Available at

www.ComputerScienceWeb.com Informgtlon
POWERED BY SCIENCECDIRECT® an .
ACADEMIC Computation

PRESS Information and Computation 183 (2003) 57-85

www.elsevier.com/locate/ic

Linear types and non-size-increasing polynomial
time computation

Martin Hofmann

Ludwig-Maximilians- Universitat Munchen, Theoretical Computer Science, Oettingenstrasse 67,
80538 Munchen, Germany

Received 27 January 2000; revised 19 January 2001

Abstract

We propose a linear type system with recursion operators for inductive datatypes which ensures that all
definable functions are polynomial time computable. The system improves upon previous such systems in
that recursive definitions can be arbitrarily nested; in particular, no predicativity or modality restrictions
are made.
© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Complexity theory; Type system; Linear types; Higher-order function; Resources

1. Introduction

Recent work [2,5,8] has shown that predicative recursion [3,11] combined with a linear typing
discipline gives rise to type systems which guarantee polynomial runtime of well-typed programs
while allowing for higher-typed primitive recursion on inductive datatypes.

Although these systems allow one to express all polynomial time functions they reject many
natural formulations of obviously polynomial time algorithms. The reason is that under the
predicativity regime a recursively defined function is not allowed to serve as step function of a
subsequent recursive definition. However, in most functional programs involving inductive data
structures such iterated recursion does occur. A typical example is insertion sort which involves
iteration of an (already recursively defined) insertion function.

E-mail address: mhofmann@informatik.uni-muenchen.de.

0890-5401/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0890-5401(03)00009-9

mail to: mhofmann@informatik.uni-muenchen.de

58 M. Hofmann | Information and Computation 183 (2003) 57-85

A closer analysis of such examples reveals that the involved functions do not increase the size of
their input and that this is why their repeated iteration does not lead beyond polynomial time.

In this work we present a new linear type system based on this intuition. It contains unrestricted
recursion operators for inductive datatypes such as integers, lists, and trees, yet ensures poly-
nomial runtime of all first-order programs.

Suppose we have a type of integers N in binary notation and constructors O:N, Sy : N — N,
S;:N — N with semantics Syp(x) =2x and S;(x) =2x+ 1. The following defines a function
f N — N of quadratic growth:

f(0) =1,
f(x) :S()(So(f(ED)), when x > 0.

More precisely, f(x) = [x]* where [x] = 2M. As usual, |x| = [log,(x + 1)] denotes the length of x in
binary notation. We also write ||x|| for |a| when a = |x|. Iterating f as in

g(0) =2,
g(x) :f(g({gJ)), when x > 0

leads to exponential growth, indeed, g(x) = 2.

This example is the motivation behind predicative versions of recursion as used in [3,11]. In
these systems it is forbidden to iterate a function which has itself been recursively defined. More
precisely, the step function in a recursive definition is not allowed to recurse on the result of a
previous function call (here g(gj)), but may, however, recurse on other parameters.

If higher-order functions are allowed then a new phenomenon appears: If #: N — N — N is
defined by

h(0) = S,

< 3]) 3

then A(x,y) = 2/ - y although no recursion on results of recursive calls takes place. This example
suggests that the step function in a recursive definition should be required to be affine linear in the
sense of linear logic, i.e., use its argument at most once.
In[2] and in [7] it has been shown that this restriction together with predicativity suffices to ensure
polynomial runtime of all first-order programs (possibly involving higher-order auxiliary functions).
Although these systems are very expressive they rule out many naturally occurring and obviously
polynomial time algorithms. A typical example is the insertion sort algorithm defined as follows:

insert(a, []) = [q]
insert(a,b::) =if a<b
then a::b:: !
else b :: insert(a, /)
sort([]) =[]

sort(a :: I) = insert(a, sort(/))

M. Hofmann | Information and Computation 183 (2003) 57-85 59

The definition of insert is perfectly legal under the regime of predicative or safe recursion, but the
subsequent definition of sort is not. The reason that nevertheless insertion sort does not lead to an
exponential growth and runtime is that the insertion function does not increase the size of its
input.

Caseiro [4] has noticed this and developed (under the name “LIN-systems”) partly semantic
criteria on first-order recursive programs which allow one to detect this situation and which in
particular apply to the insertion sort example. The drawback of her criteria is that they are rather
complicated, not obviously decidable, and that they do not generalise to higher order functions in
any obvious way.

In this paper we present a type-theoretic approach to this problem. We will develop a fairly
natural linear type system which has the property that all definable functions are non-size-in-
creasing and which boasts higher-order recursion on datatypes without any predicativity re-
striction. We show that nevertheless all definable first-order functions are polynomial time
computable even if they contain higher-order functions as subexpressions.

The crucial innovation is a special resource type {» which has no constructors and hence no
closed terms. The application of a constructor function such as successor or list ““cons’ always
requires an additional argument of type <; for example, the binary successor function S; gets the
type $—oN—oN meaning that in order to construct 2n + 1 from n we need an element of type < in
our local context. As already mentioned, such an element cannot be generated “out of nothing™;
the only place where such elements become available is in the body of step functions of recursive
definitions. For example, the operator for iteration on notation' takes two step functions
ho, h1 : O—oN—oN. That is to say the body of each step function may contain one constructor
function, for example S, or S;.

As indicated above the type system will in particular ensure that programs do not increase
the size of their input so that iterated recursion does not lead to exponential growth. However,
this means that not all polynomial time computable functions are definable. So, in order to
obtain a type system admitting definitions of all polynomial-time computable functions we will
have to combine the present system with the system in [7] based on predicative recursion. In
Section 4.6 below we speculate on the expressivity of the present system alone (see footnote 2,
p- 12).

A preliminary version of this work has been presented in [6]. Apart from repairing a few minor
shortcomings of [6] the present paper presents the following new aspects:

(1) An operator for duplication of certain data provided it occurs within the guard of a condi-

tional and hence does not contribute to the size (Section 6).

(i1) The definition and justification of a similar system which captures polynomial space. Syn-

tactically, the only difference between the system for polynomial time and the one for polyno-

mial space is that the latter has a typing rule for conditionals which allows variables to be
shared between the guard and the branches whereas in the former case the guard and the
branches must have disjoint sets of free variables.

(iii) The definition and justification of an operator for divide-and-conquer recursion.

!Iteration on notation defines a function f:N — X on integers from a constant g € X and functions
ho, by s N X X — X by f(0) = g, f(2(n+1)) = ho(f(n)),f2n+ 1) = m (£ (n)).

60 M. Hofmann | Information and Computation 183 (2003) 57-85

Note added in proof. In the meantime a syntactic proof of the main result, Corollary 5.5.1, has
been given by Achlig and Schwichtenberg [1]. This proof is simpler than the semantic one given in
this paper; however, it is as yet unclear whether it permits the generalisation to polynomial space
given in Section 7. The study of [1] is warmly recommended to readers of the present paper.

2. Syntax

We use affine linear lambda calculus with products and certain inductive datatypes such as
integers, lists, and trees.
The types are given by the following grammar:

A, B ::= B|4—B|4 ® B|4 x B,

where B ranges over a set of base types which is left indeterminate as yet. For example, we will

introduce a base type N for integers. We will also allow ourselves to extend the above grammar by

new type operators, notably one for lists, which associates to each type 4 a type of lists L(A4).
Terms are given by

e=op(er,...,e)|x|Ax : Ad.elejer|e; ® ey

let e =x®y in exl{er, ex)le.l]e.2.

Here op ranges over a set of operators to be determined later and x ranges over a countable set of
variables.

As usual, terms are understood as equivalence classes modulo renaming of bound variables,
i.e., Ax : A.x and Ay : A.y are considered identical. A context is a partial function from variables to
types. Two contexts 'y, T, are called disjoint if dom(I';) Ndom(I';) = (. In this case we write
I'), I, for the union of I'; and I's. If x ¢ dom(I") and A4 is a type then we write I',x : 4 for the
context I' U {(x,4)}. An arity is an expression of the form (4,,...,4,)4 where n > 0 and 4,,4 are
types. We fix an assignment of arities to operators. An operator of arity () 4 is called a constant
and we write ¢ : 4 to mean that ¢ is a constant of arity () 4.

The typing judgement I' - e : 4, read “e has type A4 in context I',” is defined inductively by the
following rules.

x € dom(I")
x € dom(I') T-V
FEx:T(x)’ v
I'N'x:4+e:B
: T-Arr-I
I'Fix:A.e:A—B (b
I'Fe :4A—B T,Fe: 4
T-Arr-E
I, IhFee :B ’ (Tet)
ke A4 e 4, (T-Tens-1)

Fl,le—e1®e2:A1®A2 ’

M. Hofmann | Information and Computation 183 (2003) 57-85 61

Fll—el ZA1®A2
I'yyx:A4,y:4A2Fey: B

T-Tens-E
. IoF lete,=x@yine :B’ (T-Tens-E)
1—‘}_611/11 rl_ezlAz
T-Prop-1
Fl‘<€1,€2>ZA1 XA2 ’ (ROD)
I'e:4,®4, ie{l,2}
I'tei:A, ' (T-Prop-E)
op has arity(A4y,...,4,)4
ObFe:A4;fori=1...n (T-Or)

I'top(er,...,e,): 4

The rules are set up in such a way that when I' - e : 4 then all the free variables of e are mentioned
in I' and they are used at most once in e. To be used at most once is slightly more generous than to
occur at most once. Namely, by rule T-PrRoD-I, a variable may occur in both components of a
cartesian product (4 x B). For example, we have /x:A4.(x,x):A4—A4 x A4, but not
Jx:Ax®@x:A—A R A. There is a coercion from tensor product (4 ® B) to cartesian product
(A x B) the only namely Az : 4 ® B.lett = x ® y in (x,y), but not vice versa. The only “candidate”
Az A. x B.z.1 ®z.2 is not well typed because rule (TENs-I) requires both components to have
disjoint sets of variables.

Notice that an operator is applicable to closed terms only. This is the reason why it is not
possible to encode operators by constants of functional type.

2.1. Set-theoretic interpretation

We assume for every base type 4 a set [A4]], for example [N] = N, and extend this inductively to
all types by the clauses [4—B] = [4] — [B], [A ® B] =[A] x [B], [4 x B] = [A]] x [B]. An
environment for a context I' is a function 1 mapping each variable x € dom(I") to an element
n(x) € [L(x)].

We also assume an assignment of functions
[op [ela], x - x[d4:] — [4]

for each operator op of arity (4;,...,4,)A.
Relative to such interpretation of operators we can interpret a term I' e : 4 as a function [e]
mapping environments for I" to elements of [A4] in the usual way.

2.2. Size function

We want to assign a partial size function s, : [A] — N to every type 4. To do this we assume
such size function for every basic type, for example sy(x) = |x|, and extend this to all types by the
following inductive definition:

62 M. Hofmann | Information and Computation 183 (2003) 57-85

Sacs((u,v)) = s4(u) + s5(v)
Sax5((u,0)) = max(ss(u), s5(v))
1 5(f) = min{c|¥a € [4] - ss(f(a)) <c + s4(a)}.
In the last clause @ ranges over those elements of [A] for which s,(a) is defined. It is assumed that
in this case sp(f(a)) is also defined; otherwise s, .5(f) will be undefined. It will likewise be un-
defined if no ¢ with the required property exists. This is the primary source for undefinedness of s.
Notice that a function f € [4—oB] has size 0 precisely if it is non-size-increasing, i.e., when
sg(f(a)) <s4(a) for all a € [4] (for which su(a) is defined).
Now denotations of terms are non-size-increasing in the following sense.

Proposition 2.1. Suppose that for each operator op of arity (Ai,...,A,)A and elements v; € [4;]
with s4,(v;) = 0 we have s,([op](vy,...,v,)) = 0. In particular s,([c]]) = 0 for each constant ¢ : A.

If n is an environment for T such that srq)(n(x)) is defined for each x € dom(I") then s,([e]n) is
also defined and moreover

si(felm < D srw ().

xedom(I')

Notice that the premise stipulates in particular that all constants, i.e., operators without ar-
guments, have size zero, so functional constants are required to be non-size-increasing.

We remark that the role of Proposition 2.1 is largely of a motivational nature. It will help us to
understand the precise formulation of the signature we are going to introduce next. The proof that
all first-order functions are polynomial time computable requires a more sophisticated interpre-
tation which we will give in Section 3.

3. Length spaces

In this section we develop a category-theoretic perspective on the above which will not be used
as such, but may be instructive for the reader familiar with categories.

Definition 3.1. The category L of length spaces has as objects pairs X = (|X|,sy) where |X] is a set
and sy : |[X| — N is a partial function. A morphism from X to Y is given by a function
f |X| — |Y| such that whenever sy(x) is defined so is sy(f(x)) and sy(f(x)) <sx(x).

The category L is symmetric monoidal closed with tensor product given by [X ® Y| = |X| x |Y]|
and syoy(x,y) =sx(x) +sy(y). The corresponding linear function spaces are given by
|X—Y| = |X| — |Y| and sy_.y(f) = min{c|Vx € |X|.sy(f(x)) <c+sx(x)} where again it is un-
derstood that definedness of sy(x) implies definedness of sy(f(x)).

It has cartesian products given by |X x Y| = |X| x |Y| and sy.y(x,y) = max(sy(x),sy(y)). It
also has co-products given by |X + Y| = |X| + |Y| and sy y(inl(x)) = sy (x),sx.y(inr(y)) = sy(y). It
has a terminal object 7 which coincides with the tensor unit and is given by |/| = {0} and s;(0) = 0.

The category L is also cartesian-closed; the cartesian function spaces are given by
X = Y| =|X| — |Y| and sy_y(f) = min{c|Vx € |X|.sy(f(x)) < max(c,sx(x))} with the same
proviso on definedness as in the case of X—7Y.

M. Hofmann | Information and Computation 183 (2003) 57-85 63

Accordingly, | forms a model of the type theory BI introduced in [13]; apparently it does not
form an instance of the classes of models considered there.

Proposition 2.1 can be proved by interpreting the syntax in | and using the fact that the for-
getful functor L — Sets sending X to |X]| is structure preserving.

4. Inductive types and iteration

We will now introduce base types and operators (in particular those for recursion). This will
happen in such a way that the premises to Proposition 2.1 are satisfied.

4.1. Integers

We start by introducing a type of integers N with [N] = N, sy(x) = |x|. We further introduce a
constant 0: N with [0] = 0. Clearly, sy(0) = 0.
In order to construct numerals we would like to introduce constants for the binary successor
functions Sp,S; : N—oN with meaning [So](x) =2x and [S;](x) =2x+ 1. However, these
functions increase the size of their argument by one and so we would have sy_.n([So]) = 1 rather
than 0.
In order to fix this problem we introduce a new base type ¢ with interpretation [¢] = {¢} and
size function s,({) = 1. Now we can use the following typing for the successor functions
So : O—oN—oN,
S] : <>—ON—ON

with interpretation
[[50]](07)() = 2.X',
[[S]]]((},X) =2x+1.

Now, indeed, s([So]) = s([S:]) = 0 as required.

Next, for each type 4 we introduce an operator it of arity

(4, $p—o0Ad—A, H—0A—0A)N—A

for recursion on notation. The semantics of this operator is given by [it"(g, o, /;)] = f where

£(0) = [zl
fQ2x+1)) = [h](0, f(x + 1)),
fQx+1) =[]0, f(x)).

Induction on the size of the argument shows that itﬂ (g, ho, hy) is non-size-increasing if g, ko, b are
so that Proposition 2.1 continues to hold in the presence of itﬂ.

Notice the typing of itﬂ as an operator rather than a higher order constant; hence the fact that
the functions [g], [A], [#1] do not increase the size is crucial here. If &, or 4 increase the size by a
constant (as would be the case if they were allowed to contain variables) then it" (g, &, /) would
multiply the size by that constant, thus violating the intended invariant.

64 M. Hofmann | Information and Computation 183 (2003) 57-85

From it" we can define an operator for primitive recursion: If g : X, g, i1 : {—o(X x N)—oX are
closed terms as indicated then we can obtain

recN(g, ho, hy) : N—oX
with semantics [recN(g, ho, hi)] = f where

£(0) = [g]
S(2x) = [h](0)(f(x),x) when x>0
S(2x+1) = [m](0)(f(x),x)

by invoking it" with result type 4 = X x N and parameters constructed from g, %, 4; in the obvious
way. This gives a function N—X x N from which we obtain the desired function by projection.
Notice that due to the cartesian product x as opposed to ® in a primitive recursion using recV
we can access either the recursion variable or make a recursive function call but are not allowed to
do both. It is not possible to define recN with ® instead of x.
From rec" we can in turn define a constant for case distinction:

case : (X x ($—oN—oX) x ($—oN—0X))—oN—oX
with semantics

[CaseNﬂ(g7 hOvhl)(O) =8,
[case™ (g, o, 1) (2(x + 1)) = ho(x + 1),
[caseM](g, ko, 1) (2x + 1) = Ay (x),

where this time the arguments g, A, #; may contain parameters. To do this, we invoke recN with
the higher order result type

(X x (O—oN—X) x (O—oN—0X))—X

and the obvious arguments.

The cartesian product (as opposed to ®) in the type of caseM is a “feature”; it means that a
variable can be used in each branch and still count as linear. Notice that we only need to introduce
it} as syntactic primitive; rec and case are then definable using just affine linear lambda calculus.

Example. Using these building blocks it is easy to define an addition function
add : N—oN—oN—N

such that [add](x,y,¢) =x+y+ (c¢(mod 2)). All we need to do is to translate the obvious re-
cursive equations into a formal definition involving rec" and caseV.

The obvious definition of multiplication in terms of addition is not possible since it is nonlinear;
nevertheless multiplication is definable by the expressivity result in Section 4.6.

However, it is easy to define the function pad(x,y) = x[y] + y.

Notice that we cannot define the function f : N — N from the Introduction given by

M. Hofmann | Information and Computation 183 (2003) 57-85 65

since it exhibits quadratic growth. Defining it by diagonalising pad violates linearity. The obvious
formalisation of the recursive definition would use itL}' with result type 4 = N and arguments

g=0,
ho = hy = Ac : Az N.Sp(c)(So(c)(2)).
However, the last definition is not type correct because the variable ¢ : > is used twice.

This illustrates the restricting effect of the {-resource. We can only apply as many constructor
symbols (Sy,S;) as we have variables of type <) in our local context.

4.2. Lists

Similarly, we can introduce a type of lists L(4) for each type 4 (formally by extending the
grammar for the types with the clause... [L(4)|). The set-theoretic semantics of the new type
former is given by [L(4)] = [4]" and the size function is

sty (ar, .. an)) =n+ ZH:SA(a,-).

The usual constructor functions for lists give rise to constants
nilA : L(A)
consy : $O—oA—ol(4)—oL(4).

Taking the length of a list to be merely the sum of the sizes of its entries would be unreasonable as

the entries might all have zero size; e.g., we could have 4 = N—N and a; = Ax : N.x.
For each type X we introduce an operator it/L,(A) of arity

(X, 0—oAd—oX—oX)L(4)—X
with semantics [it"“! (g, #)] = f whenever

S =gl
fla:: 1) =[r](0)(@)(f (1))
As in the case of integers we can define an operator rect“® which from g:X and
h: {y—oAd—o(X x L(4))—oX constructs rect™ (g, h) : L(4)—X with the obvious semantics and also
a case construct.

The existence of the iterator for lists has a category-theoretic interpretation: for length space 4
let L(4) be the length space with |L(4)| = |4|" and s\ (4(a;...a,) =n+ Y ;s4(a;). Let { be the
length space || = {¢} and ss(¢) = 1.

Now L(A4) is the initial algebra for the functor 7: L — L given by T(X) =1+ O @ 4 @ X.

4.3. Trees

Likewise we can define binary labelled trees T(A4) with constructors

leaf : 4—T(4),
node : $—od—oT(A4)—T(4)—T(A4).

66 M. Hofmann | Information and Computation 183 (2003) 57-85

The set [T(4)] then consists of binary trees with both leaves and nodes labelled with elements of
[4]. The size of such a tree is given by the number of its nodes plus the sizes (w.r.t. s,) of all its

labels.
We can then justify an iteration construct it;(/’) of arity

(A—oX, $—o0A—oX—X—oX)T(4)—X

with semantics given by f = [it}"](g, 4)iff

f(leaf(a)) = g(a),
f(node(c,a,l,r)) =h(c,a,f(1),f(r)).

By following this pattern other inductively defined datatypes can be introduced as well.

We remark that in the definition of f(node(c,a, /,r)) two recursive calls to f* are made which
indicates that it is not easily possible to encode trees in terms of natural numbers or lists. We also
remark that the type of entries in a tree type need not be basic; it can be functional, a list type, or a
tree type itself. The same goes for the type of entries in a list.

4.4. Booleans

We also introduce a base type of Boolean values B with [B] = {tt,ff} and size function
sg(x) = 0. We can justify constants tt : B, ff : B and a construct for case distinction
if : B—o(4 x 4)—A.

The cartesian product as opposed to a tensor product signifies that a variable may occur in both
branches of a case distinction without violating linearity.

We may use the more suggestive notation if e; then e, else e; for if (e, ey, e3) and we have the
following derived typing rule for this construct:

Fl—zelzB A"EEZZA A|_2632A
I'Als if e; then ey elsee;: A4

(Ir)

It asserts that a free variable may be shared among the branches of a case distinction, but not
among the branches and the guard. We will study more relaxed versions of this rule later.

4.5. Examples
Concatenation of lists @ : L(A4)—oL(A4)—oL(A4) is definable as
L4
Q@ =g ItLEA;wL(A)(
Al L(4).1,
ic:$da Adp i L(A)—L(A4).Al' : L(A).
cons(c, a,p(1)))

This readily allows us to produce the list of leaf labellings of a tree (disregarding the labels in
the nodes) as a function leaves: T(4)—o{—oL(4) by

M. Hofmann | Information and Computation 183 (2003) 57-85 67

leaves =gcr it]jﬁ(2

Ja: A.Jc : {.cons(c, a,nil),
Aey 2 Qa A O—oL(A4).
ey 2§ (ley)Q(rey))

The extra {-argument is needed because there is always one more leaf than there are nodes.
Similarly, we can define a function node T(4)—L(4) giving the list of node labellings. If we want
to get the list of all labels we need another tree type in which leaves also require a {>-argument.
For our trees this function increases the size and hence cannot be representable.

For a more ambitious example we will now turn to the insertion sort algorithm mentioned in
the introduction. We assume a closed comparison function leq : (4 ® 4)—B ® 4 ® A which be-
sides comparing two elements also gives them back for further processing. Below in Section 6 we
discuss a general method for obtaining such a comparison function from an ordinarily typed one.
Now, we use rec™ with result type X = {—od—oL(4). We define g : X by

g=/Ax:{da s A.consy(x, a,nily)
and & : $—oAd—o(X x L(4)))—X by
h=/Ix:{0a:Ap: X x L(A4).Ay : O.Ab : A.
let leqa®b) =t®@a®b in if ¢

cons,(x,a, p.1(y, b))
cons(x, b, consy(v,a,p.2)))

We put insert, =g recy (g, h). If 1 : L(4) is sorted in the increasing order w.r.t. leq then so is
insert,(x, a, /) and its elements agree with those of a :: I. Notice here how the use of a functional
result type X in the definition of insert, allows us to subsume its definition under the rect™
construct. Now we obtain insertion sort as sort = it"“(nil,, insert,).

Similarly, the usual functional implementations of heap sort (involving a binary tree as an
intermediate data structure), breadth-first traversal, or the function of type L(T(4))—L(T(4))
describing one step in Huffman’s algorithm are directly representable in the system. In order to
represent divide-and-conquer algorithms such as quicksort one needs another recursion pattern
which we discuss below in Section 8.

4.6. Expressivity

At present’ we are not in a position to characterise the functions definable in affine linear
lambda calculus with the above iteration principles. The best we can offer is that all functions
computable in polynomial time and simultaneously in linear space are representable.

2 Note added in proof: meanwhile it could be shown that all non-size-increasing polynomial time computable
functions, thus in particular all characteristic functions of problems in P, can be defined in the system. See [10] for
details.

68 M. Hofmann | Information and Computation 183 (2003) 57-85

Proposition 4.1. Let f : L(4)—oL(4) be a closed term. We can define a closed term f# : L(4)—oL(A4)
such that

[f#](l) :flength(l)(l).
Proof. Define g : L(4)—L(4)—L(4) by

g D) =17,
gla::)(I') = f(g(D)(I'ala)),

where /@Q/" denotes the concatenation of / and /" and length(!) is the number of entries of /.

It is clear that this can be translated into a legal definition of g using |t)) Induction
readily shows that [g](Z,) = [/]""*"" (ra).

Hence, we can put f#()y=g(l) (nil). O

Iterating the #-operation and composition allows us to iterate f any polynomial (in /ength([))
many times provided f does not shorten its argument, i.e., provided length(f(l)) = length(l).

Therefore, we can represent linear space, polynomial time computable functions in the fol-
lowing sense:

Theorem 4.1. Let f : N — N be computable in polynomial time and linear space such that moreover
|f (x)| < |x|. Then fis the denotation of a closed term of type N—oN.

Proof. We may assume that f is computed by a polynomially time-bounded Turing machine M
having one I/O tape and k& worktapes, which is initialised by writing the input on the I/O tape and
on all the worktapes and which never writes beyond the space occupied by this initialisation. The
one step function of this machine can be represented as a closed term of type W—W where
W=L(B®---®B) with k + 1 factors corresponding to the & + 1 tapes. Iterating this function the
required (polynomial) number of times and composing with initialisation and output extracting
functions gives the result. [

5. Polynomial-time

Our aim is now to prove that whenever e : N—N is a closed term then [e] will be polynomial
time computable. It seems that in general linear space does not suffice to compute [e]; however,
this is the case for the first-order tail recursive fragment used in the proof of Theorem 4.6. See [9]
for some more detail.

Our strategy is to assign certain resource-bounded algorithms to terms in such a way that
realisers for first-order terms are PTIME algorithms for their set-theoretic denotations. It sim-
plifies the presentation if we first define this realisation abstractly for an arbitrary partial BCK-
algebra (the affine-linear analogue of partial combinatory algebra) and then show how the
required resource-bounded algorithms can be organised into such an algebra and how the iter-
ation constructs can be interpreted.

M. Hofmann | Information and Computation 183 (2003) 57-85 69

Definition 5.1. A partial BCK-algebra (BCK-algebra for short) is given by a set H and a partial
function app: H x H — H, written as juxtaposition associating to the left, and constants
B,C.K e H

such that

B1 Bx,Bxy, Cx, Cxy, Kx, Kxy are always defined.

B2 Bxyz =x(yz),

B3 Cxyz = xzy,

B4 Kxy=nx.

Here = denotes “Kleene equality”; i.e., the left-hand side is defined iff die right-hand side is and
both are equal.
An identity combinator / with Ix = x can be defined as 7 = CKK.

Lemma 5.1. Let H be a BCK-algebra and t be a term in the language of BCK-algebras and con-
taining constants from H. If the free variable x appears at most once in t then we can find a term Ax.t
not containing x such that for each s € H the equation (/x.t)s = t[s/x| is valid in H in the following
sense: if a closed substitution instance of either side is defined, so is the other and they are equal.

Proof. By induction on the structure of z. If # does not contain x then we put Ax.t = Kt. If t = x
then Ax.t = 1. If t = {jt, and x does not appear in ¢, then Ax.t = Bt;(A.x.t;). Notice that this is
defined by B1. If t = #;#, and x does not appear in #, then ix.t = Ct,(/x.t;)t,. Again, notice that
definedness follows from Bl. [

For example, if x, y are variables then Af.fxy = C(ClIx)y. Further abstraction yields the pairing
combinator

T = Ix.Ay.Af fxy.
It has the property that Tuv is always defined and Tuvf = fuv.
In fact, we can equivalently take 7 = BC(CI). Another important combinator is O = CK sat-
isfying Ouv = v.
We will subsequently use untyped affine linear lambda terms to denote elements of particular
BCK-algebras. The following is handy in calculations:

Lemma 5.2. Let t be a term containing variable x at most once and s € H and y # x. We have
(Ax.t)[s/y] = Ax.t[s/y)].

Proof. Induction on the definition of Ax.z. [J
This means that a f-rule is sound for reasoning with meta-notations involving Ax.
5.1. Realisation of affine linear lambda calculus

Fix a BCK-algebra H and an assignment of a relation I, C H x [4] for every basic type A.
Such relation can then be extended to all types by the following assignments:

70 M. Hofmann | Information and Computation 183 (2003) 57-85

elby 3 f < VaVt.tl- a = etlrp f(a)
elbyep (a,b) <= Ju.Tv.e = Tuv Nulb4a Avlkgh
elbyup(a,b) < eKlFy4a N eOlkgb.

Whenever we write here or in the remainder of the paper etlk5 ... then this means in particular
that the application et is defined.

If n is an environment for context I" and ¢ € H then we write ¢lFry to mean that
t=Tt(Tt(T ... (Tt,K) ...) where xy,...,x, is an enumeration of dom(I') and #/Fr,) n(x;).

Definition 5.2. Let H be a BCK-algebra. A subalgebra of H is given by a set Hy C H which
contains B,C,K and is closed under application.

Definition 5.3. Let Ay be a subalgebra of some BCK-algebra H.

An operator op of arity (4i,...,A4,)A admits a realisation in H, if there exists a function
top : H} — H, such that vl x; for i = 1...n implies t,p(v1, ..., v,)IF4[op](x1, ..., x,).

Note that we do not require the function ¢,, to be “tracked” by an element of H. Induction on
typing derivations now yields the following soundness result.

Theorem 5.1. Let H be a BCK-algebra with subalgebra Hy. If every operator admits a realisation in
Hy then for each term I' e : A there exists an element t, € Hy such that whenever t \Fr n then

t.t -4 [e]n.

Example. We can take H = N,ex =e+x,B=C =K =0,H, = {0} and realise basic types B by
e lFp b iff s(b) < e where sp is some size function. It then turns out that e |-, a iff s,(a) <e for
arbitrary type A and Proposition 2.1 becomes a corollary of Theorem 5.1.

5.2. Category-theoretic viewpoint

Again, we can view the assignment of realisers to terms as an interpretation in an appropriate
category.

Definition 5.4. Let H be a BCK-algebra and Hy C H a subalgebra. The category H of H-sets has
as objects pairs X = (] X[, IFx) where |X| is a set and IFy C H X |X| is a relation. A morphism from
X to Y is a function f : |X| — |Y| such that there exists e € Hy with tlFyx = etlFy f(x) for all
xe|X|andr € H.

The category H is a symmetric monoidal closed category with respect to the tensor product
given by [X ® Y| = |X| x |Y| and IFyey = {(Tuv, (x,y)) | ulFxx Avlkyy}.

The corresponding linear function space is given by |[X—Y|=|X|—|Y| and
elby oy f < VxVttlbya = etlty f(a).

The category H also has cartesian products given by [X xY|=|X|x|Y| and
elbyxy(x,y) <= eKlbxx A eOlty y.

M. Hofmann | Information and Computation 183 (2003) 57-85 71

The terminal object coincides with the unit for the tensor product and is given by
[7I] = {0},KIF;0.

The category H also has co-products whose definition is left to the reader as an easy exercise.

Unlike L the category H is not in general cartesian-closed, at least not if PSPACE # PTIME. See
Section 7 below.

5.3. Pairing function and length

Usually, complexity of number-theoretic functions is measured in terms of the binary length
| —|. This length measure has the disadvantage that there does not exist an injective function
(— =) : N x N — N such that |(x,y)| = [x| 4+ [y| + O(1) (Thanks to John Longley for a short
proof of this fact.) The best we can achieve is a logarithmic overhead:

Lemma 5.3. There exist injections num : N — N, (— —) : N x N — N with disjoint images such
that num(x), (x,y) as well as their inverses are computable in linear time and such that moreover we
have

e = Bl + Wl 4+ 2flyl +3
[num(x)| = |x| + 1.

Recall that ||x|| = |a| when a = |x]|.

Proof. Let F(x) be the function which writes out the binary representation of x using 00 for 0 and
01 for I; i.e., formally, F(x) = >} ;4c; when x = >/ 2'c;.

We now define (x,y) as x " 1"17F(|y|)"0 where ~ is juxtaposition of bit sequences; i.e.,
Xy =x-2" 4y We define num(x) as x 1 = 2x + 1.

In order to decode z = (x, y) we strip off the least significant bit (which indicates that we have a
pair) and then continue reading the binary representation until we encounter the first two con-
secutive ones (1s). What we have read so far is interpreted as the length of y. Reading this far
further ahead gives us the value of y. The remaining bits correspond to x. [

Now we define a length measure in such a way that the above pairing function produces
constant overhead:
Definition 5.5. The length function ¢(x) is defined recursively by
L(num(x)) = |x| + 1
£((x,) = €x) +L(y) +3

l(x) = |x|, otherwise.

Lemma 5.4. For every x € N:

e = £0x) = [x]/(1 + lx]])-

Proof. By course-of-values induction on x. If x is not of the form (u, v) then the result is direct. So
assume the latter and that the inequalities have been established for u and v.

72 M. Hofmann | Information and Computation 183 (2003) 57-85

IH
Now, [(u,v)| = |u| + |v| + 3 = €(u) + ¢(v) + 3 = £({u,v)) so the first inequality holds. For the
second one we calculate as follows.

(1, 0)] = [u] + [o] + 2o + 3
< 0)(1+ [lul)) + €)1+ o] +2]o] + 3

< (€(u) + L) (1 + [[Cu, 0)[1) + 2[[{u, v)[| 43
< (lu) +£(0) +3) (1 + [[(w, o)) O (TH)
Proposition 5.1. For each ¢ > 0 there is a constant ¢ such that the function o(x) = cx'* satisfies
Pl x<y= p(x)<p(y) (monotonicity)
P2 ap(x) + bp(y) < p(ax + by) (sublinearity)
P3 x| < p(/(x))
for x,y € N.
Proof. P1 is obvious. For P2 we first show x'** + y'*¢ < (x + »)'** when x,y = 0. For x =0 or
y = 0 we have equality. For x,y > 0 the derivative of the difference (w.r.t. x) is positive, so we are
done. Now P2 follows since obviously ap(x) < p(ax). P3 clearly holds for |x| = 0. If |x| > 0 we let
d=c¢/(1+¢), hence 1 +¢&=1/(1—0), and choose d such that 1+ |x||<d|x|’. Notice that
x| = O(log(|x|)). This gives d|x|/(1+|x]|) = |x|'™* and hence d'*(|x|/(1 + |x]|))""* = |x|. The
claim now follows from P1 and Lemma 5.4 with ¢ = d'**. [

We will henceforth assume that a function g with properties P1, P2, P3 has been fixed (not
necessarily but most conveniently of the form cx!*€).
We remark that P2, P3 imply

a1|xl| + -+ an|xn| < @(alg(xl) + -+ ang(xn))'

5.4. The BCK-algebra

The idea is that an element of the algebra to be constructed is an algorithm or a piece of data
together with a polynomial and a size value which together will determine the (maximum)
runtime of applications involving it. Unfortunately, using arbitrary length measures rather than
¢ or | — | is delicate as administrative intermediate computations are linear in | — |, but may be
exponential or worse in some arbitrarily assigned size measure. So the runtime bounds will
depend both on the pair (size value, polynomial) and on the actual length #(x). Algorithms will
be encoded as natural numbers using Godelisation of some universal machine model, e.g.,
Turing machines or LISP expressions. If ¢ is such an algorithm then by {e}(x) we denote the
computation of e on input x and also the result of this computation if it terminates. By
Time({e}(x)), resp. Space({e}(x)) we denote the runtime, resp. space consumption, of this
computation.

By polynomial we will henceforth understand a unary polynomial with nonnegative integer
coefficients. If p, ¢ are polynomials and m € N we write p <, ¢ to mean that (¢ — p)(x) is positive
and monotone for all x > m. For example, we have 10x < jox°.

M. Hofmann | Information and Computation 183 (2003) 57-85 73

Definition 5.6. The set C comprises the natural numbers of the form x = (p,, (num(/,), a,)) where
p. 1s (an encoding of) a polynomial, /, is a natural number thought of as abstract size, and a, is a
natural number encoding the data or the algorithm embodied in x.

A partial application function on Cis defined as follows: given e, x € C then ex equals the result
y of the computation {a,}(x) provided that

Cl yecC

C2 I, <l + 1,

C3 p, <ig1,Pe + Dx

C4 L(y)<m+Lle)+ U(x)

C5 Time ({ac}(x)) < p(d(m + £(e) + £(x))),
where © = (p, + p. — p,)(l. + [;) (notice that 7 > 0) and d = n + £(e) + £(x) — ().

Otherwise, ex is undefined. This includes the case where {a, }(x) itself is undefined. We call x the
polynomial allowance of the application ex and d its defect.

Ideally, we would like to allow merely time 7 for application but as said above we also have to
allow time for administrative computations like accessing components of tuples which are linear
in |e| + |x| and hence linear in p(¢(e) + ¢(x)).

By padding the /-length we can always blow up the defect so as to account for an arbitrary
linear factor; see Lemma 5.5 below.

The reason for the use of subtraction in the definition of polynomial allowance and defect has
to do with the definability of composition and is explained in more detail in [7]. The verification of
composition in the proof of Theorem 5.2 below makes essential use of this.

The preliminary version of this paper [6] had a simpler condition C3, namely p, < p, + p, co-
efficientwise. Unfortunately, this condition is not satisfied for the polynomials constructed in the
realisation of tree iteration (Theorem 5.3 below). Another difference between the present ap-
proach and the one in Theorem 5.3 is that runtime and size bounds were actively monitored
during the computation of ex which could therefore be assumed total by cutting off in case of time
or size overflow.

Lemma 5.5. Suppose that cand is an algorithm and D is a subset of C such that whenever x € D then
{cand}(x) terminates with a result y € C and, moreover, there exists a polynomial p and integer
constants 1, ¢ such that
I, <I+ 1
Dy S 14, P T+ Dx
ly)<m+4(x)+c
Time({cand}(x)) < p((d + ¢)(n + £(x) + ¢)),

where m = (p+p. —p,)(I + 1) and d = n+ £(x) — £(y). Then we can find e € C with p, = p and
I, =1 such that ex = {cand}(x) for all x € D.

Proof. We may assume without loss of generality that ¢(cand) >c¢. We can then put
e = (p,(num(l),cand)). O

Definition 5.7. The operation ® : C x C — C is defined by

74 M. Hofmann | Information and Computation 183 (2003) 57-85

Prxoy = DPx +py
Ligy = L+ 1,
Uy = <axa <ay’ <pdiff7 num(ldiff)>>>>

where /4 is such that /, and /, can be computed from /4y and /, + /, in linear time and moreover
UL+ 1) + (1lag) = £(1,) + £(1,) + ©(1). The same should hold for “/” replaced with “p”.

To achieve the required properties on /4 We can for example put

o [20 if 1,<1,
W24+ 1, if L <

and apply this procedure coefficientwise to the polynomials.
This guarantees that /(x ® y) = £(x) + £(y) + ©(1); i.e., the difference of both sides is bounded
by a constant.

Proposition 5.2. (Parametrisation). For every e € C there exists ¢ € C with /, = [, p» = p. such
that ¢'x is always defined and e(x ® y) = €’xy in the Kleene sense.

Proof. We define p, = p, and [, = I, as required. We define z = a. in such a way that

Pz} (x) = Pe + P«
Iy = le + I
{ag0}0) = e(x@y).
If this is done reasonably then the time needed to compute {z}(x) is linear in |x| and the time needed
to compute {a.} (v }(v) equals the time needed to compute e(x ® y) from e, x, y plus O(|x| + |y|).
Moreover, we have £({z}(x)) </(e) + ¢(x) + O(1). Here we use the property of the ¢-length to

allow pairing with constant overhead.
Thus, by choosing /(z) sufficiently large we can achieve that

ex = {z}(x)(= {as }(x))
and also
{2}y ={apun0)(=e(x®y));

i.e., in both cases no cut-off due to time or size overflow takes place.
This shows that ¢’ has the required property. [

If we would drop the size requirement on pg;r, lgir then we would need to require
Ue(x @) < (Pe + Px + Py — Pexan)) (le + L + 1) + £(e) + £(x) + £(y)

as an extra premise to Proposition 5.2. Notice mat this requirement is automatically satisfied with
our definition of x ® y.

Theorem 5.2. There exist constants B,C,K € C such that the above application function defines a
BCK-algebra structure in such a way that lz = Ic = Ix = 0 and pg = pc = px = 0.

M. Hofmann | Information and Computation 183 (2003) 57-85 75

Proof. Let comp be the obvious algorithm which computes e(fx) from (e ® f) ® x. Notice that
e, f,x can be recovered from (e ® f) ® x by virtue of the /4y, pair components.
Assume that e(fx) and hence fx are defined. We introduce the following abbreviations:

y=/x,
z =ey,
m = (pr +p—p) (s + 1),
M = (pe +py —p:)(le + 1),
n = (pe+pr +p—p)(le + 1+ 1),
di = m +L(f) + Lx) — £(y),
dy =y + {(e) + L(y) — {(2),
d=n+Llle)+Lf)+L(x)—I(z).
Notice that n; + n, <7 and hence d| + d» <d. We now have
Licomp(eafyon) = L < le + 1, <o+ I 4 Iy = Liegy)ax-

Next, from p, <;..,pr+p and p. <, p.+p, it follows that p, <, /1, pr+p. and

Dz S lptlp+1,Pe T Dy and hence p, < lo+1p+1 Pe T Pr + Dx.
Then,

{({comp}((e ® f) @ x)) <+ L(e) + £(y)
<my+m + £e) + £(f) + £(x)
<m+Le) +L(f) + L(x)
—n+l((e® f) ®x).
The runtime of {comp}((e ® f) ® x) is tiox = | + t, + 1, Where
t < p(di(m +£(f) + £(x)))
t < p(da(my + £(e) + £(»)))
to = O(le + /1 + Ix[+ [y + |2]).-
Sublinearity and arithmetic gives us
f+ 6 < p(di(m + £(f) + £(x)) + (da 4 7) (2 + £(e) + £(y)))
S p(di(m +£(f) +0(x)) + (d2 +) (m2 + €(e) + m + £(f) + £(x)))
<pld(m+Le) + L(f) + (x))).
Furthermore, sublinearity allows us to find a constant ¢ such that
ta <p(c(m + Le) + £(f) + £(x)))
so that, finally,
tiot < p((d + ¢)(m + L(e) + £(f) + £(x)))-

Hence, Lemma 54 with D={(e®f)®x|e(fx) defined} then gives us By € C with
By((e ® f) ® x) = e(fx). The desired combinator B is then obtained by parametrisation. The other
combinators are similar. [J

76 M. Hofmann | Information and Computation 183 (2003) 57-85

It follows immediately that Cy := {x € C | [, = 0} forms a subalgebra of C.
We will now describe a realisation of the base types and operators of our linear lambda calculus
enabling us to prove the main result.
Booleans are realised by K and O, respectively. The sole element ¢ of <> is realised by the el-
ement ¢ defined by
l<>=1/\p<>:0/\a<>:0.
The relation Iy is defined inductively by
TKKIFN0
fbnx + 1 = TO(TK (T4 1)) IFn2(x + 1)
fibyx = TO(TO(TG t))IFn2x + 1.
The relation IF (4 1s defined inductively by
TKKIF ()]
alk d Nkl = TO(TO(Tal))l a1
The relation IFr(4) is defined inductively by
al-4d" = TKalk1yleaf(a’),
al-qa’ AN librl A Pk = TO(T (Ta(Tlr)))lFrynode(d’, I', 7).

Theorem 5.3. All the operators described in Section 2 and summarised in Fig. 1 admit a realisation in
Co.

Proof. The realisation of the constants is direct; for example cons, : $—o4—olL(4)—L(4) may be
realised by

Je.2a.21.TO(Te(Tal)).

Next, we consider the operator it'™, the other ones being similar.

Suppose we are given u € Cy and v € Cy such that ulk, .yg and vy 4 ox oxoxh for appro-
priately typed set-theoretic functions g, 4. Our task is to exhibit w € C, such that ¢l ¢ implies
wilkx f(¢) where f : [T(4)] — [X] is the function defined recursively by

tt,ff : B

if : BoA x A—A

0:N

Sn, Sl : O—oN—N

ithh : (4, O—0A—o0A, O—0A—0A)N—0A
nils : L(A)

consy : O—0A—olL(A)—L(A)

ith x 1 (X, 0—A—X—X)L(A)—X
leaf4 : A—T(A)

nodey : O—oA—T(A)—T(A)—T(A)
ith x 1 (A—X,0—o0A—oX—-oX—X)T(A)—X

Fig. 1. Signature of operators.

M. Hofmann | Information and Computation 183 (2003) 57-85 77

[(leaf(a)) = g(a)
f(node(a, 1,r)) = h(<,a, f (1), f(r)).

If p is a polynomial and » € N we write n - p for the polynomial p + - -- + p with n» summands.
Let a realiser for a tree ¢ be given. We construct from ¢ an element B’ € C with the following
properties:

— ikt = tBlFxf (1)
- lB/ - 0
—ppr <o(li+1)-p.+1-p
— 0B <ce((l,+1) - 4(u)+ 1, - £(v)) for some constant c.
If fl-r(4)leaf(a’) for some @’ € [4] then B = Ax./a.ua (recall that in this case t = TKa, so indeed
tB" = ualrxf(')). Also Iz = 0 since u € Cy and pg < op, since pg = pc = px = 0.

If Ar(4ynode(d’, I', '), hence ¢ = TO(T(Ta(Tlr))) and B', B" have already been defined, then we
would like to have

tB' = voa(IB")(rB").
We therefore put

B = Jx)my.my(Acimy.my(Aa@ims.msy(ALAF - vea(IB') (7B)))).

In evaluating ¢B' the variables x, ¢, a, [, 7 will be “bound” to O, ¢, a, ,r and the claim B/l f (¢)

follows inductively. To verify the other claims we observe that B’ is of the form

Buuu---upvv---v

—_—— —
I+1 I

with B’ a pure affine lambda term, i.e., definable from B,C,K alone with /p = pp =0 and
(B = O(4(1)).

Finally, we observe that no actual computation takes place in the definition of B’. It merely
consists of arranging an appropriate number of copies of # and v in a pattern prescribed by the
structure of 7. Therefore, the term B’ is computable in time O(|¢).

Now notice that

(Zl+ 1) 'pu+lt‘pv gl, (X+ l)pu + xpy.

This suggests p(x) =c- (x+ 1) - (pu(x) + €(u)) + x - (p,(x) + £(v)) should be defined as the re-
source polynomial for the realiser of f. We have

pe S ,P
and moreover
pe (1) +€(B") <p(1)).
This shows that the algorithm cand defined by
{cand}(t) = 1B’

provides a realiser e for f via Lemma 5.5. [

78 M. Hofmann | Information and Computation 183 (2003) 57-85
Corollary 5.5.1. If e : N—N is a closed term. Then [e] € PTIME.
Proof. Immediate using the fact that if dl-yx then p;, =0. O
6. Restricted duplication
This section explores various relaxations of the linear typing discipline.

Definition 6.1. An element e € C with p, = 0 is called a data element. A datatype is a type D such
that whenever elFpd for some d € D then D is a data element.

The types B, {, N are datatypes; if Dy, D, are datatypes so are L(D,), T(Dy),D; ® D,. In other
words, all types not containing the function space — are datatypes.

Definition 6.2. A type P is passive if there exists a constant C such that whenever e I-» p then
[,=0and ¢(e) <C.

For each datatype D and passive type P we introduce a constant
dupp p : (D—oP)—oD—o(P ® D)
with semantics

[dupp p](/)(d) = (f(d),d).

Theorem 6.1. For each datatype D and passive type P there exists an element dup € Cy such that
dup ||‘(D—oP)—oD—o(P®D) [[d u pD,P]] .

Proof. Let ¢ be a bound on the /-length of realisers for P. Define e’ = e if [, =0, ¢(e) <c, and
ef = 0, otherwise. Define e? = e, if p, = 0 and e® = 0, otherwise.
Let cand be the obvious algorithm defined by
{cand}(f @ x) = T(fx")"x".
We have
Lcand)(fox) = I«
Pfcand}(fex) = Pr
(({cand}(f ® x)) <U(T) + ¢ + £(x) note that pr = 0.
Time({cand}(f ® x)) < p(d(ps(I;) + c + 2{(x))).

where d = p(I) +20(x) + O(1) — £(x) = ps(L) + £(x) + O(1).
The claim now follows from Lemma 5.5. O

We can use this result to construct a comparison function as required in the definition of in-
sertion sort in Section 4.5. Namely, if we have defined leq : (4 ® 4)—B where 4 is a datatype then
dup,e, p(leq) has the required functionality.

M. Hofmann | Information and Computation 183 (2003) 57-85 79

Using dupp, p we can justify the following more relaxed typing rule for conditionals:
F,Al_zell B A,@"ZeziA A,@"Zegiz‘l
I',A,® b5 if e then e, else e3 : 4
with the side condition that all the types mentioned in the shared context A are datatypes. This
might be a more convenient way to present the functionality of restricted duplication to the user.
Let us now study the necessity of the restrictions imposed on duplication as provided by dup.

If we would not require that P be passive then we could define a diagonal map 6 : D —- D ® D
with [0](d) = (d,d) for all datatypes D as

dupp p(4x : D.x)

(Ir-Dup)

We have already seen in the Introduction that this leads to exponential growth in the case
D = L(N) or merely D = .

If we relax the restriction that D in dupp p be a datatype it is still the case that all definable functions
are non-size-increasing. However, we can evaluate linear boolean-valued functions more than once
allowing us to encode PSPACE complete algorithms. Namely, we would then be able to define a map

51 (X—oB)—o(X —oX —oB)

which applies a given predicate to two elements and returns the conjunction of the results. Indeed,
for arbitrary type X let D be (X—B) ® X. Then applying dup, g to the evaluation map D—oB gives
an element of D—B ® D from which we obtain the desired map ¢ by currying and projection:

o(f) = 2x; : X Axp : X.
letdupp p(Af : X—B®@X.lett = f @x in fX)(f ®x1) =b® f ®@x3 in

if b then fx, else ff
Now consider the following pseudocode (taken from [12]) for a function
eval : Formulas —B

which evaluates a quantified boolean formula (encoded, e.g., as an appropriately labelled binary
tree).

eval(p =) = if eval(¢p) then in eval(y)else tt
eval(Vx.p) = o(4v : B.eval(¢p[v/x]))(tt, ff)

Here ¢[v/x] denotes substitution of a variable by a boolean constant, an operation readily de-
finable by tree recursion.

Another possible relaxation would consist of allowing duplication of elements of a datatype
whenever this does not lead to a size increase in the result. For example, we could be tempted to
provide a constant

diagp p : (D—oD—oP)—o(D—oP)

with semantics

[diagp,»[(f)(d) = f(d)(d).

80 M. Hofmann | Information and Computation 183 (2003) 57-85
This would allow us to apply a predicate to an exponentially large argument. More concretely, let
f : L(B)—X—B be a (closed) function with X arbitrary. The following pseudocode:
F([]x) = 2 : L(B).f(1,%)

F(COHS((}, b, Z]),X) =l L(B)F(ll,x)(lg@lz)
could then be translated into a legal definition and, as is readily seen, we have

F(hx)(h) = (57 x),
where /" denotes [@Q- - - @/ with n factors.

7. Polynomial space

By changing “time” into “‘space” in the definition of C, i.e., replacing C5 by
Space({a.}(x)) < p(d(n + £(e) + £(x))), (CSspace)

we obtain another BCK-algebra Cjp,.c Which obviously satisfies the same closure properties as C;
i.e., it allows for a realisation of our linear lambda calculus including operators associated to lists
and trees. Also Lemma 5.5 holds with ““time” replaced by “‘space.”

Theorem 7.1. There exists e € Cypace Such that
e IFgxx)—(Bay) 1d.
Proof. For x € Cypee let xB be x, if x € {K,0} and 0 otherwise; i.e., if xlFgx’ then x® =x and

I = ps = 0,4(xB) < C for C =max({(K),£(0)).
Let cand be the algorithm defined by

cand(r) = T(tK)®(10).
We have
Lcandy(n) < 1
Pleand}() < 1, D1
(({cand} (1)) = p.(1;) + £(2) + O(1)
Space({cand}(¢)) = max(Space(tK), Space(t0O)) + O(]¢|).

Hence, the space version of Lemma 5.5 provides e € Cyp,ce such that ez = {cand}(¢) and it is clear
from the definition of cand that this has the required property. O

It now follows that we can realise a conditional
if : (B XX xX)—oX

instead of the usual

if: B® (X x X)—oX.

M. Hofmann | Information and Computation 183 (2003) 57-85 81
Using this, we can justify with Cyy,ee the typing rule IF with the side condition on A removed.
le.,

Fl—zelzB r|_2€21A Fl—ge3:A
I'ks if e; then e, else e3 : 4 '

(Ir-PspAck)

This rule allows us to define dup, 5 for arbitrary D and hence to define truth of quantified boolean
formulas as described above so that we obtain a characterisation of polynomial space.

In Section 5.2 we raised the question as to whether the category H of realisability sets is
cartesian closed. We can now show that unless PTIME = PSPACE this is not the case when H
is C, i.e., the BCK-algebra for polynomial time. Suppose the contrary. In any cartesian-closed
category the functor—xX preserves co-products. Since B~/7+/ we would have
BxX~X+X, but X +.X is isomorphic to B® X as is readily seen using the ordinary con-
ditional. This means that if H is cartesian closed then truth of quantified boolean formulas can
be defined.

We do not know whether the category of Cqpace-sets is cartesian closed. However, it is easy to see
that it has function spaces of the form X = D when D has the property that ¢(x) < C(/, + 1) for all
realisers of D and a fixed constant C. Examples of such objects D are the interpretations of the
datatypes as defined above in Section 6.

8. Divide-and-conquer

As already mentioned in Section 5.2 we can justify co-product types. These allow us to for-
mulate an operator for ‘““‘divide-and-conquer” with the following arity and semantics:

dacyyy : (X—o(Y+ (X M ®X)),Y @M Q@ Y—Y, M—o)X—Y
[dacy y s]|(s, 7, w)(x) = f(x) where ,
v if 5(x) = inl(y)
1o ={° RO
JUF(D),m, f(r)), if s(x)=inr(l,m,r).
Notice that the third argument w: M—o<> ensures in view of Proposition 2.1 that sy (m) > 0
whenever it is defined. This guarantees termination of f(x) after at most sy(x) unfoldings. Let us
now show that, moreover, dac admits a realisation in C.
We assume the following realisation of co-product types: TKelly,yinl(x) when elkFyx and
TOelFx . yinr(y) if elFy y.

Suppose s, j,w € C, are realisers for the three arguments to dacy y . Towards a realisation of,
dacy.ym(s,j,w) we let cand be the algorithm recursively defined as follows:

if se = TKy,
{cand}(e) = {;(T{cand}(l)(Tm({cand}(r)))) if 50— TO(TI (T

Notice if el-yx for some x then in the second case we have [, + [, </, because wmlF, ¢; hence
I, = 1. This shows that in this case {cand}(e) terminates after /, unfoldings. We do not care about
the (possibly undefined) result in case e is not a realiser.

Let us introduce the following abbreviations:

82 M. Hofmann | Information and Computation 183 (2003) 57-85

L(e) = lcand}e)
P(e) = pieand)(e)
L(e) = ({Cand}(),
Time(e) = Time({cand}(e)),

p(x) = (2x + D (ps(x) + €(s)) +x(p; (x) + £()))-

The following estimates can be established by course-of-values induction on /,.
Lie)<e
Ple) <, (21, +)pg+lg-p,-+p@

(e) <
Lle)<m+ L) +
(e) <

Time(e) < p(d(m + £(e))) +c(lef + 1),

where

n = (p+p.—P(e))(l),
d=mn+{l(e)—{(e).
and c is some constant. Lemma 5 then furnishes the desired realiser.

Another way to obtain the first three inequalities consists of noticing that whenever elky x then
there is a term B¢ built up from B, C,K alone; hence /3 = pge = 0 such that

{cand}(e) = Besss...sjjj...J
2+l .

Namely, B¢ lays out the computation tree associated with e. Unfortunately, unlike in the case of
tree iteration this term B¢ is not computable from e in linear time as its form depends on the
outcome of calls to s. However, one can intuitively argue that B¢ can be computed “on the fly”
according to the outcomes of the calls to s which are made anyway. We do not see a way for
making this argument fully precise so that if in doubt the reader must rely on the watertight but
lengthy proof by course-of-values induction.

9. Borrowing does not work

One might be tempted to allow for temporary borrowing of the {-resource, for instance in the
form of a constant

borrowy : ($—o(d ® X))—X
with semantics

[borrowy [|(f) =x, when [f](¢) =

In fact under the reading of < as a certain amount of memory space proposed in [9] such
borrowing would correspond to the region-based memory management introduced in [14].

We will show that at least in the presence of restricted duplication (Section 6) such a borrowing
functional leads outside the realm of polynomial space. First, we observe that with restricted
duplication and borrowing we can for each datatype D define a functional

M. Hofmann | Information and Computation 183 (2003) 57-85 83

A4 : ($ ® D—B)—o(D—B)
with semantics
[A](F)(d) = £ (6 d).
Namely, we put
A(f) = Jx : D.borrowg(4d : $.let dupg,pp(f)(d ®x) =b®d @xind @b).
Using 4 we can define a functional
B : N—(N—B)—B
with semantics

[BIG)(f) = f(RT");

namely,

B(0) = Af : N—oB.£(0),
B(So(d, n)) = B(S,(d,n)) = Af : N—oB.B(n)(Jni' : AQd' @ n" : £.(So(d', So(d,n"))))(n)).

One further iteration gives us a functional
C : N—oN—o(N—B)—B

with semantics

[Cﬂ(xvyaf) = f(z[X]y)
whose presence leads beyond the realm of polynomial space.
We do not know whether this also happens in the absence of restricted duplication. There is,
however, no evident way to evaluate programs involving “borrowing” in polynomial space let
alone time.

10. Conclusion and further work

We have shown that the functions definable in affine linear lambda calculus with a certain
iteration principle for inductive datatypes are polynomial time computable. Apart from linearity
and the counting of constructor symbols using the <> base type the type system makes no further
restrictions and in particular offers full-blown recursion principles for inductive datatypes with
arbitrary even higher-order result type.

We have also shown that by slightly relaxing the typing rule for conditionals we obtain a
characterisation of polynomial space.

Of course, rather than introducing < as a type one could introduce a more complex syntax with
a family of judgements I' -, e : 4 and function spaces A—o,B which would provide access to n
constructor symbols. Even better would be some kind of type inference system which would start
from an ordinary functional program and try to annotate it with <{)-resources so that it would
become typable in the present system. That, however, falls beyond the scope of this paper.’

? Note added in proof: In the meantime this has been carried out [15].

84 M. Hofmann | Information and Computation 183 (2003) 57-85

The semantic framework used in the proof is certainly not limited to natural numbers, lists, and
trees with the indicated operators. New datatypes and operations can be introduced as long as
they admit a realisation in C,. A nontrivial example is a datatype of trees T'(4) with alternative
access which would be given by

leaf : A—T'(4)

node : $—od @ (T'(A4) x T'(4))—T(A4)

ith @ : (40X, G—od—o(X x X)—oX)T'(4)—oX

TKa by 4 leaf(d') <= al-,d

TO(Taf) kv yynode(d’, I, r) <= alb d' A fKlpy) LA fOlFi 7.

Notice that if elt (4 ¢ then [, is an upper bound on the depth of ¢ rather than on its number of
nodes.

Accordingly, it is possible to define a function f : N—T'(N) which gives the full binary tree of
depth |n|:

f(0) = leaf(0)
f(So(d,n)) = f(Si(d,n)) = node(0, {f(n), f(n))),i.e.,
f =it} (1eaf(0), 4d : &t : T'(N).node(d, (1,1)),. ..).

Recall that according to T-ProD-I the function Ad : .4 : T'(N).node(d, (¢, 1)), is linear although ¢
appears twice in its body. Of course, it is not possible to compute, e.g., the list of leaf labellings of
an element of T'(4) The constructors and the iteration operator admit a realisation in C; the proof
of this is, however, rather involved and will be deferred to future work.

We have also experimented with a linear version of Kleene’s ordinal notation and preliminary
evidence suggests that the highest definable ordinal would be w?. We leave a detailed investigation
of this and related issues as an interesting and exciting topic for future research.

References

[1] K. Aehlig, H. Schwichtenberg, A syntactical analysis of non-size-increasing polynomial time computation, in:
Proceedings of die Fifteenth IEEE Symposium on Logic in Computer Science (LICS ’00), Santa Barbara, 2000.

[2] S. Bellantoni, K.-H. Niggl, H. Schwichtenberg, Ramification, modality, and linearity in higher type recursion, Ann.
Pure Appl. Logic, check.

[3] S. Bellantoni, S. Cook, New recursion-theoretic characterization of the polytime functions, Comput. Complexity 2
(1992) 97-110.

[4] V.-H. Caseiro, Equations for defining poly-time functions, Ph.D. Thesis, University of Oslo, available by ftp from
<ftp.ifi.uio.no/pub/vuokko/Oadm.ps>, 1997.

[5] J.-Y. Girard, Light linear logic, Inform. Comput. (1998) 143.

[6] M. Hofmann, Linear types and non size-increasing polynomial time computation, in: Logic in Computer Science
(LICS), IEEE, Computer Society Press, Los Alamitos, CA, 1999, pp. 464-476.

[7] M. Hofmann, Typed lambda calculi for polynomial-time computation, Habilitation Thesis, TU Darmstadt,
Germany. Edinburgh University LFCS Technical Report, ECS-LFCS-99-406, 1999.

[8] M. Hofmann, Safe recursion with higher types and BCK-algebra, Ann. Pure Appl. Logic, check.

[9] M. Hofmann, A type system for bounded space and functional in-place update, in: G. Smolka (Ed.), Programming
Languages and Systems, Lecture Notes in Computer Science, Springer, Berlin, 2000, pp. 165-179.

ftp://ftp.ifi.uio.no/pub/vuokko/0adm.ps

M. Hofmann | Information and Computation 183 (2003) 57-85 85

[10] M. Hofmann, The strength of non size-increasing computation, Proc. ACM Symp. on Principles of Programming
Language (POPL), Portland, Oregon, 2002.

[11] D. Leivant, Stratified functional programs and computational complexity, in: Proc. 20th IEEE Symp. on Principles
of Programming Languages, 1993.

[12] D. Leivant, J.-Y. Marion, Ramified recurrence and computational complexity II: substitution and poly-space, in: J.
Tiuryn, L. Pacholski (Eds.), Proc. CSL ‘94, Kazimierz, Poland, Lecture Notes in Computer Science, vol. 933,
Springer, Berlin, 1995, pp. 4486-4500.

[13] P. O’Hearn, Doubly closed categories, resource interpretations, and the a/-calculus, in: Typed Lambda Calculi and
Applications (TCLA ’99), Lecture Notes in Computer Science, Springer, Berlin.

[14] M. Tofte, J.-P. Talpin, Region-based memory management, Inform. Comput. 132 (1999) 109-176.

[15] M. Hofmann, S. Jost, Static prediction of heap space usage for first-order functional programs, Proc. 30th ACM
Symp. on Principles of Programming Languages, New Orleans, 2003.

	Linear types and non-size-increasing polynomial time computation
	Introduction
	Syntax
	Set-theoretic interpretation
	Size function

	Length spaces
	Inductive types and iteration
	Integers
	Lists
	Trees
	Booleans
	Examples
	Expressivity

	Polynomial-time
	Realisation of affine linear lambda calculus
	Category-theoretic viewpoint
	Pairing function and length
	The BCK-algebra

	Restricted duplication
	Polynomial space
	Divide-and-conquer
	Borrowing does not work
	Conclusion and further work
	References

