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Abstract

The paper studies the properties of the subnets of proof-nets. Very
simple proofs are obtained of known results on proof-nets for MLL™,
Multiplicative Linear Logic without propositional constants.
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Preface

The theory of proof-nets for MLL™, multiplicative linear logic without the

propositional constants 1 and 1, has been extensively studied since Girard’s

n. 930142

*Research supported by EC Individual Fellowship Human Capital and Mobility, contract



2 G. Bellin and J. van de Wiele

fundamental paper [5]. The improved presentation of the subject given by
Danos and Regnier [3] for propositional MLL™ and by Girard [7] for the
first-order case has become canonical: the notions are defined of an arbitrary
proof-structure and of a ‘contex-forgetting’ map ( . )~ from sequent derivations
to proof-structures which preserves cut-elimination; correctness conditions are
given that characterize proof-nets, the proof-structures R such that R = (D)

)
for some sequent calculus derivation D. Although Girard’s original correctness

condition is of an exponential computational complexity over the size of the
proof-structure, other correctness conditions are known of quadratic computa-
tional complexity.

A further simplification of the canonical theory of proof-nets has been ob-
tained by a more general classification of the subnet of a proof-net. Given a
proof-net R and a formula A in R, consider the set of subnets that have A
among their conclusions, in particular the largest and the smallest subnet in
this set, called the empire and the kingdom of A, respectively. One must give
a construction proving that such a set is not empty: in Girard’s fundamental
paper a construction of the empires is given which is linear in the size of the
proof-net. When the notion of kingdom is introduced, the essential proper-
ties of proof-nets — including the existence of a sequent derivation D such that
R = (D)~ (Theorem 1, sequentialization theorem) — can be easily proved using
simple properties of the kingdoms and empires, in particular the fact that the
relation X s in the kingdom of Y is a strict ordering. *

Moreover the map ( . )~ identifies equivalence classes of sequent deriva-
tions, where D; and D; are equivalent if they differ only for permutations of
inferences. Now consider the set of derivations B which have A as a conclu-
sion, and that are subderivations of some derivation D; in an equivalence class.
The kingdom and the empire of a formula A in the proof-net (D;)” yield the
notions of the minimum and the maximum, respectively, in such a set of sub-
derivations (Theorem 2). This fact gives evidence that the notions is question
do not depend on accidental features of the representation; therefore satisfac-
tory generalizations of our results to larger fragments or to other logics should
include Theorem 2.

Such a generalization is impossible in any logic with any form of Weakening,
e.g., in the fragment MLL of multiplicative linear logic with the rule for the
constant L. Indeed a minimal subderivation in which a formula A may be
introduced by Weakening is an axiom; but the process of permuting Weakening

!The notion of kingdom and the discovery of its properties originated in the Equipe de
Logique in the winter 1991-92 and appeared in discussions through electronic mail involving
Danos, Girard, Gonthier, Joinet, Regnier, (Paris VII), Gallier and de Groote (University of
Pennsylvania) and the author (University of Edinburgh).



SUBNETS OF PROOF-NETS IN MLL™ 3

upwards in a derivation is non-deterministic and does not always identify a
unique axiom as the minimum in our set of subderivations; hence in such a
logic we cannot have a meaningful notion of kingdom.

2  Proof Nets for Propositional MLL"*

We give a simple presentation of the well-known basic theory of proof nets
for Multiplicative Linear Logic without propositional constants (MLL™). The
main novelty is the use of the structural properties of subnets of a proof-net,
in particular the tight relations between kingdoms and empires. A pay-off is a
simple and elegant proof of the following theorems:?

Theorem 1. There exists a “context-forgetting” map ( . )~ from sequent
deriwations in MLL™ to proof nets for MLL™ with the following properties:

(a) Let D be a derivation of T in the sequent calculus for MLL™; then (D)~
s a proof net with conclusions I'.

(b) (Sequentialization) If R is a proof net with conclusions I' for MLL™, then
there is a sequent calculus derivation D of I' such that R = (D)~.

(¢) If D reduces to D', then D~ reduces to (D')~.

(d) If D~ reduces to R’ then there is a D' such that D reduces to D' and
R = (D).

Theorem 2. (Permutability of Inferences) (i) Let D and D' be a pair of
derivation of the same sequent & T' in propositional MLL™. Then (D)~ =
(D')~ if and only if there exists a sequence of derivations D = Dy, Dy, ..., D,
= D' such that D; and D;y1 differ only for a permutation of two consecutive
inferences.

(ii) Let R be a proof-net and let A be a formula occurrence in R. Then there
ezists a derivation D with (D)~ = R and a subderivation B of D such that
(B)” =eA. A similar statement holds for kA.

2.1 Propositional Proof Structures and Proof Nets

A link is an m+n-ary relation between formula occurrences, for some m,n > 0,
m + n # 0. Suppose Xi,..., X;ni, are in a link: if m > 0, then Xy, ..., X,
are called the premises of the link; if n > 0, then X411, ..., X;nyn are called
the conclustons of the link. If m = 0, the link is called an aztom link.

2Here we prove part (a) and (b) of Theorem 1; the proof of parts (c¢) and (d) are clear
from [5, 7].
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Links are graphically represented as

Xu,.o, Xom
Xootts v s Xomin

We consider links of the following forms:

Identity Links:

aziom links: A A~ cut links: A A
cut
Multiplicative Links:
A B
times links: 108 par links: m

Convention. We assume that the logical axioms and cut links are symmetric
relations. Other links are not regarded as symmetric. The word “cut” in a cut
link is not a formula, but a place-holder; following common practice, we may
sometimes omit 1t.

Definitions 1. (i) A proof structure S for propositional MLL™ consists of
(i) a nonempty set of formula-occurrences together with (ii) a set of identity
links, multiplicative links satisfying the properties:

1. Every formula-occurrence in § is the conclusion of one and only one link;
2. Every formula-occurrence in & is the premise of at most one link.

We write X < Y if X is a hereditary premise of Y; in this case we also say
that ‘X is above Y’. We shall draw proof structures in the familiar way as
non-empty, not necessarily planar, graphs.

(ii) We define the following reductions on propositional MLL™ proof struc-
tures:

Aziom Reductions
X X~ X reduces to X

Symmetric Reductions
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1 2 3 4 1 3 2 4
X Y X~ Y- X X~ Y Y-
X®Y X pY~ reduces to

Definitions 2. Let R be a propositional proof structure for MLL™.

(i) A Danos-Regnier switching s for R consists in the choice for each par link
L in R of one of the premises of L.

(ii) Given a switching s for R, we define the undirected Danos-Regnier graph
s(R) as follows:

e the vertices of s(R) are the formulas of R;

o there is an edge between vertices X and Y exactly when:

1. X and Y are the conclusions of a logical axioms or the premises of a cut
link; or

2. X is a premise and Y the conclusion of a times link; or else

3. Y is the conclusion of a par and X is the occurrence selected by the
switching s.

Definition 3. Let R be a multiplicative proof-structure. R is a proof-net for
propositional MLL™ if for every switching s of R, the graph s(R) is acyclic
and connected (i.e., an undirected tree).

2.2 Subnets

Definitions 4. Let m : § — R be any injective map of MLL™ proof struc-
tures (regarded as sets of formula occurrences) such that X and m(X) are
occurrences of the same formula.

(i) We say that m preserves the links if for every £ in S there is a link £’ in
R of the same kind such that

. Xl,...,Xk . /:,/‘ le,...,ka
Xk—|—17---Xk-|—n ka+17---ka+n

L

(ii) A proof-structure S is a substructure of a proof-structure R if there is an
injective map ¢ : § — R preserving links. If § is a substructure of R, then the
lowermost formula occurrences of S are also called the doors of S.
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(iii) We write stX for the smallest substructure of R containing X.

(iv) A subnet is a substructure which satisfies the condition of proof-nets.

Remark. In definition 4.(ii) let ¢ be the identity map. A subset S of R (with
the links of R holding among the occurrences in &) is a substructure if and
only if

(1) S is closed under hereditary premises and

(2)if Xo X; is an axiom and X; € S then X;_, € S.
In particular, the set of formula occurrences in st(X) consists of %, of all the
hereditary premises of ¥ and of the axioms above them:

st(B)=J{X: X<Z}u [J{XeX Y:Y =<3}

ZEeL Zex

Lemma 1. Let Ry and R, be subnets of the proof net R. Then
(i) § = R1 U Ry 1s a subnet if and only if Ry N R2 # 0.

(i1) If R1 N Ry # 0 then Ro = R1 N Rz is a subnet.

Proof. Let R be a proof net and R’ any substructure. Given a switching s’ for
R', extend s’ to a switching s for R; then s"R’ is a subgraph of sR, hence s'R’
1s acyclic, since sR i1s. Therefore we need only to consider the connectedness

of 5§ and sRK,.

To prove (i), assume R; and R, are subnets with nonempty intersection and
fix a switching s for § = Ry U R,. For ¢ = 1,2 let sR; be the restriction of
sR to R;; then sR; is connected since R; is a subnet. Let A be in R; and
B in Ry; if ¢ € Ry MRy, then A is connected with C' since sR; is connected
and B is connected with ' since sR, is connected, hence A is connected with
B as required. The converse is immediate, namely, if R; N R, = 0, then any
Danos-Regnier graph on R U R is disconnected.

To prove (ii), let sg be a switching for Rg = R1 N Ry; let s1, s2 be extensions
of sg to R1, R, respectively; then s = s; U 35 1s a switching of Ry U R,. If
A and B occur in Ry, then they are connected by a path 7; in $;R; and by a
path 72 in $3Rs; if w1 # 7y, then there is a cycle in sS, which is impossible.
But m; = 7y means that A and B are connected in sgRg. B

Proposition 1: (i) Let Ry and R be proof nets and let

Rl Rz Rl R2

. A B A A-

S = Times (R1,R2) = m or §=Cut(Rq,Rs) = B —
cu

Then S is a proof net if and only if Ry N Ry = 0.
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(ii) Let Ro be a substructure of the proof net R and let

Ko
S = Par (Ro) = A, A,

ApB

Then S is a subnet if and only if Ro is a subnet.

Proof. (i) Let s be a switching of S = Times (R1,R3); since Ry and R,
are proof nets, each of the graphs sR; and sR, are acyclic and connected; in
addition to sR; U sR,, sS has the vertex A @ B and two edges (4, A ® B)
and (B, A @ B), which establish a connection between sR; and sR»; this is
the only connection since R; and R, are disjoint.

Conversely, if R1NRy # 0, then by lemma 1.(i) Ry UR; is a subnet. Therefore
given any switching s of &, the nodes A and B in are connected already in
s(R1 U Ry); also the edges along link 42 yield another connection between

AQB
the vertices A and B, hence there is a cycle in sS. B

Part (ii) is immediate: for any switching s of R, sS comes from sRq by
introducing an additional edge (A;, A1pA,) to a leaf A;, where ApB is a new
leaf. m

By induction on the definition of a sequent derivation in MLL™ we define
the map ( . )~ from sequent derivations to proof structures (“forgetting the
context”).

Theorem 1.(a) Let D be a derivation in the sequent calculus for MLL™ ; then
(D)~ is a proof net.

Proof. Axioms are proof nets, and the property of being a net is preserved
under the times, cut and par rules by Proposition 1. B

Definitions 5. Let ¥ be a set of formula-occurrences in a proof-net R.

(i) The territory t% of is the smallest subnet of R including ¥ (not necessarily
as doors).

(ii) The kingdom kA [the empire eA] of a formula-occurrence A in a proof-net
R is the smallest [the largest] subnet of R having A as a door.

(111) Let X << Y =df X - ]CY

Remarks. (i) Given a proof-net R and formula occurrences % in R, the
subnet t¥ always exists by Lemma 1.

(ii) Suppose for no X, Y in ¥ we have that X is a hereditary premise of
Y (X <Y). Then st¥, the smallest substructure containing %, has all the
occurrences in > among its doors. On the other hand, there may not be a
subnet having all of ¥ among its doors.

(iii) The existence of kA and eA is immediate by Lemma 1 once we prove there
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exists a subnet having A as a door. This can be done by giving an explicit
construction of eA as in [5, 7] and in the following section.

2.3 Empires and Kingdoms: Existence and Properties

Among the results in this section, for the proof of the Sequentialization theorem
we need only the fact that for each formula occurrence A in a proof-net R there
exists a subnet having A as a door.

Definition 6. Let A be a formula occurrence in the proof net R. For a given
D-R-switching s, let s(R, A) be (the set of formula occurrences and of links
occurring in) the connected component of the graph sR which is obtained as
follows:

o if Ais a premise of a link in R with conclusion Z and there is an edge
(A, Z) in the D-R-graph sR, then remove (A, Z) and let s(R, A) be the

component containing the vertex A.

e otherwise, let s(R, A) be sR.

We write s(R,A) for the connected component not containing A after the

removal of the edge (4, 7) from sR, if such an edge exists; s(R, A) is empty
otherwise.

Definition 7. Let R be a proof-net and let ¥ be a set of formula-occurrences in
R. We write path,(X) for the smallest subgraph of sR connecting all formula-
occurrences in %. Clearly path (A, B) is a path of sR, for every A, Bin R
and every switching s for R.

Proposition 2. (Characterizartions of empires; cf. [3, 5, 7]) Let R be a proof
net. Then e(A) (the largest subnet of R containing A as a conclusion) ewzists
and 1s characterized by the following equivalent conditions:

(a) Ns (R, A), where s varies over all possible switchings;

(b) the smallest set of formula occurrences in R closed under the following
conditions:
(i) A € e(4);
(ii) if %2 - X2 s alink in S and Y € e(A), then X;, X5 € e(A), (1-step);

(iii) if Xo X; is an axiom in S and X; € e(A), then X;_; € e(A) (—-step);

(iv) if {;11@)‘;(22 is a link in S, and for: =1 or 2 X; # A and X; € e(A), then
X1 @ X € e(A) (|-step);
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(v) if % is a link in S, X; # A # X, and {X;, X5} C e(A), then
X1pX; € e(A) ({-step).

(According to our conventions, X; # A means that X; and A are different
formula occurrences.)

Proof. The following proof of (a) = (b) follows the argument in [7]. To show
that () C (a) we show that the set (a) is closed under the conditions (z) L (v)
defining (b). This is easy for clauses (i), (iii), (iv) and (v) of (b), and also for
clause (ii), if the link in question is a times link. Now suppose that for some
par link £ the conclusion X;pX> € N, s(R, 4), but, say, for the premise X
we have X, ¢ N, $(R,A). Then for some s we have that X;pX> belongs to
s(R,A) and X, does not. Therefore A is premise of a link with conclusion Z
and X, belongs to the same connected component as Z, i.e., to s(R, A); let 7
be path, (X2, Z), the path connecting X, and Z in s(R, A). Since the switching
s in L is Left and the edge (X1, X1pX2) belongs to s(R, A), it plays no role
in the connections m between X, and Z. Therefore if s is like s, except that
the switch on £ is changed from Left to Right, then we still have a connection
7 between X, and Z; since XipXs € N, 8(R,A), 7 can be extended to a
connection path,(A, Z), between A and Z in s'(R, A); but then in s’A we have
a cycle, and this is a contradiction. Therefore {X;, X} C eA.

To show that (a) C (b) we consider a principal switching s for A: this is a
switching such that for every parlink £, if a premise X; of £ is in (b), but the
conclusion XopX; is not, then s chooses X;_;. We claim that if s is a principal
switching, then s(R, A) is precisely (b).

Notice that any set S closed under clauses (2) L (v) has the property that
if § contains X, then it contains also every formula occurrence Z such that X
and Z are in a link £, in all cases except perhaps the following:

(1) X is A and a premise of £, while Z is the conclusion of £;

(2) £ is a parlink, X is a premise and Z the conclusion of £, and the other
premise Y is not it S.

It follows that the set (b) is a substructure of R whose doors can only be
conclusions of R, or cuts, or occurrences X as in (1) or (2).

Now suppose a formula-occurrence W is in (a) but not in (b); choose a
switching s principal for A. Since s(R, A) is connected and (b) is a substruc-
ture, the path 7 connecting A with W in s(R, A) must exit (b) from a door
X as in cases (1) or (2). But this is impossible by the definition of principal
switching and of s(R, A). Hence (a) C (b) as claimed.

We must show that A is a door of the substructure equivalently defined by
(a) and (b). Let Z € N, s(R, A) and suppose A < Z. Choose a switching s
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Xo X
such that if ="' is a link such that A < X; < Z, then s chooses X;_;.
Xole

We claim that there must be a times link

C
- in s(R, A) such that, say,

A = C < Z: otherwise, Z ¢ s(R, A), by the choice of s and the definition of
s(R,A). Thus let £ be the uppermost such link: then the path 7 connecting
A and B in s(R, A) does not pass through C; but then in sR we have two
distinct paths connecting A and B, and this contradicts the acyclicity of sR.

Since (b) is a substructure satisfying the condition (a), for each s the re-
striction of s(R, A) to (b) is acyclic and connected, hence (b) is a subnet. We
have proved that given a proof-net R and a formula-occurrence A in R, a
subnet with conclusion A always exists.

But (a) is also the largest among such subnets: let S be a substructure
of R with A as a door and suppose Z € S\ (a); then for some s, we have
Z ¢ s(R,A), from which it follows that no path connects A and Z in sS;
hence S is not a subnet. We conclude that e(A) = (a) = (b). B

The construction of a principal switching was given first in Girard’s Trip
Theorem (cf. [5], 2.9.5.); using Girard’s notion of a trip the principal switching
constructed ‘dynamically’, by making the following choices during a trip.

Starting from A, the trip proceed upwards in R, and at a branching point,
i.e., at times link, we choose arbitrarily;

e if the trip reaches a par link for the first time from below, then we fix s
arbitrarily and the trip continues to the chosen premise;

o if the trip reach a par link for the first time from a premise, then we let
s choose the other premise.

The Trip Theorem shows that eA is exactly the set of occurrences visited
between the first and the second visit to A. The algorithm is transfered to our
setting using the correspondence between trips and D-R-graphs established
by Danos and Regnier [3]. One advantage of such a formulation is that the
following corollary becomes completely obvious.

Corollary. The complezity of the computation of eA s linear on the size of
the proof-net. i

Proposition 3.(I) (properties of territories). Let R be a proof-net and let ¥
be a set of occurrences in R. Then the territory t3 satisfies

t2 = t(path(2))= |J tX
Xepath ()
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for any switching s.

Proposition 3.(II) (characterizations of kingdoms).> Let R be a proof net.
Then the kingdom kA of A in R (the smallest subnet of R having A as a

conclusion), exists and is characterized by the following equivalent conditions:
(a) t4;

(b) the smallest set satisfying the following conditions (Danos et al.):
(o) A € kA.
(i) Let X X~ occur in R. Then

X X =kX=tX,X)=kX".

.. A B .
(ii) Let £: ——— be a link in R. Then
A® B

EX QY =kXUKYU{X @Y}

"'Lt,C'X Yb link in R. Th
(iii) Le ' Xpv e a link in R. en

EXpY = [ J{kC|C € path,(X,Y)} U {XpY}

for any switching s.

(c) the smallest set of formula occurrences closed under the following condi-
tions:

() A € K(A),
(ii) if %1 - X2 is a link in S and Y € k(A), then X1, X, € k(A) [similarly, if
% is a link in & and Jy.X € k(A), then X[t/y] € k(A)] (T-step);

(iii) if Xo X; isan axiomin S and X; € k(A), then X;_, € k(A) (—-step);

| (iv))if =% isalinkin S X #A#Y, X € k(A),then Y € kAiff A ¢ eX
-step). A

The proof is left to the reader; for case (¢)(iv), see the following Lemma 2.

3Characterization (b) is due to Danos and others, as specified in footnote 1. Characteri-
zation (c) was suggested to us by J-Y. Girard.
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2.4 Sequentialization Theorem

Lemma 2. (Empire-Kingdom Nesting) Let £ : =4= and £, : =:B= be distinct
links in a proof net R for MLL™. Suppose B € eA; then D ¢ eA if and only

if C € kD.

Proof. Clearly B € eAN kD, hence Rg = eANkD and § = eA U kD are
subnets of R. If C ¢ kD and D ¢ eA, then S is a subnet with conclusion A4,
which is larger than eA, since it contains D: this contradicts the definition of
the empire of A. If C € kD and D € eA, then Ry is a subnet with conclusion
D, which is smaller than kD since it does not contain C': this contradicts the
definition of the kingdom of D. ®

Lemma 3. (Kingdom Ordering) (i) Let R be a proof net and let X, Y occur
mR. If X €Y and Y € X then either X and Y are the same occurrence
or they occur in an aztom X Y of R. (ii) Hence < is an ordering of the
conclusions of non-axiom links.

Proof. For an axiom A = X X~ we have kX = A = kX~. Otherwise, let
X € kY, with X and Y distinct; if also Y € kX, then kY N kX is a subnet,
and necessarily kX = kX NkY = kY.

. . . X1 Xo
If X is X1pX5 in alink £:
leXz
kY is still a subnet, and this contradicts the definition of kY.
. . L X X
If X is X; ® X5 in a link ———= then clearly kX = k(X;) U k(X,) U {X},
X1 @ Xy

hence for : =1 or 2, Y € k(X,); but by Lemma 2, Y is not even in e(X;). B

then the result of removing X and £ from

Theorem 1.(b) (Sequentialization) If R is a proof net with conclusions T,
then there is a sequent calculus derivation D of T' such that R = (D).

Proof. By induction on the size of R. If R is an axiom, then D is an axiom
sequent. If one of the lowermost links is a par or for all link, then we remove
such a link, we apply the induction hypothesis to the resulting subnet and
we conclude by applying a suitable par inference. Now suppose that all the
conclusions of R are conclusions either of an axiom or of a times link: we
choose a terminal times link £ whose conclusion X = A; ® B; 1s maximal
w.r.t. <. In this case eA; and eB; split R \ {4; ® B;}. Suppose not; then
there is a link £ : g such that, say, D € eB; and C ¢ eB,. But C occurs at
or above another conclusion Y = A; @ B;. By thelemma2 X = A;® B, € kC;
also C € kY hence kC C kY'; thus we obtain X € kY, contradicting the choice
of X. m

Remark. The computational complexity of Girard’s no-short-trip condition
and of Danos-Regnier’s requirement that all D-R-graphs be acyclic and con-
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nected is clearly exponential on the size of the given proof-structure. It is
known (see, e.g., [3, 4, 1]) that there are procedures to decide whether or
not a proof-structure R for MLL™ is a proof-net in time quadratic over the
cardinality of R.

2.5 Permutability of Inferences in the Sequent Calculus

Given a derivation D and two formula-occurrences X; and X, in some sequents
of D, if X; is an ancestor of X, then certainly the inference introducing X; must
occur above the inference introducing X,. We are concerned with occurrences
X; and X, in D such that neither one is an ancestor of the other. Suppose X;
is introduced above X, in D, we ask whether there is a derivation D’ which
is obtained from D by successive permutation of the inferences and such that

X is introduced below X5 in D'.

Counterexample. The following is a derivation in MLL™ in which the ap-
plications of the ®@-rule and of the p-rule cannot be permuted.

FP P FQ,Q
@

- P, POQ,Q™

exchange
FQ7, P, PoQ
FQ pP~,PRQ

Remark. In the sequent calculus for propositinal MLL™ @ /g, cut/p and 3/V
are the only exceptions to the permutability of inferences where neither one of
the principal formulas is an ancestor of the other.

A full characterization of permutability of inference in MLL™ is obtained using
the ‘context-forgetting’ map ( . )~ of derivations into proof-nets and the notions
of empire and kingdom. Such a map uniquely associates each inference 7 in D
other than Exchange with a link £ in (D)~ and the principal formula(s) of 7
with the conclusion(s) of L.

Theorem 2. (i) Let D and D' be a pair of derivation of the same sequent
F T in propositional MLL™. Then (D)~ = (D')” if and only if there exists
a sequence of derivations D = Dy, Do, ..., D, = D' such that D; and D;y4
differ only for a permutation of two consecutive inferences.

(ii) Let R be a proof-net and let A be a formula occurrence in R. Then there
ezists a derivation D with (D)~ = R and a subderivation B of D such that
(B)” =eA. A similar statement holds for kA.

Proof. (i) The “if” part is clear. To prove the “only if” part, let (D)~ =
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R = (D')~; consider a branch of D and let Z, the last inference from bottom
up where D agrees with D'. If 7, is an axiom, then D and D’ entirely agree
in the order of inferences in this branch. Otherwise, let 74 be the inference
immediately above 7y in the branch of D under consideration, and let 7/, be
the inference of D’ such that the principal formulas of 74 and 7/, are mapped
to the same formula occurrence A of R: such an 7/, exists, since (D)~ = (D')".

Moreover, let 77, ..., Z; be the inferences which occur in D’ between 7/,
and 7, (proceeding downwards). Notice that if the principal formula of any 7!
for ¢+ < k is mapped to a formula B of R, then the inference 75 of D whose
principal formula is mapped to B also occurs above the inference Zy, by our
assumption that D and D’ agree in the given branch up to Zy. It follows that
no descendant of A is active in 77, ..., Z;.

If the inference 74 is an instance of the par rule, then clearly it can be

permuted below Z7, ..., Z;. If T/ is a times rule, say, 4 is A; ® A,, then we
have
BB BB
FT, A F T A FAL AL A A

IAl |_]__‘1,]__‘2,A1®A2 IA . |_A1,A2,A1®A2

If 7] is another times rule, then clearly it can be permuted above 7). If 7] is a
par rule, then consider the inference Z¢ of D such that the principal formulas
of Z{ and Z¢ are mapped to the same formula occurrence C = CopC; of R.
Now (B;)~ is a subnet of R with A, as a conclusion, hence (B;)~ C e(A4,);
Co

CopCl

e(A;); moreover, e(A;) Ne(A;_;) = 0, hence the active formulas Cy and C; of
7, are both in the same branch B; of D'. It follows that Z; can be permuted
above 7,.

similarly (B%)~ C e(4;). Since Ty occurs above 74, the link occurs in

(ii) Let (D)~ = R; let T4 be the inference in D whose principal formula is
mapped to A in R; let B4 be the subderivation of D ending with 74. To find a
derivation D’ and a subderivation B’ such that (B’) = eA, let k be the number
of formula-occurrences in eA \ (B4)": then there are also k inferences in D
which must be successively permuted above 74. We proceed by induction on
eA, as characterized by Proposition 2. We need to consider only the following
cases:

|-step for times, clause (1v): X € eA and X # A implies X®Y € eA. By
induction hypothesis we may assume that X is introduced above Z,. If 7’
introduces X ® Y and occurs below 74, then X is a passive formula of every
sequent between 74 and 7'. If we permute 7’ with the inference 7" immediately
above it, we do not increase the number of formulas in eA\ (B)~, After a finite
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number of steps, the inference introducing X®@Y is permuted above 74 and
we have reduced k.

|J-step for par links, clause (v): X € €AY € ed and X # A # Y imply
XpY € eA. By induction hypothesis we assume that both X and Y are
introduced above 74, and let 7’ be the inference introducing XY below Z4. It
follows that for each application of the ®-rule between 74 and 7’ the ancestors
of XpY occur in one branch only, namely that containing 74. Therefore the
inference 7' can always be permuted with the inference 7" immediately above
it, even in the case when 7" is a ®-rule. After a finite number of steps we
reduce k.

Finally, to find a derivation D" and a subderivation B” such that (B”) = kA,
consider the doors of k(A) which are premises of some link; let X7, ..., X,, be
the conclusions of such links. Since X; ¢ kA by Lemma 2, we have A € e(X;)
and by the above argument, the inference 74 can be permuted above the
inference 7; introducing X; in D. The argument can be repeated for all 2 < n,
without permuting 74 below a previously considered Z;; the result follows. B

3 Proof Nets for First Order MLL™*

This section is essentially based on Girard [7].

3.1 First-Order Proof-Structures

We work with a first-order language for MLL™ and consider multiplicative
proof-structures with the addition of the following links.

First-order links:
Alt
for all: —— exists: M

Vo.A dz.A

Definition 8. The variable z (possibly) occurring free in the premise of a for

all link L :

is called the eigenvariable associated with the link £. Notice
z.

that the same variable z occurs free in the premise and bound in the conclusion
of £. We associate with each eigenvariable z a constant z. Obviously, a link
Alz/z]

1s incorrect.

of the form
T.

Definitions 9. (i) A proof structure for first order MLL™ is defined as before
with the addition of the following conditions:
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3. (a) Each occurrence of a quantifier link uses a distinct bound variable.

(b) If a variable occurs freely in some formula of the structure, then the
variable is the eigenvariable of exactly one V-link.

(¢) The conclusions of the proof structure are closed formulas.

4. We say that in a first-order proof-structure & eigenvariables are used
strictly if no substitution of any set of occurrences of an eigenvariable
z with the constant z yields a correct proof structure with the same
conclusions as R. We require also that in first-order proof-structures
eigenvariable are used strictly.?

(ii) Let R be a proof structure for MLL™ and let z be an eigenvariable in
R. The free range of © tn & is the set of all formula occurrences in which the
eigenvariable = occurs freely. The ezistential border of z is the set of all the
Blt/y]
Jy.B

occurs in the premise but not conclusion of £. We say also that the link £ is

where z

formula occurrences which are the conclusion of a link £ :

in the existential border of z.
(iii) We define the following additional reductions.

Symmetric Reductions

: R(z) : R[t/z]
Alt/z] A~ reduces to Alt/z] A~ [t/z]
dz.A V. A” cut

cut

where R(z) is the smallest substructure containing all occurrences of the eigen-
variable z and R[t/z] results from R(z) by replacing t for z everywhere.

The definition of Danos-Regnier graph for first order proof structures is
extended as follows.

Definitions 10. Let R be a proof structure for first order MLL™.

(i) A Danos-Regnier switching s in a first order proof structure R for MLL™
consists in a switch for each par and for all link of R, where

e a switch for a par link is the choice of one of the premises of the link and

*We modify the setting of Girard [7] only with the condition of a strict use of the eigen-
variables; this is enough to give a smooth tratment of kingdom and empires.
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o a switch for a for all link with associate eigenvariable z is a choice of
either (1) the premise of the link or of a formula occurrence in (2) the
free range or in (3) the existential border of = (case (1) is needed if z
does not occur free in R).

(ii) Given a switching s for R, we define the undirected Danos-Regnier graph
s(R) as follows:

e the vertices of s(R) are the formulas of R;

o there is an edge between vertices X and Y exactly when:

(a) X and Y are the conclusions of a logical axioms or the premises of
a cut link;

(b) X is a premise and Y the conclusion of a times or ezists link;

(¢) Y is the conclusion of a par or for all link and X is the occurrence
selected by the switching s.

(iii) R is a proof net for first order DL [MLL™] if for every switching s of R,
the graph s(R) is acyclic [and connected).

The requirement that eigenvariable should be used strictly guarantees that
the following structure is incorrect:

A(z) A (=) B(z) B~ (z)
Vo.A dz. A~ dz.B dz.B~
dx. A~ ® dz.B

and must be rewritten as

A(z) A (=) B(c) B~ (¢)
Vo.A dz. A~ dz.B dz.B~
dx. A~ ® dz.B

where ¢ is a new constant.

The following is an equivalent way of characterizing the same property.

Definition 11. An z-tread in a proof-structure R is a sequence (4, ..., C, of
formula occurrences which contain the free variable = and such that for each
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¢ < n there is a link £ such that either (1) C; is the premise and C;1; is the
conclusion of £ or (2) C; and C;1; are conclusions of £ (an axiom link) or (3)
C; 1s the conclusion and C;y; is the premise of L.

Fact 1. In a proof structure eigenvariables are used strictly if and only if every
occurrence of an eigenvariable = belongs to an z-thread ending with the V-link
assoctated with . W

3.2 Subnets

The definition of a substructure Sy of a proof-structure & must take into ac-
count the requirement that all conclusion of &y should be closed formulas.

Definitions 12. (i) Let S be a proof structure for first order MLL. A set of
formula occurrences and links Sy is a substructure of S if Sg is a proof structure
and there is an injective map ¢ : S — S preserving links such that X and
¢(X) are the same formula or X comes from «(X) by a substitution of a free
variable z with z. (We will usually omit to mention the map ¢.)

As before, a subnet is a substructure which satisfies the condition of proof-nets.

Fact 2. If § ts a substructure of a first order proof-structure R and a link
A
L
Vz.A

contained in S.

occurs in S, then the free range of x and its existential border are

Proof. All eigenvariables are used strictly in & by definition. Suppose £
occurs in & but z occurs outside §; then there is an z-thread ‘crossing the
border of” &, say at a door C. This means that any substitution of z for z in
C spoils the link £, i.e.; § cannot be a substructure, a contradiction. m

Lemma 1 (first order case) In first order MLL™, the intersection and the
unton of subnets are subnets if and only if the intersection is nonempty.

Proof. The argument for the propositional case applies here; we need only to
make sure that if Ry and R, are subnets of a proof-net R with Ry N Ry # 0,
then § = R1 U R, and Ro = R1 N Ry are first-order substructures, and in
particular, the eigenvariables are used strictly and their conclusions are closed.
If a V-link of R does not occur in &, then the associated eigenvariable z is
replaced by z in the subnets R; and in R,, hence in & too.

If a V-link with eigenvariable z occurs in Ro, then (since eigenvariables are
used strictly in R) z also occurs inside Ro but not in any door of Ro, by the
Fact 2.

Finally, if a V link with eigenvariable z occurs, say, in R; \ R, then any
occurrence of z in the substructure Ry is replaced by z. Moreover z does not
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occur in the doors of §: indeed by the same corollary, z does not occur in the
doors of Ry, hence it does not occur in R, \ Ry either. B

Proposition 1. (first order cases) Let Rqo be a substructure of the proof net
R. Then
(iii)
Ro[z/z]
S = For All (Ro) = A

Vo.A

15 a subnet if only if Ro ts a subnet and z does not occur in I'.
(iv) The substructure

Ro
S = Exzists (Ro) = Alt/z]

dz.A

1s a subnet if Ro is one.

Proof. (iii) & is a substructure, since the substitution of z for z does not
affect the conclusions of &, which remain closed. Given a switching s for S,
sS difters from sRg only for having a leaf Vz.A connected by an edge to some
vertex of Ro; thus sS is acyclic and connected, since sRg is. (iv) is similar but
easier. W

Remark. It is not true that if S = Fzists Rg and S is a proof-net then Ry is
a proof-net: for instance in A[t/z] the term ¢ may contain the eigenvariable of
some for all link which occur in Ro.

As before Theorem 1.(a) follows as a corollary. (Notice that if - I' is the end
sequent of D and a free variable z occurs in I', then (D)~ = (Dlz/z])”, a
proof-structure with conclusions I'[z/z].)

Theorem 1.(a) (first-order case) Let D be a derivation in the sequent calculus
for first order MLL™; then (D)~ is a proof net. B

3.3 Empires and Kingdoms: Existence and Properties

As in the propositional case, we need to prove that given a proof-net R and
a formula A in R, there always exists a subnet of R having A among its
conclusions.

Proposition 2. (Characterization of empires, first-order case; cf. [7]) Let R
be a proof net for first order MLL™ and let A occur in R. Then the empire eA
of A in R exists and is characterized by the following equivalent conditions:
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a) N, (R, A), where s vartes over all possible switchings;

(
(b) the smallest set of formula occurrences in R closed under conditions
(b)()-(v) of Proposition 2 for propositional multiplicative links and moreover

Xt
(vi) if EI[ /;:,] is a link in S and X[t/y] # A, then Jy.X € e(A) if and only if

X[t/y] € é(A), (T- and |-steps);

X
e is a link in § and X # A then Vy.X € eA if and only if the free
Y.
range of y and the occurrences in its existential border belong to eA (- and

{J-steps).

Proof. We follow Girard [7]. (vii) Suppose Vy.X € eA, but for some C in the
free range of y we have C ¢ eA. Then A must be a premise of some link with
conclusion Z, and for some s we have Vy.X € s(R, A) and C € s(R, A), where
s(R, A)is the connected component not containing A after removal of the edge
(A, Z) from sR. Therefore in s(R, A) there is a path connecting A and Vy.X
and moreover in s(R, A) there is a path connecting Z and C' which obviously
does not depend on the switch for Vy.X. Now if we change the switch for

i
(vii) i v

Vy.X to choose C leaving all other choices unchanged, then we obtain a switch
s' such that 'R is cyclic: indeed there still remains a connection between
Z and C in $'(R, A) (which lies outside eA) and there certainly is a distinct
connection between A and Vy.X in s'(R, A) (since Vy.X € eA). But then s'R

contains a cycle, a contradiction. B

The example at the beginning of the present section shows that an eigen-
variable z can occur outside the kingdom of Vz.A, unless a strict use of eigen-
variables is required. We have the following characterization of kingdoms in
first order MLL™ (which is not true in in the setting of [7]).

Proposition 3. (Inductive definition of kingdoms, first-order cases) Let R
be a proof net for first order MLL™. Then kA, the kingdom of a in R exists
and 1s characterized as the smallest set of formula occurrences closed under
conditions (1)-(iv) of Proposition 8 for multiplicative propositional links and
moreover

2
(ii)” if EI[ /;:,] is a link in & and Jy.X € k(A), then X[t/y] € k(A), (T-step);

X
(v) if Vo X

occurrences in its existential border belong to kA ({)-step). ®

is a link in § and Vy.X € kA, then the free range of y and the
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3.4 Sequentialization

The proof of Lemma 2 extends to the first-order case without modificatons.

Lemma 2. (Empire-Kingdom Nesting) Let £; : =4= and L : =B= be distinct
links in a proof net R. Suppose B € eA; then D ¢ eA if and only if C € kD.
|

Lemma 3. (Ordering of the kingdoms, first-order case) In proof-nets for first
order MLL™ the relation < s a strict ordering of formula-occurrences that
are not conclusions of axiom links.

Proof. Suppose X € kY, where X and Y not the conclusions of axioms links.

Two cases are to be added to the propositional proof.

Alt/x]
. A

kingdom and proposition 1 that kX = k(Jz.A) = k(A[t/z])U {Jz.A}. If X

and Y are distinct and also Y € kX, then Y € k(A[t/z]) and this is absurd,

since Y ¢ e(A[t/z]) follows from Jz.A € kY by lemma 2.

Let X be the conclusion of a link It follows from the definition of

Finally, let X be the conclusion of a link . If follows from proposition

Z.

1 that kX \ {Vz.A} C eA. If X and Y are distinct and also Y € kX, then
Y € eA, and this contradicts lemma 2. B

Theorem 1.(b) The Sequentialization Theorem holds in first order MLL™.

Proof. We consider first the lowermost par and for all links, if such links exist.
Otherwise, we choose a terminal link £ whose conclusion is maximal w.r.t. <.
If £ is an ezists link, then the result of removing it is still a proof-net. Suppose
Alt/x]

Z.

not; then £:

is in the existential border of y, where y is associated with

B
o B then dz.A € k(Vy.B), by Fact 2, hence 3z. A it cannot be maximal w.r.t.
Y.

& . The rest of the proof is as before. B

3.5 Permutability of Inferences in the Sequent Calculus

Counterexample. Let z occur free in P. The following is a derivation in
MLL™ in which the applications of the J-rule and of the V-rule cannot be
permuted.
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HP,P
P, dz.P
v
FVz. P, dz.P

Theorem 2. (first order case) The Theorem on permutability of inferences
holds in first order MLL™.

Proof. (i) Assuming the pure parameter property, the argument is similar to
the propositional case, where for all rules behave like par rules and ezists rules
like times rules. The nontrivial case is the following: an inference 7/, of D’ has
the principal formula A = dz.A4; and must be permuted below a for all rule
7;. As before we argue that in D we have an inference 7g such that 7] and Zg
are mapped to B = Vy.B; and that such an inference must occur above the
inference 74 whose active formula is A;[t/z]; by the pure parameter property
of D, y does not occur in ¢, and the permutation is permissible.

(ii) As before, the argument is by induction on eA \ (B4)~; to the proposi-
tional cases we add the following cases (the cases of existential links being
unproblematic):

(+-step) for all link, clause (viz): By the pure parameter property the eigen-
variables occur only above the associated V-inference, which already occurs
above 74 by induction hypothesis.

(U-step) for all links, clause (viz): Let 7’ be the inference introducing Vy.X
below 7, where Vy. X € eA. By induction hypothesis the eigenvariable y occurs
only in sequents above 7,4, except for one occurrence of a formula X(y) (an
ancestor of Vy.X) for each sequent between 7, and Z’. Hence we can always
permute 7' with the inference immediately above it. B
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