., X, G* (where Xi,..., X, are positive atoms
and G is a goal) can be transformed into a proof where each occurrence of the Cut satisfies the following
property: one of the premiss is a non logical axiom and the cut formula is necessarily G*.

This result is shown in [5] (in the framework of Classical logic, but it can be straightforwardly adapted to Linear
logic), as a special case of a more general property: when Cut reduction is performed in a proof containing non
logical axioms, all the Cuts cannot be eliminated, but they can be reduced so as to appear in “stacks” initiated
by a non-logical axiom and where each Cut formula in a stack comes from its initial non logical axiom (and is not
a positive atom); it can be shown that there is a direct correspondence between such stacks of Cuts and critical
focusing sections.

4 Conclusion and Related Works

It has been mentioned above that Prolog is a fragment of LinLog. Other attempts have been made to extend Prolog
using sequent systems. For instance, [26] introduces the notion of “uniform” proofs in Intuitionistic Logic (extended
to the system of Intuitionistic Linear Logic in [21]). The computational efficiency of uniform proofs basically stems
from a property similar to that of LinLog proofs (in the search, a method is applied only after all the non flat
goals in the current context have been decomposed). Uniform proofs are defined for an implicational fragment of
Intuitionistic Logic, known as Hereditary Harrop Logic3, whereas it has been shown here that the notion of LinLog
proofs is a degenerated but fully representative case of the notion of focusing proofs, which apply to full Linear
Logic. Furthermore, using the translation from Intuitionistic to Linear logic described in [18], uniform proofs are
precisely mapped into focusing proofs.

But the “definite clauses” of [26] (which correspond to the methods here) are characterized, as in Prolog,
by a single atomic head; this feature simplifies considerably the mechanism of clause selection, especially in the
framework of a sequential computation (although the use of lambda-terms instead of first-order terms, and the fact
that clauses may be dynamically loaded in the proof, make things more complex than in the classical case). On
the other hand, in a parallel environment, it has been shown in [3, 4, 6] and also in {27, 14, 11], that the formalism
of multi-headed formulae (e.g. methods here) is better suited, especially for synchronization purposes. Contextual
Horn clauses [27], or the logical objects of [14], or Shared Prolog [11], basically correspond to the fragment of LinLog

4Tn fact, further refinements would be needed to account for the fact that Progression can only be triggered when the context C is
flat, and also for the fact that the head of a method may match atoms prefixed with the modality ?, which are not removed by the
Progression step.

5Tn fact, this fragment allows all the connectives, but in such a way that it can directly be mapped into the pure implicative
fragment of Intuitionistic Logic, without modifying substantially the shape of the uniform proofs. Thus, conjunction A can be mapped
into stacked implications; similarly, a definite clause containing a disjunction V in its body can be mapped into two separate clauses
connected by conjunction. The mapping would not apply, were disjunction allowed to appear in the head of a clause; but this case is
precisely forbidden.
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where only the connective % is used in goals (but of course, each of these systems also have specific features which
are not accounted for in LinLog). Tt leads to an “actors” model of computation [2, 32] where multiple independent
agents perform concurrent tasks, communicating via a shared “blackboard” [28], or tuple space [17, 24]. In [6],
we proposc a more refined notion of blackboard (called “forum”) which exploits not only the connective %, but
also &, in goals. It provides a notion of locality for the operations of consumption and production of messages in
the blackboard.

Interaction nets [22] also provide a model for parallel computation. Although the theoretical justification of
the system is proof reduction (Cut elimination) instead of proof search, the resulting computational model is
remarkably related to that of LinLog. This may be a consequence of the similarity between focusing and Cut
reduction mentioned in the previous section. In fact, the computational mechanism of Interaction nets is, again,
that of LinLog where only the connective % is used. But Interaction nets are furthermore equipped with a strong
type discipline, which prevents some forms of deadlocks, and ensures strong normalization (a typical requirement in
functional programming). LinLog on the other hand was designed in the perspective of possibly unsafe distributed
environments, where such requirements are not realistic.

Proof nets [18] offer a desequentialized representation of proofs. They are therefore directly relevant to the
problem, addressed here, of eliminating in a search redundant P-equivalent proofs, which precisely differ only by
their sequentialization. However, I could not devise a simple algorithm, such as procedure SEARCH given in the
introduction, which could incrementally generate correct proof nets (satisfying their validity criterion: no short
path), other than obtaining them from sequent proofs (but then their advantage is lost). Therefore, T preferred
to stick to the sequent system approach, where sequents have a direct intuitive computational interpretation as
process states, although the use of proof nets would have made the demonstration of the theorems much shorter.

The Triadic system described here features sequents split into three fields in which the formulae have different
behaviors, respectively, classical, linear and non-commutative linear, corresponding to various levels of restriction
on the use of the structural rules of Contraction, Weakening and Exchange. This triadic structure, which has been
introduced here as an operational tool for specifying the class of focusing proofs, can also be used to provide a
unified framework for various logics, as done in [19] with Classical, Intuitionistic and Linear logics.
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A Demonstrations of the Theorems

The demonstrations are generally based on inductive reasoning, using the depth of sequent proofs as the induction counter.

H 11 is the proof
m Mn

PN POy
m = u
then the depth of TI, written p(Il), is defined inductively by
p(Il) =1 + max{p(Il1),..., u(IIa)}

The number of premisses n can be null, in that case the depth is simply 1. The induction steps of the demonstrations
generally consist of a case-by-case analysis of the last inference step of a proof (the one which occurs at the root). In the
sequel, we generally mention the induction hypothesis and only a few of these cases (the most significant).

Furthermore, we make the following convention: when we simply say that a sequent is derivable, or has a proof of a
certain form, it is implicitly assumed to be in the sequent system (Monadic, Dyadic or Triadic) to which the sequent belongs.

A.1 Projection ¥; — ¥,
We have to show the result stated in theorem 1, i.e.
if F?0,T then FO©:T (1)
(the reverse implication is immediate from Fig. 3). We make use of the following lemma.
Lemma 5 I[fOLC © and © : T has a proof then @' : T has a proof of same depth.

where © C ©' means that all the elements of @ are also elements of ©' (possibly with a different number of occurrences).
This lemma results immediately from the following remark: in a proof of © : T, the multiset © appears in the first field of
all the sequents. A proof of @' : T can therefore be obtained by simply replacing everywhere © by ©’. We now come to the
demonstration of the property (1).

Demonstration: Let R(n) be the following induction hypothesis

If 20,T has a proof of depth at most n then © : T is derivable.
Let’s assume R(n) and let’s show R(n + 1). Let II be a proof of depth n +1 of 7@, I
1. H the last step of Il is an instance of the Logical inference rule [%], then the principal formula at this step is necessarily
in T (since the formulae in ? © are prefixed with the modality ?7) and we have

nl

—~—

Vv

+ 70,1, F,G

=1 70,7, FB G

where T = I/, F B G. The sub-proof T’ is of depth at most n. By the induction hypothesis R(n), we obtain that
© : T, F,G is derivable, and hence, so is @ : T by application of [7].
The inference figure [L],[1], [T}, [&], [V], [&], (3], [I] are treated in the same way.

2. If the last step of I is an instance of the Logical inference rule [®] then, as above, the principal formula is necessarily
in T and we have

Mg m,

=

F 704, Ta,F F 705, T, F

= [8l t70, 76, o, Fa G
where © = ©,,0; and T = T,,Ts, F ® G. By the induction hypothesis applied to Il (resp. II), we obtain that
@, :Tq, F and Oy : T4, G are derivable. By hypothesis, ©, C © and O, C ©. By lemma 5 we obtain that © : Ty, F'
and © : T4, G are derivable, and hence, so is @ : T by application of [®].

The Cut inference figure [C] is treated in the same way.

3. I the last step of T is a Dereliction [?], two cases must be considered
(a) If the derelicted formula is in 7 ©, we have

n’

V
F 7@ FT
= U= 757
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where ®@ = ©', F. By the induction hypothesis applied to II’, we obtain that @' : T, F is derivable. By lemma 5
we obtain that @', F : T, F is derivable, and hence, sois © : T' by

FO,F: T F
[A] FO,F:T

(b) If the derelicted formula is in T, we have

nl

~~

V

L F?OTF
= [ e T
a (%] F?0,T,7F

where [ = I, ? F. By the induction hypothesis applied to I, we obtain that © : T’, Fis derivable. By lemma 5,
we obtain that @, F : T, F is derivable, and hence, so is © : ' by

FO,F:I,F
0 FO,F: I
TTrFe: T TF

[A]

The inference figures [!],[>],[<] are treated in a similar way.
Therefore R(n + 1) holds. By induction R(n) halds for all n. o

A.2 Projection ¥, — X3

We have to show the result stated in theorem 2, i.e.
if FO:T,L then FO: T ft L (2)

where T contains no asynchronous formula (the reverse implication is immediate from Fig. 5).

A.2.1 The main property

First, let’s prove that property (2) is equivalent to
if FO:L then FO:ft L (3)

Demonstration:
¢ Clearly, property (3) derives from property (2) by substituting I' with the empty multiset.

¢ Conversely, assume property (3) holds, and let © : T, L be derivable; let L' be any ordered list of the elements of
[. By hypothesis, F © : L, L' and, by property (3), we obtain that F © :ft L, L'. Given that L’ (as I') contains no
asynchronous formula, the last steps of a proof of @ :ft L, L' can only be a sequence of applications of the Reaction

rule [R1].

(R FOTAL

Y E YA

Therefore, © : T f} L is derivable.
Hence, property (2) and (3) are equivalent. : 0

Now, to show that property (3) holds, we need the following “inversion” lemmas, which will be shown in the next section.

Lemma 6 Let ©,T, A be multisets of formulae (T and A conlaining no asynchronous formula), let L, M be ordered lists of
Jormulae and let F, G le formulae.

L® : IfFO:THFLandFO:ANG M thent-O: T A FQGN LM

La: IfFO:THhF,Lthent-0: T, F&GNL

£3: IfrO:T ¢ Flt/z],L thent-©:T, 3z F{t L

LA : If-FO,F:THF,L thent- O, F:Tf L

L=:IfFO:TtLandL=M thent-O: T M
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where [, = M means that lists I and M differ only by the order of their elements. We now come to the demonstration of
the property (3).
Demonstration: Let R(n) be the following induction hypothesis

If © : L has a proof of depth at most n then O :ft L is derivable.
Let’s assume R(n) and let’s show R(n + 1). Let I be a proof of depth n +10of © : L.

1. Tf the last step of II is an instance of the Logical inference rule [%], we have

nl
V
+FO:L,FG
I = [#® it Bl S
[ ]r-e:L/,FnG

where L = L', F %8 G. The sub-proof II' is of depth at most n. By the induction hypothesis R(n), we obtain that
O :ft L', F,G is derivable, and hence, so is © :ft L', F % G by application of [®]. Given that L = L'F ® G, by
property £ = of lemma 6, we obtain that © :ft L is derivable.

The inference figures [L],[7],[T],[&],[V] are treated in the same way.

2. Tf the last step of II is an instance of the Logical inference rule [®], we have

Mg T

~—~

FO: L, F FO: Ly, G

= [e] FO:Lals, FRG

where L = La,Ls, F ® G. By the induction hypothesis applied to II, (resp. II;), we obtain that © :ft F, L. and
O :ft G, Ly are derivable. By property L& of lemma 6, we obtain that © : F® G f La, Ly is derivable, and hence, so
is © it La, Ly, F ® G by application of [R f}]. Finally, given that L = L,, Ls, F ® G, by property £ = of lemma 6, we
obtain that © :f} L is derivable.

The inference figures [@;], [®r],[3] are treated in the same way, using properties £& and £3 of lemma 6.
3. If II is simply
m =[] ——
1 FO:1
then L =1 and © :fy L is derivable by
1] —
(D1] [ FO:Y1
FO:11
FO:f1

4. 1f the last step of II is an instance of the Logical inference rule [!], we have

(R 1]

-nl

PNy
[ FO:F
“FO:\F

and L = ! F. By the induction hypothesis applied to II', we obtain that © :ft F'is derivable and hence, so is © :fy L
by

I =

) FOMF
TFOUF
FO:Fq
FO ! F

[D1]

(R 1]

5. If the last step of I is an instance of the Absorption rule [A], we have

-nl
V
FO,F:L,F
= Wragrr

where © = @', F. By the induction hypothesis applied to II', we obtain that @', F :t F, L is derivable. By property
LA of lemma 6, we obtain that ©', F :ft L, i.e. © :ft L, is derivable.
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6. Finally, if 1] is simply
T =g xe

then L = X, X' and © :A} L is derivable by
(7]

[D1] FO: X Xt
(R ] "TFe X X q
Fo:r X, X4
Therefore R(n + 1) holds. By induction R(n) holds for all n. O

A.2.2 The Inversion Lemma £ =

We show here property £ = of lemma 6, i.e.
if FO:TftL and L=M then FO: Tt M

Demonstration: The proof is long but not difficult. It is sketched here.

o It is first shown that the Logical inference rules concerning fi-sequents in the triadic system apply anywhere in the
last field of these sequents (not only to the last formula). In other words,

FO:THL LM if FO:THLM
FO:THLFBGM i +O:THLFGM

FO:THL?FM if FO,F:THLM

FO:THLT,M (4)

reo:TwLF&GM if +FO:THLFMad +FO:THLG M
re: Ty L,V F,.M if FO:THL,Fle/z}, M
FOo:T,Fh LM if +TNL F,M and F is not asynchronous

All these properties are shown by induction of the complexity of M (i.e. the sum of the complexities of its elements).
e Then it is shown that
if FO:TH{L,F,M then FO:T{L,MF (5)
This is also shown by induction on the complexity of M using, for each case of the last formula of M, the corresponding
case in property (4).

e From property (5), it can easily be shown by induction that provability in the Triadic system is preserved under any
transposition in the last field of the sequent. More generally, provability is preserved under any permutation. This is
precisely the content of property £ = of lemma 6.

[m]
If © : T, F f L is derivable (where F' is not asynchronous), then sois © : T' ft L, F' by application of [R f}], and, by property
=,s0is @ : T ft F, L. But we can state a more specific property, which is used below:

Lemma 7 Let ©,T be multisets of formulae, L be an ordered list of formulae, and F be a formula (T, F containing no
asynchronous formula). If © : T', F {t L has a proof of depth n then © : T} F, L has a proof of depth at most n+ 1.

This is shown by a simple induction on the complexity of L.

A.2.3 The Other Inversion Lemmas

We now show property £® of lemma 6. The remaining properties in this lemma (L&, £3 and L£A) are shown in the same
way. Thus, we have to show:

if FO:THtF,Land FO:ANG M then FO:T,AFQGH LM

where ' and A contain no asynchronous formula. This is shown by induction, but the problem with this induction is that it
has to deal with both {} and {-sequents in an interleaved way (whereas the proof of £ = was only concerned with f-sequents).
Demonstration: Let R(n) be the following induction hypothesis.

R(n) = RM(n) and R¥(n —1)

where
e R"(n)is the property:
HO:THF,Land ©: A f G, M have proofs, whose total depth does not exceed n, then @ : T A, FQG A L, M is
derivable.
¢ R¥(n) is the property:
If F is a synchronous formula or a negative atom and if © : T, FFJ H and © : A ft G have proofs, whose total depth
does not exceed n, then © : T, A, F ® G | H is derivable.
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By “total” depth of several proofs, we mean the sum of their depths. Let’s assume R(n), i.e. RM(n) and R¥(n — 1), and
let’s show R(n + 1), i.e. RT(n+ 1) and R¥(n)
o First, let’s show R™M(n + 1). Let II; and I be proofs of, respectively, ©: ' {t F, L and O:Aft G, M such that
u(Ih) + p(llz) =n +1.
1. T L or M is not empty: say L = L', H B K (the other cases for the last formula of L are similar). Therefore

4
rI1

—~—

Vv

Fe:THFL,HK
FO:THFL,HRK

I, = [@]

By construction, p(I1})+u(Il2) < n. By the induction hypothesis RM(n) weobtain that @ : T, A, F@ G L', H, K. M
is derivable, and hence so is © : T, A, F ® G ft L, M by application of property £ = and the inference rule [7].

2. Ifboth L and M are empty and neither F nor G is a synchronous formula or a negative atom, then© : I, A, F® G f
is derivable by

m My

v vV
FO:TH F FO:A(G
o A FeTUF FY e ave

FO:T,AUF®G
FO:T,AFQG 1
The inferences [R |J] above are valid only because of the hypotheses on F and G.

[D1]

3. If both L and M are empty and F is a synchronous formula or a negative atom, then the last inference step of
I1; is an instance of the Reaction rule [R 1], preceded by an instance of a Decision rule [D1] or [D2]. Three cases
are possible:

(a) I
m

—~—

\

FO:T FUH
(D] — w77
FO: T H F{
FO T HNF
where T' = I'', H, then u(I17) + p(II2) < n — 1. By the induction hypothesis RY(n — 1) we obtain that
©:T',A,FQ G| H is derivable, and hence, so is © : T, A, F ® G {t by application of [D1].
(b) 1f

I, = [R1]

}
n1

—~—

Vv

FO' H:T,FUH
FO,H T, F1
FO,H: T F
where © = ©', H, then u(Il}) + u(Ilz) < n — 1. By the induction hypothesis R¥(n — 1) we obtain that
©:T,A,F®G | H is derivable, and hence, sois © : ', A, F ® G { by application of [D:].
(c) If

[De]

M = [R1]

s
nl

—~—

FO:TYF
[DJFO:DFﬂ
FO:TH F

then, by symmetry, we can assume that G is a synchronous formula or a negalive atom and that

I, = [R1]

4
1'12

—~—

FO:ALG
WJFO:AGﬂ

M = R~ afc
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Therefore, ® : ', A, F ® G {t is derivable by

’ !
I'l1 I'l2

=

[ ]I-O:I‘UF FO:AUG
FO:T,AUFQG
FO:T,AFRG1

[D1]

Therefore R"(n + 1) holds.

o Now, let’s show R¥(n). Let F be a synchronous formula or a negative atom and let II; and II; be proofs of, respectively,
O:T,FU H and ©: A {t G such that u(Il) + p(ll2) = n.

1. If H is synchronous: say H = Ha, @ Hps (the other cases for H are similar). Therefore, for example,
m

—~—

FO:T,F | H,
FO:T,FUH,& Hy

I, = [@]

By construction, p(11})+p(I2) < n—1. By the induction hypothesis RY¥(n—1) weobtain that @ : T,A, F@ G § Ha
is derivable, and hence so is © : T,A, F ® G | H by application of [@:].

2. T H is not synchronous, then H cannot be a negative atom X1, since, in that case, we would have necessarily

m = [h] ——T
1= W grxyxe

This would require I’ =@ and F = X. So F would be a positive atom, in contradiction with the hypothesis that
F is a synchronous formula or a negatlive atom. Therefore, H being neither synchronous nor a negative atom,

we have
!
nl

—~—

reo:T,FH

reo:T,FyH

Therefore, © : T, F {t H has a prool II;. By lemma 7, given that F is not asynchronous, we obtain that
©:T 1t F, H has a proof of depth at most u(II}) + 1, i.e. u(Il;). Therefore, @ : T {t F, H and © : A ft G have
proofs, whose total depth does not exceed u(Ili) + p(Tl2), which is equal to n, by hypothesis. By the induc-
tion hypothesis R"(n) we obtain that © : T, A, F @ G ft H is derivable, and hence socis ©: T, A, FQ@G U H by
application of [R {].

m = [RY]

Therefore R¥(n) holds.
Therefore, both RT(n + 1) and R¥(n) hold. Therefore R(n + 1) holds. By induction R(n) holds for all n. O

A.3 Soundness and Completeness of LinLog

We have to show the result staied in theorem 3, i.e.
'Phg iff Fpiftg

We have
e !PF gif and only if [transposition to monadic sequents]
e - ?P%, gif and only if [projection to dyadic sequents, theorem 1]
e F PL: gif and only if [projection to triadic sequents, theorem 2]
o FPL:ryg
Therefore, we have to show that
FPYirg iff Fpiftg
This is achieved by a trivial induction on the depth of the proof. The induction hypothesis is

HPLU:® 0 G (resp. PH,¥:® | G) has a proof of depth at most n in X3 then ¥ : @+ G (resp. ¥: @ Y G)
is derivable in X3[P].

(the hypothesis for the reverse implication is similar). The only non obvious case of the induction comes from the Progression
rule [o—] and is salved by the following lemma.
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Lemma 8 Let ¥, ® be multisels of positive atoms.
¢ IfVU,, &,0- G, is an instance of a method in P, and + PL U, U,: 0y G, thent PL U, T,:8,8,1.
o Conversely, if - PL, W : & {t then there exists an instance ¥, ®, 0— G, of a method in P, and multisets of positive
atoms U’ and ®' such that

V=0,V and ® =®,,®' and F PV, ¥,:9 Y G,

Demonstration:

e Let M be a method in P, say
M = Vzp(z)Bq(r)o—G

and let U,, &, o— G, be an instance of M, say
U, = p(t) o =q(t) G, = G[t/z]
where ¢ is a ground term. Let’s assume that PL 0,0, : &Y G, is derivable. Then so is PL, ¥, ¥,:®, 0, by

-nl

N~

V

B A LN ¥ Up(t)t ®9(t) ®Go
L 'Pl,\IJ,‘IIo : q),@oUMl
I— 'PL"I",‘I’O : Q,éoﬂ

(D]

where T’ is the following proof:

[®] IO P ORI-F 376,
FPL, W, p(t) :§ p(t)* FO:a,q(t)q(t)t ®Go
FPL U, p(t): @,q(t) ¥ p(t)t ®q(t)* ® Go

(1]

[®]

where O stands for P+, ¥, p(t).

o Conversely, lel’s assume that P+, ¥ : ® {} has a proof II. The last step of II is necessarily an instance of a Decision
rule [D1] or [D2]. As the selected formula in these rules must not be a positive atom and ¥, ® contain only positive

atoms, we have necessarily
nl

N~

V

FPL ey Mt
FPLU:O 1

H = [Dz]
where M is a method in P, say
M = Vzp(z)Bq(zr)o— G

By construction, T’ starts a critical focusing section, and is therefore necessarily of the form

-nll

V
F Pl,\P:tIJUp(t)l@q(t)l@Go
FPLU:D Y ML

nm = 3

where ¢ is a ground term (selected at step [3]) and G, = G[t/z]. Let © be P, U. As the critical section proceeds, we

have necessarily
Mg Mo

Mp o~ N
V Voo
FO:0,q(t)” FO:9 Y G,

FO:® )t 4

PV Bl 3 il ed,
FO:0,, 3,9 §p(t): ®q(t)r ® Go
where & = ®,,®,,®’. Now, on each of the two leftmost branches, a negative atom is reached which terminates the
critical section. Hence one of the Identities ([/1] or [/2]) must be used, say

n" = [®]

M, = [I2] I, = [h]

F Ol p(t)t FO:q(t)dq(t)t
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where p(t) € ©. Therefore, ®, = # and &, = ¢(t), and hence, & = q(t), ®'. Furthermore, since p(t) is in PL, ¥ and
PL cannot contain positive atoms, p(t) must be in ¥ and we obtain that ¥ = p(t), ¥’. Finally we have

b =9,9
U=V, ¥

where ¥, = p(t) and ®, = q(t). Therefore ¥,, &; o— G, is an instance of M. Furthermore, Il, is a proof of
PLY: 9 |G,
m}

A.4 Normalization to LinLog Form

We have to show the result stated in theorem 4, i.e.
FFiff bpg

where {P; g) = NORMALIZE(F).

Let’s extend the definition of the function NORMALIZE to triadic sequents @ : I' {f L (where ' contains no asynchronous
formula). It returns an extended LinLog query consisting of a LinLog program and a sequent ¥ : @ f} G where ¥ and & are
multisets of atoms and G is an ordered list of elementary goals.

Function NORMALIZE(® : T ft L) returns an extended LinLog query
P =0
G := NGOAL(L); ® := NATOM(T'); ¥ := NATOM(®);
Return (P ; ¥:® 1 G)
Remark: in this definition, when the function NATOM or NGOAL is applied to a list (resp. multiset) of formulae, it returns
the list (resp. multiset) of images of these formulae. We now have to show the more general property
FO:THLIff Fp P :2 G
where (P ; ¥ :® f G) = NORMALIZE(O : T {f L). Let’s show here the direct implication (the converse is similar).
Demonstration: Let R(n) be the induction hypothesis
1 ©: I {f L has a proof of depth at most n in 5 then ¥ : ® {t G is derivable in Z3[P].
Let’s assume R(n) and let’s show R(n +1). Let II be a proof of depth n +1of O : T 1t L.
1. If L is not empty: say L = L', Fi ® F, (the other cases for the last formula of L are similar). Therefore

nl

~—

V

FO:TH L, R, F

= [®
I []F@:FﬂL',FlﬂFz

Let ¢/ = NGOAL(L') and g1 = NGOAL(F}) and g» = NGOAL(F:). By definition of the function NGOAL, we obtain
that NGOAL{Fy ® F;) = g1 B g2. Therefore, G = G',g1 W go. By the induction hypothesis applied to I’ we obtain
that ¥ : ® { ', g1, 92 is derivable in £3[P] and hence, so is ¥ : ® {+ G by application of [7].

2. T L is empty, the last step of II is necessarily an instance of a Decision rule [D1] or [D2], say [D1]

nl

~—

V
FO:T'UF

= [D] FO:T,Fq

where ' = I'", F and F is not a positive atom. Let u = NATOM(F). As F is not a positive atom, u is a Skolem
constant and |[NMETH(u* ® F)| is included in P. Now, let’s apply to the topmost layer of synchronous connectives
of F the following transformations, which express associativity, commutativity and distributivity properties of the
synchronous connectives.

(R F ~ Fi ®(F>® Fs) (e FR)®eFs » FRe(Raek)
Lok » Beh hoR » ReR

19 F ~ F 00 F ~» F
Fe(F0F) » (FOFRB)&(FRRQR)

0Q F = 0

Notice that these transformations do not modify NMETH(F) since the operators * and U on sets of quasi-clauses are
associative commutative, have a neutral element (resp. {[0;¥]} and @) and * is distributive over U. Furthermore,
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provability is also preserved, and even the focusing proofs, up to some irrelevant local reordering of the inferences.
Thus, for the distributivity property, we have

: (@] [®]|—@:F1U-F1 FO: Ty F
FO: Ty § B FO: Ty R F;s Feo:ThT. Rk
FO:T, T2 1 ®(F2@ Fy) FO:T1, Ty (i@ FR)&(FQF)

Hence, we may assume with no loss of generality that F is in normal form with respect to the transformation system
above, l.e.

I"'OZFzUF2

[®] ]

F=F&- - -&F
where n > 0 (if n = 0 then F = 0) and each Fj is of the form
Fr=H1® - Q Hm

where m > 0 (if m = 0 then Fx = 1) and the topmost connective of each H; is neither of 0,1, 8, ®.
By construction, II’ starts a critical focusing section, and is therefore necessarily of the form

!

=~

Vv

FO:T'| Fx

W= ©lrgrmgr

where k € {1...n}. Let’s make explicit among the component formulae H; of Fi those which are negative atoms, sa;
3 g 3 y
Fr=p  ®q ®H

where pt, gt are negative atoms and H is a tensor product of formulae which either are positive atoms, or start with
an asynchronous connective, or with the modality ! (since the other connectives are precluded). Let’s take for instance

H=AQ!B
where A is a positive atom or an asynchronous formula and B is a formula.
As the critical section proceeds, we have

Mp g Ma Mg

=~ ~= - Py

V V

FO:Todpt FO:T, g  FO: T,y A+O:Ts{!B

H” —
[®] FO:T, Ty, Ta sl Fk
where IV = Iy, Tq, T4, T Now, in II, and II;, a negative atom is reached which terminates the critical section.
Hence, the identities must be used, say
I, = [L] =—— I, = [H] —————
p [2]O:UPJ_ q []]equq_]_

where p € ©. Therefore T = 0 and Ty = ¢g. Furthermore, given that A is an asynchronous formula or a positive
atom, we have

FO:Tat A FO: B
Ma = [RU]I-O;FAﬂA I = [']I—O:{IT!B

Therefore g = @ and hence, T' = q,T'4, F. Let ga = NGOAL(A) and gp = NGOAL(B) and &4 = NATOM(I'4). By
the induction hypothesis we obtain that ¥ : &4 {t g4 and ¥ :ft gp are derivable in X3{P].

Now, by definition of the function NMETH, we obtain that

NMETH(Fx) = {[p.q ; 94, !g58]}

and hence, the method M = u B p B qo—ga ® !gp is in |[NMETH(u ® F)||, and hence in P. Since NATOM(p) = p
and p € O, we obtain that p € V. Therefore, ¥ : ® 4,u,q f} is derivable in Z3[P] by triggering method M:

FU:®afrga F¥:ftgs

R !
[®][ Y] FU:d,4lga []I-\II:U-!gB
[o_] F‘I’:‘I’AUQA@!gb
FU:®4,u,q1
Now, since T = T4, q, F, we obtain that ® = ®4,q, u, and therefore ¥ : ¥ f} is derivable in Z3[P].
Therefore R(n + 1) holds. By induction R(n) holds for all n. a
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A.5 Cut elimination in the Triadic system

A formula H is taken to be “reducible” if any instance of the Cut rule using H as Cut formmla can be eliminated from
any proof. We have to show that all formulae are reducible. For simplification purpose, we only show here that formulae
containing no modalities are reducible; the reasoning below could be adapted to avoid this restriction but it would become
much more complicated.

Demonstration: To prove that any (modality-free) formula H is reducible, we reason by induction on H. Consider

an occurrence of the Cut rule
nl
n

- ~~

\/ V
FO:TYH FO:AUH"'
FO:T,Af

where Cuts have already been eliminated from II and II'. There are two cases in the induction.

[C]

1. If H is atomic, then, by symmetry, we may consider that H is a positive atom X. Therefore, Il is necessarily of the

form
= [RU RN T
Hence, © : T, X 1t is derivable. Mareover, as I’ is focusing, it is necessarily reduced to an identity. The two forms are
possible:
o I
= oxyxe
then A= X and ©: T, A {} is identical to © : T, X { which is derivable.
o If
R P e

then A is empty and X must be in ©. But then, we can obtain a proof of © : T' {} simply by discarding X from
the proof of © : T, X {}. The only case where this would not be possible is in a step where the Identity rule [11]
is applied to match X and X, but such steps can be replaced by the Identity rule [I2], which does not make
use of X (since it is already in @). Thus, we obtain a proof of © : T’ {}, which is identical to © : T, A (since A
is empty).

In both case, we obtain a (Cut-free) proof of @ : T', A fj. Therefore, atomic formulae are always reducible.

2. Let’s now assume that H is not atomic and that all its strict sub-formulae are reducible. We want to show that H
itself is reducible. By symmetry, we may assume that H is asynchronous. Let, for example, H = A B (B & C) be its
topmost asynchronous layer (i.e. A, B,C are not asynchronous). The idea here is that the reduction of this topmost
layer can be performed “in one step”. Since II and IT' are focusing, and A, B, C are not asynchronous, the two proofs
are necessarily of the form

FO:Asy At FEO:Ap|l B
FO:AsAp | ALQ (Bt CL)

FO:T,A, By FO:T,ACY

and ' = [®,&]

where A = A4, Ap (notice that we have assumed here that the rule [@:] is used to decompose B* @& C*t; the other
possibility [@,] would be treated in the same way). Thus, © : A, | At and © : Ap |} Bt are derivable. Now, in the
proof of @ : T, A, B 1}, let’s teplace the occurrences of A by A4 and those of B by Ap. This is always possible except
in two cases (given here for A but B is treated in the same way):

¢ The Decision rule [D1] is used to select A:

FO:T"y A

(D] 61,4

In this case, A can still be replaced by A 4, introducing a Cut on A:

FO :T'JA FO':A |l AL

(C] FO :T,As1
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e The Identity rule [I;] is used to match A and A* (assuming A is a positive atom):

(1] FO': Ay AL
Tn this case also, A can be replaced by A4, yielding ©': A, § A1 which is derivable.

Therefore, by replacing A by A4 and B by Ap, we obtain a proof of @ : I', A4, Ap 1} possibly containing Cuts on
A and B. But, as A and B are subformulae of H, by the induction hypothesis, they are reducible. Hence we can
eliminate Cuts on these formulae and obtain a Cut-free proof of @ : ', A . Therefore, H is itself reducible.

u]
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