
Subnets of Proof-nets inMLL�G. Bellin � J. van de WieleDecember 21, 1994AbstractThe paper studies the properties of the subnets of proof-nets. Verysimple proofs are obtained of known results on proof-nets for MLL�,Multiplicative Linear Logic without propositional constants.Contents1 Preface 12 Proof Nets for Propositional MLL� 32.1 Propositional Proof Structures and Proof Nets : : : : : : : : : : 32.2 Subnets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52.3 Empires and Kingdoms: Existence and Properties : : : : : : : : 82.4 Sequentialization Theorem : : : : : : : : : : : : : : : : : : : : : 122.5 Permutability of Inferences in the Sequent Calculus : : : : : : : 133 Proof Nets for First Order MLL� 153.1 First-Order Proof-Structures : : : : : : : : : : : : : : : : : : : : 153.2 Subnets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 183.3 Empires and Kingdoms: Existence and Properties : : : : : : : : 193.4 Sequentialization : : : : : : : : : : : : : : : : : : : : : : : : : : 213.5 Permutability of Inferences in the Sequent Calculus : : : : : : : 211 PrefaceThe theory of proof-nets for MLL�, multiplicative linear logic without thepropositional constants 1 and ?, has been extensively studied since Girard's�Research supported by EC Individual Fellowship Human Capital and Mobility, contractn. 930142 1



2 G. Bellin and J. van de Wielefundamental paper [5]. The improved presentation of the subject given byDanos and Regnier [3] for propositional MLL� and by Girard [7] for the�rst-order case has become canonical: the notions are de�ned of an arbitraryproof-structure and of a `contex-forgetting' map ( : )� from sequent derivationsto proof-structures which preserves cut-elimination; correctness conditions aregiven that characterize proof-nets, the proof-structures R such that R = (D)�,for some sequent calculus derivation D. Although Girard's original correctnesscondition is of an exponential computational complexity over the size of theproof-structure, other correctness conditions are known of quadratic computa-tional complexity.A further simpli�cation of the canonical theory of proof-nets has been ob-tained by a more general classi�cation of the subnet of a proof-net. Given aproof-net R and a formula A in R, consider the set of subnets that have Aamong their conclusions, in particular the largest and the smallest subnet inthis set, called the empire and the kingdom of A, respectively. One must givea construction proving that such a set is not empty: in Girard's fundamentalpaper a construction of the empires is given which is linear in the size of theproof-net. When the notion of kingdom is introduced, the essential proper-ties of proof-nets { including the existence of a sequent derivation D such thatR = (D)� (Theorem 1, sequentialization theorem) { can be easily proved usingsimple properties of the kingdoms and empires, in particular the fact that therelation X is in the kingdom of Y is a strict ordering. 1Moreover the map ( : )� identi�es equivalence classes of sequent deriva-tions, where Di and Dj are equivalent if they di�er only for permutations ofinferences. Now consider the set of derivations B which have A as a conclu-sion, and that are subderivations of some derivation Di in an equivalence class.The kingdom and the empire of a formula A in the proof-net (Di)� yield thenotions of the minimum and the maximum, respectively, in such a set of sub-derivations (Theorem 2). This fact gives evidence that the notions is questiondo not depend on accidental features of the representation; therefore satisfac-tory generalizations of our results to larger fragments or to other logics shouldinclude Theorem 2.Such a generalization is impossible in any logic with any form of Weakening,e.g., in the fragment MLL of multiplicative linear logic with the rule for theconstant ?. Indeed a minimal subderivation in which a formula A may beintroduced byWeakening is an axiom; but the process of permutingWeakening1The notion of kingdom and the discovery of its properties originated in the �Equipe deLogique in the winter 1991-92 and appeared in discussions through electronic mail involvingDanos, Girard, Gonthier, Joinet, Regnier, (Paris VII), Gallier and de Groote (University ofPennsylvania) and the author (University of Edinburgh).



Subnets of proof-nets in MLL� 3upwards in a derivation is non-deterministic and does not always identify aunique axiom as the minimum in our set of subderivations; hence in such alogic we cannot have a meaningful notion of kingdom.2 Proof Nets for Propositional MLL�We give a simple presentation of the well-known basic theory of proof netsfor Multiplicative Linear Logic without propositional constants (MLL�). Themain novelty is the use of the structural properties of subnets of a proof-net,in particular the tight relations between kingdoms and empires. A pay-o� is asimple and elegant proof of the following theorems:2Theorem 1. There exists a \context-forgetting" map ( : )� from sequentderivations in MLL� to proof nets for MLL� with the following properties:(a) Let D be a derivation of � in the sequent calculus for MLL�; then (D)�is a proof net with conclusions �.(b) (Sequentialization) If R is a proof net with conclusions � forMLL�, thenthere is a sequent calculus derivation D of � such that R = (D)�.(c) If D reduces to D0, then D� reduces to (D0)�.(d) If D� reduces to R0 then there is a D0 such that D reduces to D0 andR0 = (D0)�.Theorem 2. (Permutability of Inferences) (i) Let D and D0 be a pair ofderivation of the same sequent ` � in propositional MLL�. Then (D)� =(D0)� if and only if there exists a sequence of derivations D = D1, D2, : : :, Dn= D0 such that Di and Di+1 di�er only for a permutation of two consecutiveinferences.(ii) Let R be a proof-net and let A be a formula occurrence in R. Then thereexists a derivation D with (D)� = R and a subderivation B of D such that(B)� = eA. A similar statement holds for kA.2.1 Propositional Proof Structures and Proof NetsA link is anm+n-ary relation between formula occurrences, for somem;n � 0,m + n 6= 0. Suppose X1,: : :, Xm+n are in a link: if m > 0, then X1, : : :, Xmare called the premises of the link; if n > 0, then Xm+1, : : :, Xm+n are calledthe conclusions of the link. If m = 0, the link is called an axiom link.2Here we prove part (a) and (b) of Theorem 1; the proof of parts (c) and (d) are clearfrom [5, 7].



4 G. Bellin and J. van de WieleLinks are graphically represented asX1; : : : ;XmXm+1; : : : ;Xm+nWe consider links of the following forms:Identity Links:axiom links: A A? cut links: A A?cutMultiplicative Links:times links: A BA
B par links: A BA}BConvention. We assume that the logical axioms and cut links are symmetricrelations. Other links are not regarded as symmetric. The word \cut" in a cutlink is not a formula, but a place-holder; following common practice, we maysometimes omit it.De�nitions 1. (i) A proof structure S for propositional MLL� consists of(i) a nonempty set of formula-occurrences together with (ii) a set of identitylinks, multiplicative links satisfying the properties:1. Every formula-occurrence in S is the conclusion of one and only one link;2. Every formula-occurrence in S is the premise of at most one link.We write X � Y if X is a hereditary premise of Y ; in this case we also saythat `X is above Y '. We shall draw proof structures in the familiar way asnon-empty, not necessarily planar, graphs.(ii) We de�ne the following reductions on propositional MLL� proof struc-tures: Axiom Reductions... ...X X? X reduces to X... ...Symmetric Reductions



Subnets of proof-nets in MLL� 5...1 ...2 ...3 ...4 ...1 ...3 ...2 ...4X Y X? Y ? X X? Y Y ?X 
 Y X?}Y ? reduces toDe�nitions 2. Let R be a propositional proof structure for MLL�.(i) A Danos-Regnier switching s for R consists in the choice for each par linkL in R of one of the premises of L.(ii) Given a switching s for R, we de�ne the undirected Danos-Regnier graphs(R) as follows:� the vertices of s(R) are the formulas of R;� there is an edge between vertices X and Y exactly when:1. X and Y are the conclusions of a logical axioms or the premises of a cutlink; or2. X is a premise and Y the conclusion of a times link; or else3. Y is the conclusion of a par and X is the occurrence selected by theswitching s.De�nition 3. Let R be a multiplicative proof-structure. R is a proof-net forpropositional MLL� if for every switching s of R, the graph s(R) is acyclicand connected (i.e., an undirected tree).2.2 SubnetsDe�nitions 4. Let m : S ! R be any injective map of MLL� proof struc-tures (regarded as sets of formula occurrences) such that X and m(X) areoccurrences of the same formula.(i) We say that m preserves the links if for every L in S there is a link L0 inR of the same kind such thatL : X1; : : : ;XkXk+1; : : :Xk+n 7! L0 : mX1; : : : ;mXkmXk+1; : : :mXk+n(ii) A proof-structure S is a substructure of a proof-structure R if there is aninjective map � : S ! R preserving links. If S is a substructure of R, then thelowermost formula occurrences of S are also called the doors of S.



6 G. Bellin and J. van de Wiele(iii) We write st� for the smallest substructure of R containing �.(iv) A subnet is a substructure which satis�es the condition of proof-nets.Remark. In de�nition 4.(ii) let � be the identity map. A subset S of R (withthe links of R holding among the occurrences in S) is a substructure if andonly if(1) S is closed under hereditary premises and(2) if X0 X1 is an axiom and Xi 2 S then X1�i 2 S.In particular, the set of formula occurrences in st(�) consists of �, of all thehereditary premises of � and of the axioms above them:st(�) = [Z2�fX : X � Zg [ [Z2�fX 2 X Y : Y � �g:Lemma 1. Let R1 and R2 be subnets of the proof net R. Then(i) S = R1 [R2 is a subnet if and only if R1 \R2 6= ;.(ii) If R1 \ R2 6= ; then R0 = R1 \ R2 is a subnet.Proof. Let R be a proof net and R0 any substructure. Given a switching s0 forR0, extend s0 to a switching s for R; then s0R0 is a subgraph of sR, hence s0R0is acyclic, since sR is. Therefore we need only to consider the connectednessof sS and sR0.To prove (i), assume R1 and R2 are subnets with nonempty intersection and�x a switching s for S = R1 [ R2. For i = 1; 2 let sRi be the restriction ofsR to Ri; then sRi is connected since Ri is a subnet. Let A be in R1 andB in R2; if C 2 R1 \ R2, then A is connected with C since sR1 is connectedand B is connected with C since sR2 is connected, hence A is connected withB as required. The converse is immediate, namely, if R1 \ R2 = ;, then anyDanos-Regnier graph on R1 [R2 is disconnected.To prove (ii), let s0 be a switching for R0 = R1 \R2; let s1, s2 be extensionsof s0 to R1, R2, respectively; then s = s1 [ s2 is a switching of R1 [ R2. IfA and B occur in R0, then they are connected by a path �1 in s1R1 and by apath �2 in s2R2; if �1 6= �2, then there is a cycle in sS, which is impossible.But �1 = �2 means that A and B are connected in s0R0.Proposition 1: (i) Let R1 and R2 be proof nets and letS = Times (R1;R2) = R1A R2BA
B or S = Cut (R1;R2) = R1A R2A?cutThen S is a proof net if and only if R1 \ R2 = ;.



Subnets of proof-nets in MLL� 7(ii) Let R0 be a substructure of the proof net R and letS = Par (R0) = R0A1 A2A}BThen S is a subnet if and only if R0 is a subnet.Proof. (i) Let s be a switching of S = Times (R1;R2); since R1 and R2are proof nets, each of the graphs sR1 and sR2 are acyclic and connected; inaddition to sR1 [ sR2, sS has the vertex A 
 B and two edges (A;A 
 B)and (B;A 
 B), which establish a connection between sR1 and sR2; this isthe only connection since R1 and R1 are disjoint.Conversely, if R1\R2 6= ;, then by lemma 1.(i) R1[R2 is a subnet. Thereforegiven any switching s of S, the nodes A and B in are connected already ins(R1 [ R2); also the edges along link A BA
B yield another connection betweenthe vertices A and B, hence there is a cycle in sS.Part (ii) is immediate: for any switching s of R, sS comes from sR0 byintroducing an additional edge (Ai; A1}A2) to a leaf Ai, where A}B is a newleaf.By induction on the de�nition of a sequent derivation in MLL� we de�nethe map ( : )� from sequent derivations to proof structures (\forgetting thecontext").Theorem 1.(a) Let D be a derivation in the sequent calculus forMLL�; then(D)� is a proof net.Proof. Axioms are proof nets, and the property of being a net is preservedunder the times, cut and par rules by Proposition 1.De�nitions 5. Let � be a set of formula-occurrences in a proof-net R.(i) The territory t� of is the smallest subnet of R including � (not necessarilyas doors).(ii) The kingdom kA [the empire eA] of a formula-occurrence A in a proof-netR is the smallest [the largest] subnet of R having A as a door.(iii) Let X � Y =df X 2 kY .Remarks. (i) Given a proof-net R and formula occurrences � in R, thesubnet t� always exists by Lemma 1.(ii) Suppose for no X, Y in � we have that X is a hereditary premise ofY (X � Y ). Then st�, the smallest substructure containing �, has all theoccurrences in � among its doors. On the other hand, there may not be asubnet having all of � among its doors.(iii) The existence of kA and eA is immediate by Lemma 1 once we prove there



8 G. Bellin and J. van de Wieleexists a subnet having A as a door. This can be done by giving an explicitconstruction of eA as in [5, 7] and in the following section.2.3 Empires and Kingdoms: Existence and PropertiesAmong the results in this section, for the proof of the Sequentialization theoremwe need only the fact that for each formula occurrence A in a proof-net R thereexists a subnet having A as a door.De�nition 6. Let A be a formula occurrence in the proof net R. For a givenD-R-switching s, let s(R; A) be (the set of formula occurrences and of linksoccurring in) the connected component of the graph sR which is obtained asfollows:� if A is a premise of a link in R with conclusion Z and there is an edge(A;Z) in the D-R-graph sR, then remove (A;Z) and let s(R; A) be thecomponent containing the vertex A.� otherwise, let s(R; A) be sR.We write s(R; A) for the connected component not containing A after theremoval of the edge (A;Z) from sR, if such an edge exists; s(R; A) is emptyotherwise.De�nition 7. LetR be a proof-net and let � be a set of formula-occurrences inR. We write paths(�) for the smallest subgraph of sR connecting all formula-occurrences in �. Clearly paths(A;B) is a path of sR, for every A, B in Rand every switching s for R.Proposition 2. (Characterizartions of empires; cf. [3, 5, 7]) Let R be a proofnet. Then e(A) (the largest subnet of R containing A as a conclusion) existsand is characterized by the following equivalent conditions:(a) Ts s(R; A), where s varies over all possible switchings;(b) the smallest set of formula occurrences in R closed under the followingconditions:(i) A 2 e(A);(ii) if X1 X2Y is a link in S and Y 2 e(A), then X1;X2 2 e(A), ("-step);(iii) if X0 X1 is an axiom in S and Xi 2 e(A), then X1�i 2 e(A) (!-step);(iv) if X1 X2X1
X2 is a link in S, and for i = 1 or 2 Xi 6= A and Xi 2 e(A), thenX1 
X2 2 e(A) (#-step);



Subnets of proof-nets in MLL� 9(v) if X1 X2X1}X2 is a link in S, X1 6= A 6= X2 and fX1;X2g � e(A), thenX1}X2 2 e(A) (+-step).(According to our conventions, Xi 6= A means that Xi and A are di�erentformula occurrences.)Proof. The following proof of (a) = (b) follows the argument in [7]. To showthat (b) � (a) we show that the set (a) is closed under the conditions (i)� (v)de�ning (b). This is easy for clauses (i), (iii), (iv) and (v) of (b), and also forclause (ii), if the link in question is a times link. Now suppose that for somepar link L the conclusion X1}X2 2 Ts s(R; A), but, say, for the premise X2we have X2 =2 Ts s(R; A). Then for some s we have that X1}X2 belongs tos(R; A) and X2 does not. Therefore A is premise of a link with conclusion Zand X2 belongs to the same connected component as Z, i.e., to s(R; A); let �be paths(X2; Z), the path connecting X2 and Z in s(R; A). Since the switchings in L is Left and the edge (X1;X1}X2) belongs to s(R; A), it plays no rolein the connections � between X2 and Z. Therefore if s0 is like s, except thatthe switch on L is changed from Left to Right, then we still have a connection� between X2 and Z; since X1}X2 2 Ts s(R; A), � can be extended to aconnection paths0(A;Z), between A and Z in s0(R; A); but then in s0A we havea cycle, and this is a contradiction. Therefore fX1;X2g � eA.To show that (a) � (b) we consider a principal switching s for A: this is aswitching such that for every par link L, if a premise Xi of L is in (b), but theconclusion X0}X1 is not, then s chooses X1�i. We claim that if s is a principalswitching, then s(R; A) is precisely (b).Notice that any set S closed under clauses (i)� (v) has the property thatif S contains X, then it contains also every formula occurrence Z such that Xand Z are in a link L, in all cases except perhaps the following:(1) X is A and a premise of L, while Z is the conclusion of L;(2) L is a par link, X is a premise and Z the conclusion of L, and the otherpremise Y is not it S.It follows that the set (b) is a substructure of R whose doors can only beconclusions of R, or cuts, or occurrences X as in (1) or (2).Now suppose a formula-occurrence W is in (a) but not in (b); choose aswitching s principal for A. Since s(R; A) is connected and (b) is a substruc-ture, the path � connecting A with W in s(R; A) must exit (b) from a doorX as in cases (1) or (2). But this is impossible by the de�nition of principalswitching and of s(R; A). Hence (a) � (b) as claimed.We must show that A is a door of the substructure equivalently de�ned by(a) and (b). Let Z 2 Ts s(R; A) and suppose A � Z. Choose a switching s



10 G. Bellin and J. van de Wielesuch that if X0 X1X0}X1 is a link such that A � Xi � Z, then s chooses X1�i.We claim that there must be a times link B CB 
 C in s(R; A) such that, say,A � C � Z: otherwise, Z =2 s(R; A), by the choice of s and the de�nition ofs(R; A). Thus let L be the uppermost such link: then the path � connectingA and B in s(R; A) does not pass through C; but then in sR we have twodistinct paths connecting A and B, and this contradicts the acyclicity of sR.Since (b) is a substructure satisfying the condition (a), for each s the re-striction of s(R; A) to (b) is acyclic and connected, hence (b) is a subnet. Wehave proved that given a proof-net R and a formula-occurrence A in R, asubnet with conclusion A always exists.But (a) is also the largest among such subnets: let S be a substructureof R with A as a door and suppose Z 2 S n (a); then for some s, we haveZ =2 s(R; A), from which it follows that no path connects A and Z in sS;hence S is not a subnet. We conclude that e(A) = (a) = (b).The construction of a principal switching was given �rst in Girard's TripTheorem (cf. [5], 2.9.5.); using Girard's notion of a trip the principal switchingconstructed `dynamically', by making the following choices during a trip.Starting from A, the trip proceed upwards in R, and at a branching point,i.e., at times link, we choose arbitrarily;� if the trip reaches a par link for the �rst time from below, then we �x sarbitrarily and the trip continues to the chosen premise;� if the trip reach a par link for the �rst time from a premise, then we lets choose the other premise.The Trip Theorem shows that eA is exactly the set of occurrences visitedbetween the �rst and the second visit to A. The algorithm is transfered to oursetting using the correspondence between trips and D-R-graphs establishedby Danos and Regnier [3]. One advantage of such a formulation is that thefollowing corollary becomes completely obvious.Corollary. The complexity of the computation of eA is linear on the size ofthe proof-net.Proposition 3.(I) (properties of territories). Let R be a proof-net and let �be a set of occurrences in R. Then the territory t� satis�est� = t(paths(�)) = [X2paths(�) tX



Subnets of proof-nets in MLL� 11for any switching s.Proposition 3.(II) (characterizations of kingdoms).3 Let R be a proof net.Then the kingdom kA of A in R (the smallest subnet of R having A as aconclusion), exists and is characterized by the following equivalent conditions:(a) tA;(b) the smallest set satisfying the following conditions (Danos et al.):(o) A 2 kA.(i) Let X X? occur in R. ThenX X? = kX = t(X;X?) = kX?:(ii) Let L : A BA
B be a link in R. ThenkX 
 Y = kX [ kY [ fX 
 Y g:(iii) Let L : X YX}Y be a link in R. ThenkX}Y = [fkCjC 2 paths(X;Y )g [ fX}Y gfor any switching s.(c) the smallest set of formula occurrences closed under the following condi-tions:(i) A 2 k(A);(ii) if X1 X2Y is a link in S and Y 2 k(A), then X1;X2 2 k(A) [similarly, ifX[t=y]9y:X is a link in S and 9y:X 2 k(A), then X[t=y] 2 k(A)] ("-step);(iii) ifX0 X1 is an axiom in S and Xi 2 k(A), thenX1�i 2 k(A) (!-step);(iv) if :::X:::Y is a link in S X 6= A 6= Y , X 2 k(A), then Y 2 kA i� A =2 eX(#-step).The proof is left to the reader; for case (c)(iv), see the following Lemma 2.3Characterization (b) is due to Danos and others, as speci�ed in footnote 1. Characteri-zation (c) was suggested to us by J-Y. Girard.



12 G. Bellin and J. van de Wiele2.4 Sequentialization TheoremLemma 2. (Empire-Kingdom Nesting) Let L1 : :::A:::C and L2 : :::B:::D be distinctlinks in a proof net R for MLL�. Suppose B 2 eA; then D =2 eA if and onlyif C 2 kD.Proof. Clearly B 2 eA \ kD, hence R0 = eA \ kD and S = eA [ kD aresubnets of R. If C =2 kD and D =2 eA, then S is a subnet with conclusion A,which is larger than eA, since it contains D: this contradicts the de�nition ofthe empire of A. If C 2 kD and D 2 eA, then R0 is a subnet with conclusionD, which is smaller than kD since it does not contain C: this contradicts thede�nition of the kingdom of D.Lemma 3. (Kingdom Ordering) (i) Let R be a proof net and let X, Y occurin R. If X � Y and Y � X then either X and Y are the same occurrenceor they occur in an axiom X Y of R. (ii) Hence � is an ordering of theconclusions of non-axiom links.Proof. For an axiom A = X X? we have kX = A = kX?. Otherwise, letX 2 kY , with X and Y distinct; if also Y 2 kX, then kY \ kX is a subnet,and necessarily kX = kX \ kY = kY .If X is X1}X2 in a link L: X1 X2X1}X2 then the result of removing X and L fromkY is still a subnet, and this contradicts the de�nition of kY .If X is X1 
X2 in a link X1 X2X1 
X2 then clearly kX = k(X1) [ k(X2) [ fXg,hence for i = 1 or 2, Y 2 k(Xi); but by Lemma 2, Y is not even in e(Xi).Theorem 1.(b) (Sequentialization) If R is a proof net with conclusions �,then there is a sequent calculus derivation D of � such that R = (D)�.Proof. By induction on the size of R. If R is an axiom, then D is an axiomsequent. If one of the lowermost links is a par or for all link, then we removesuch a link, we apply the induction hypothesis to the resulting subnet andwe conclude by applying a suitable par inference. Now suppose that all theconclusions of R are conclusions either of an axiom or of a times link: wechoose a terminal times link L whose conclusion X = Ai 
 Bi is maximalw.r.t. �. In this case eAi and eBi split R n fAi 
 Big. Suppose not; thenthere is a link L : :::D:::C such that, say, D 2 eBi and C =2 eBi. But C occurs ator above another conclusion Y = Aj
Bj. By the lemma 2 X = Ai
Bi 2 kC;also C 2 kY hence kC � kY ; thus we obtain X 2 kY , contradicting the choiceof X.Remark. The computational complexity of Girard's no-short-trip conditionand of Danos-Regnier's requirement that all D-R-graphs be acyclic and con-



Subnets of proof-nets in MLL� 13nected is clearly exponential on the size of the given proof-structure. It isknown (see, e.g., [3, 4, 1]) that there are procedures to decide whether ornot a proof-structure R for MLL� is a proof-net in time quadratic over thecardinality of R.2.5 Permutability of Inferences in the Sequent CalculusGiven a derivation D and two formula-occurrencesX1 and X2 in some sequentsof D, ifX1 is an ancestor ofX2 then certainly the inference introducingX1 mustoccur above the inference introducing X2. We are concerned with occurrencesX1 and X2 in D such that neither one is an ancestor of the other. Suppose X1is introduced above X2 in D, we ask whether there is a derivation D0 whichis obtained from D by successive permutation of the inferences and such thatX1 is introduced below X2 in D0.Counterexample. The following is a derivation in MLL� in which the ap-plications of the 
-rule and of the }-rule cannot be permuted.` P?; P ` Q;Q? 
` P?; P
Q;Q? exchange` Q?; P?; P
Q }` Q?}P?; P
QRemark. In the sequent calculus for propositinalMLL� 
=}, cut=} and 9=8are the only exceptions to the permutability of inferences where neither one ofthe principal formulas is an ancestor of the other.A full characterization of permutability of inference inMLL� is obtained usingthe `context-forgetting' map ( : )� of derivations into proof-nets and the notionsof empire and kingdom. Such a map uniquely associates each inference I in Dother than Exchange with a link L in (D)� and the principal formula(s) of Iwith the conclusion(s) of L.Theorem 2. (i) Let D and D0 be a pair of derivation of the same sequent` � in propositional MLL�. Then (D)� = (D0)� if and only if there existsa sequence of derivations D = D1, D2, : : :, Dn = D0 such that Di and Di+1di�er only for a permutation of two consecutive inferences.(ii) Let R be a proof-net and let A be a formula occurrence in R. Then thereexists a derivation D with (D)� = R and a subderivation B of D such that(B)� = eA. A similar statement holds for kA.Proof. (i) The \if" part is clear. To prove the \only if" part, let (D)� =



14 G. Bellin and J. van de WieleR = (D0)�; consider a branch of D and let I0 the last inference from bottomup where D agrees with D0. If I0 is an axiom, then D and D0 entirely agreein the order of inferences in this branch. Otherwise, let IA be the inferenceimmediately above I0 in the branch of D under consideration, and let I 0A bethe inference of D0 such that the principal formulas of IA and I 0A are mappedto the same formula occurrence A of R: such an I 0A exists, since (D)� = (D0)�.Moreover, let I 01, : : :, I 0k be the inferences which occur in D0 between I 0Aand I0 (proceeding downwards). Notice that if the principal formula of any I 0ifor i � k is mapped to a formula B of R, then the inference IB of D whoseprincipal formula is mapped to B also occurs above the inference I0, by ourassumption that D and D0 agree in the given branch up to I0. It follows thatno descendant of A is active in I 01, : : :, I 0k.If the inference I 0A is an instance of the par rule, then clearly it can bepermuted below I 01, : : :, I 0k. If I 0A is a times rule, say, A is A1 
 A2, then wehave IA : B1....` �1; A1 B2....` �2; A2` �1;�2; A1 
A2 I 0A : B01....` �1; A1 B02....` �2; A2` �1;�2; A1 
A2If I 01 is another times rule, then clearly it can be permuted above I 0A. If I 01 is apar rule, then consider the inference IC of D such that the principal formulasof I 01 and IC are mapped to the same formula occurrence C = C0}C1 of R.Now (Bj)� is a subnet of R with Aj as a conclusion, hence (Bj)� � e(Aj);similarly (B0j)� � e(Aj). Since IC occurs above IA, the link C0 C1C0}C1 occurs ine(Aj); moreover, e(Aj) \ e(A1�j) = ;, hence the active formulas C0 and C1 ofI1 are both in the same branch B0j of D0. It follows that I1 can be permutedabove I 0A.(ii) Let (D)� = R; let IA be the inference in D whose principal formula ismapped to A in R; let BA be the subderivation of D ending with IA. To �nd aderivation D0 and a subderivation B0 such that (B0) = eA, let k be the numberof formula-occurrences in eA n (BA)�: then there are also k inferences in Dwhich must be successively permuted above IA. We proceed by induction oneA, as characterized by Proposition 2. We need to consider only the followingcases:#-step for times, clause (iv): X 2 eA and X 6= A implies X
Y 2 eA. Byinduction hypothesis we may assume that X is introduced above IA. If I 0introduces X 
 Y and occurs below IA, then X is a passive formula of everysequent between IA and I 0. If we permute I 0 with the inference I 00 immediatelyabove it, we do not increase the number of formulas in eAn (B)�, After a �nite



Subnets of proof-nets in MLL� 15number of steps, the inference introducing X
Y is permuted above IA andwe have reduced k.+-step for par links, clause (v): X 2 eA; Y 2 eA and X 6= A 6= Y implyX}Y 2 eA. By induction hypothesis we assume that both X and Y areintroduced above IA, and let I 0 be the inference introducingX}Y below IA. Itfollows that for each application of the 
-rule between IA and I 0 the ancestorsof X}Y occur in one branch only, namely that containing IA. Therefore theinference I 0 can always be permuted with the inference I 00 immediately aboveit, even in the case when I 00 is a 
-rule. After a �nite number of steps wereduce k.Finally, to �nd a derivationD00 and a subderivation B00 such that (B00) = kA,consider the doors of k(A) which are premises of some link; let X1, : : :, Xn bethe conclusions of such links. Since Xi =2 kA by Lemma 2, we have A 2 e(Xi)and by the above argument, the inference IA can be permuted above theinference Ii introducing Xi in D. The argument can be repeated for all i � n,without permuting IA below a previously considered Ij ; the result follows.3 Proof Nets for First Order MLL�This section is essentially based on Girard [7].3.1 First-Order Proof-StructuresWe work with a �rst-order language for MLL� and consider multiplicativeproof-structures with the addition of the following links.First-order links:for all: A8x:A exists: A[t=x]9x:ADe�nition 8. The variable x (possibly) occurring free in the premise of a forall link L : A8x:A is called the eigenvariable associated with the link L. Noticethat the same variable x occurs free in the premise and bound in the conclusionof L. We associate with each eigenvariable x a constant x. Obviously, a linkof the form A[x=x]8x:A is incorrect.De�nitions 9. (i) A proof structure for �rst orderMLL� is de�ned as beforewith the addition of the following conditions:



16 G. Bellin and J. van de Wiele3. (a) Each occurrence of a quanti�er link uses a distinct bound variable.(b) If a variable occurs freely in some formula of the structure, then thevariable is the eigenvariable of exactly one 8-link.(c) The conclusions of the proof structure are closed formulas.4. We say that in a �rst-order proof-structure S eigenvariables are usedstrictly if no substitution of any set of occurrences of an eigenvariablex with the constant x yields a correct proof structure with the sameconclusions as R. We require also that in �rst-order proof-structureseigenvariable are used strictly.4(ii) Let R be a proof structure for MLL� and let x be an eigenvariable inR. The free range of x in S is the set of all formula occurrences in which theeigenvariable x occurs freely. The existential border of x is the set of all theformula occurrences which are the conclusion of a link L : B[t=y]9y:B where xoccurs in the premise but not conclusion of L. We say also that the link L isin the existential border of x.(iii) We de�ne the following additional reductions.Symmetric Reductions... R(x) ... R[t=x]A[t=x] A? reduces to A[t=x] A?[t=x]9x:A 8x:A? cutcutwhereR(x) is the smallest substructure containing all occurrences of the eigen-variable x and R[t=x] results from R(x) by replacing t for x everywhere.The de�nition of Danos-Regnier graph for �rst order proof structures isextended as follows.De�nitions 10. Let R be a proof structure for �rst order MLL�.(i) A Danos-Regnier switching s in a �rst order proof structure R for MLL�consists in a switch for each par and for all link of R, where� a switch for a par link is the choice of one of the premises of the link and4We modify the setting of Girard [7] only with the condition of a strict use of the eigen-variables; this is enough to give a smooth tratment of kingdom and empires.



Subnets of proof-nets in MLL� 17� a switch for a for all link with associate eigenvariable x is a choice ofeither (1) the premise of the link or of a formula occurrence in (2) thefree range or in (3) the existential border of x (case (1) is needed if xdoes not occur free in R).(ii) Given a switching s for R, we de�ne the undirected Danos-Regnier graphs(R) as follows:� the vertices of s(R) are the formulas of R;� there is an edge between vertices X and Y exactly when:(a) X and Y are the conclusions of a logical axioms or the premises ofa cut link;(b) X is a premise and Y the conclusion of a times or exists link;(c) Y is the conclusion of a par or for all link and X is the occurrenceselected by the switching s.(iii) R is a proof net for �rst order DL [MLL�] if for every switching s of R,the graph s(R) is acyclic [and connected].The requirement that eigenvariable should be used strictly guarantees thatthe following structure is incorrect:A(x) A?(x) B(x) B?(x)8x:A 9x:A? 9x:B 9x:B?9x:A? 
 9x:Band must be rewritten asA(x) A?(x) B(c) B?(c)8x:A 9x:A? 9x:B 9x:B?9x:A? 
 9x:Bwhere c is a new constant.The following is an equivalent way of characterizing the same property.De�nition 11. An x-tread in a proof-structure R is a sequence C1, : : :, Cn offormula occurrences which contain the free variable x and such that for each



18 G. Bellin and J. van de Wielei < n there is a link L such that either (1) Ci is the premise and Ci+1 is theconclusion of L or (2) Ci and Ci+1 are conclusions of L (an axiom link) or (3)Ci is the conclusion and Ci+1 is the premise of L.Fact 1. In a proof structure eigenvariables are used strictly if and only if everyoccurrence of an eigenvariable x belongs to an x-thread ending with the 8-linkassociated with x.3.2 SubnetsThe de�nition of a substructure S0 of a proof-structure S must take into ac-count the requirement that all conclusion of S0 should be closed formulas.De�nitions 12. (i) Let S be a proof structure for �rst order MLL. A set offormula occurrences and links S0 is a substructure of S if S0 is a proof structureand there is an injective map � : S0 ! S preserving links such that X and�(X) are the same formula or X comes from �(X) by a substitution of a freevariable x with x. (We will usually omit to mention the map �.)As before, a subnet is a substructure which satis�es the condition of proof-nets.Fact 2. If S is a substructure of a �rst order proof-structure R and a linkL : A8x:A occurs in S, then the free range of x and its existential border arecontained in S.Proof. All eigenvariables are used strictly in S by de�nition. Suppose Loccurs in S but x occurs outside S; then there is an x-thread `crossing theborder of' S, say at a door C. This means that any substitution of x for x inC spoils the link L, i.e., S cannot be a substructure, a contradiction.Lemma 1 (�rst order case) In �rst order MLL�, the intersection and theunion of subnets are subnets if and only if the intersection is nonempty.Proof. The argument for the propositional case applies here; we need only tomake sure that if R1 and R2 are subnets of a proof-net R with R1 \R2 6= ;,then S = R1 [ R2 and R0 = R1 \ R2 are �rst-order substructures, and inparticular, the eigenvariables are used strictly and their conclusions are closed.If a 8-link of R does not occur in S, then the associated eigenvariable z isreplaced by z in the subnets R1 and in R2, hence in S too.If a 8-link with eigenvariable z occurs in R0, then (since eigenvariables areused strictly in R) z also occurs inside R0 but not in any door of R0, by theFact 2.Finally, if a 8 link with eigenvariable z occurs, say, in R1 n R2, then anyoccurrence of z in the substructure R0 is replaced by z. Moreover z does not



Subnets of proof-nets in MLL� 19occur in the doors of S: indeed by the same corollary, z does not occur in thedoors of R1, hence it does not occur in R2 n R1 either.Proposition 1. (�rst order cases) Let R0 be a substructure of the proof netR. Then(iii) S = For All (R0) = R0[x=x]� A8x:Ais a subnet if only if R0 is a subnet and x does not occur in �.(iv) The substructure S = Exists (R0) = R0A[t=x]9x:Ais a subnet if R0 is one.Proof. (iii) S is a substructure, since the substitution of x for x does nota�ect the conclusions of S, which remain closed. Given a switching s for S,sS di�ers from sR0 only for having a leaf 8x:A connected by an edge to somevertex of R0; thus sS is acyclic and connected, since sR0 is. (iv) is similar buteasier.Remark. It is not true that if S = Exists R0 and S is a proof-net then R0 isa proof-net: for instance in A[t=x] the term t may contain the eigenvariable ofsome for all link which occur in R0.As before Theorem 1.(a) follows as a corollary. (Notice that if ` � is the endsequent of D and a free variable x occurs in �, then (D)� = (D[x=x])�, aproof-structure with conclusions �[x=x].)Theorem 1.(a) (�rst-order case) Let D be a derivation in the sequent calculusfor �rst order MLL�; then (D)� is a proof net.3.3 Empires and Kingdoms: Existence and PropertiesAs in the propositional case, we need to prove that given a proof-net R anda formula A in R, there always exists a subnet of R having A among itsconclusions.Proposition 2. (Characterization of empires, �rst-order case; cf. [7]) Let Rbe a proof net for �rst orderMLL� and let A occur in R. Then the empire eAof A in R exists and is characterized by the following equivalent conditions:



20 G. Bellin and J. van de Wiele(a) Ts s(R; A), where s varies over all possible switchings;(b) the smallest set of formula occurrences in R closed under conditions(b)(i)-(v) of Proposition 2 for propositional multiplicative links and moreover(vi) if X[t=y]9y:X is a link in S and X[t=y] 6= A, then 9y:X 2 e(A) if and only ifX[t=y] 2 e(A), ("- and #-steps);(vii) if X8y:X is a link in S and X 6= A, then 8y:X 2 eA if and only if the freerange of y and the occurrences in its existential border belong to eA (*- and+-steps).Proof. We follow Girard [7]. (vii) Suppose 8y:X 2 eA, but for some C in thefree range of y we have C =2 eA. Then A must be a premise of some link withconclusion Z, and for some s we have 8y:X 2 s(R; A) and C 2 s(R; A), wheres(R; A) is the connected component not containing A after removal of the edge(A;Z) from sR. Therefore in s(R; A) there is a path connecting A and 8y:Xand moreover in s(R; A) there is a path connecting Z and C which obviouslydoes not depend on the switch for 8y:X. Now if we change the switch for8y:X to choose C leaving all other choices unchanged, then we obtain a switchs0 such that s0R is cyclic: indeed there still remains a connection betweenZ and C in s0(R; A) (which lies outside eA) and there certainly is a distinctconnection between A and 8y:X in s0(R; A) (since 8y:X 2 eA). But then s0Rcontains a cycle, a contradiction.The example at the beginning of the present section shows that an eigen-variable x can occur outside the kingdom of 8x:A, unless a strict use of eigen-variables is required. We have the following characterization of kingdoms in�rst order MLL� (which is not true in in the setting of [7]).Proposition 3. (Inductive de�nition of kingdoms, �rst-order cases) Let Rbe a proof net for �rst order MLL�. Then kA, the kingdom of a in R existsand is characterized as the smallest set of formula occurrences closed underconditions (i)-(iv) of Proposition 3 for multiplicative propositional links andmoreover(ii)' if X[t=y]9y:X is a link in S and 9y:X 2 k(A), then X[t=y] 2 k(A), ("-step);(v) if X8y:X is a link in S and 8y:X 2 kA, then the free range of y and theoccurrences in its existential border belong to kA (*-step).



Subnets of proof-nets in MLL� 213.4 SequentializationThe proof of Lemma 2 extends to the �rst-order case without modi�catons.Lemma 2. (Empire-Kingdom Nesting) Let L1 : :::A:::C and L2 : :::B:::D be distinctlinks in a proof net R. Suppose B 2 eA; then D =2 eA if and only if C 2 kD.Lemma 3. (Ordering of the kingdoms, �rst-order case) In proof-nets for �rstorder MLL� the relation � is a strict ordering of formula-occurrences thatare not conclusions of axiom links.Proof. Suppose X 2 kY , where X and Y not the conclusions of axioms links.Two cases are to be added to the propositional proof.Let X be the conclusion of a link A[t=x]9x:A . It follows from the de�nition ofkingdom and proposition 1 that kX = k(9x:A) = k(A[t=x]) [ f9x:Ag. If Xand Y are distinct and also Y 2 kX, then Y 2 k(A[t=x]) and this is absurd,since Y =2 e(A[t=x]) follows from 9x:A 2 kY by lemma 2.Finally, let X be the conclusion of a link A8x:A. If follows from proposition1 that kX n f8x:Ag � eA. If X and Y are distinct and also Y 2 kX, thenY 2 eA, and this contradicts lemma 2.Theorem 1.(b) The Sequentialization Theorem holds in �rst order MLL�.Proof. We consider �rst the lowermost par and for all links, if such links exist.Otherwise, we choose a terminal link L whose conclusion is maximal w.r.t. �.If L is an exists link, then the result of removing it is still a proof-net. Supposenot; then L: A[t=x]9x:A is in the existential border of y, where y is associated withB8y:B then 9x:A 2 k(8y:B), by Fact 2, hence 9x:A it cannot be maximal w.r.t.�. The rest of the proof is as before.3.5 Permutability of Inferences in the Sequent CalculusCounterexample. Let x occur free in P . The following is a derivation inMLL� in which the applications of the 9-rule and of the 8-rule cannot bepermuted.



22 G. Bellin and J. van de Wiele` P?; P 9` P?;9x:P 8` 8x:P?;9x:PTheorem 2. (�rst order case) The Theorem on permutability of inferencesholds in �rst order MLL�.Proof. (i) Assuming the pure parameter property, the argument is similar tothe propositional case, where for all rules behave like par rules and exists ruleslike times rules. The nontrivial case is the following: an inference I 0A of D0 hasthe principal formula A = 9x:A1 and must be permuted below a for all ruleI 01. As before we argue that in D we have an inference IB such that I 01 and IBare mapped to B = 8y:B1 and that such an inference must occur above theinference IA whose active formula is A1[t=x]; by the pure parameter propertyof D, y does not occur in t, and the permutation is permissible.(ii) As before, the argument is by induction on eA n (BA)�; to the proposi-tional cases we add the following cases (the cases of existential links beingunproblematic):(*-step) for all link, clause (vii): By the pure parameter property the eigen-variables occur only above the associated 8-inference, which already occursabove IA by induction hypothesis.(+-step) for all links, clause (vii): Let I 0 be the inference introducing 8y:Xbelow I, where 8y:X 2 eA. By induction hypothesis the eigenvariable y occursonly in sequents above IA, except for one occurrence of a formula X(y) (anancestor of 8y:X) for each sequent between IA and I 0. Hence we can alwayspermute I 0 with the inference immediately above it.References[1] G. Bellin. Mechanizing Proof Theory: Resource-Aware Logics and Proof-Transformations to Extract Implicit Information, Phd Thesis, StanfordUniversity. Available as: Report CST-80-91, June 1990, Dept. of Com-puter Science, Univ. of Edinburgh.[2] G. Bellin. Proof Nets for Multiplicative and Additive Linear Logic, ReportLFCS-91-161, May 1991, Dept. of Computer Science, Univ. of Edinburgh.[3] V. Danos and L. Regnier. The Structure of Multiplicatives, Arch. Math.Logic (1989) 28, pp. 181-203.
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