
6.5. A CONTINUATION MACHINE 185

6.5 A Continuation Machine

The natural semantics for Mini-ML presented in Chapter 2 is called a big-step
semantics, since its only judgment relates an expression to its final value—a “big
step”. There are a variety of properties of a programming language which are
difficult or impossible to express as properties of a big-step semantics. One of the
central ones is that “well-typed programs do not go wrong”. Type preservation,
as proved in Section 2.6, does not capture this property, since it presumes that we
are already given a complete evaluation of an expression e to a final value v and
then relates the types of e and v. This means that despite the type preservation
theorem, it is possible that an attempt to find a value of an expression e leads to an
intermediate expression such as fst z which is ill-typed and to which no evaluation
rule applies. Furthermore, a big-step semantics does not easily permit an analysis
of non-terminating computations.

An alternative style of language description is a small-step semantics. The main
judgment in a small-step operational semantics relates the state of an abstract
machine (which includes the expression to be evaluated) to an immediate successor
state. These small steps are chained together until a value is reached. This level of
description is usually more complicated than a natural semantics, since the current
state must embody enough information to determine the next and all remaining
computation steps up to the final answer. It is also committed to the order in
which subexpressions are evaluated and thus somewhat less abstract than a natural,
big-step semantics.

In this section we construct a machine directly from the original natural seman-
tics of Mini-ML in Section 2.3 (and not from the environment-based semantics in
Section 6.1). This illustrates the general technique of continuations to sequential-
ize computations. Another application of the technique at the level of expressions
(rather than computations) is given in Section ??.

In order to describe the continuation machine as simply as possible, we move to
a presentation of the language in which expressions and values are explicitly sepa-
rated. An analogous separation formed the basis for environment-based evaluation
on de Bruijn expression in Section 6.2. We now also explicitly distinguish variables
x ranging over values and variables u ranging over expressions. This makes it im-
mediately apparent, for example, that the language has a call-by-value semantics
for functions; a call-by-name version for functions would be written as lam u. e.

186

Expressions e ::= z | s e | (case e1 of z⇒ e2 | s x⇒ e3) Natural numbers
| 〈e1, e2〉 | fst e | snd e Pairs
| lam x. e | e1 e2 Functions
| let val x = e1 in e2 Definitions
| let name u = e1 in e2

| fix u. e Recursion
| u Variables
| v Values

Values v ::= z∗ | s∗ v Natural numbers
| 〈v1, v2〉∗ Pairs
| lam∗ x. e Functions
| x Variables

Note that expressions and values are mutually recursive syntactic categories,
but that an arbitrary value can occur as an expression. The implementation in Elf
is completely straightforward, keeping in mind that we have to provide an explicit
coercion vl from values to expressions.

exp : type. %name exp E

val : type. %name val V

z : exp.

s : exp -> exp.

case : exp -> exp -> (val -> exp) -> exp.

pair : exp -> exp -> exp.

fst : exp -> exp.

snd : exp -> exp.

lam : (val -> exp) -> exp.

app : exp -> exp -> exp.

letv : exp -> (val -> exp) -> exp.

letn : exp -> (exp -> exp) -> exp.

fix : (exp -> exp) -> exp.

vl : val -> exp.

z* : val.

s* : val -> val.

pair* : val -> val -> val.

lam* : (val -> exp) -> val.

The standard operational semantics for this representation of expressions and

6.5. A CONTINUATION MACHINE 187

values is straightforward and can be found in the code supplementing these notes.
The equivalence proof is left to Exercise 6.17.

Our goal now is define a small-step semantics. For this, we isolate an expression
e to be evaluated, and a continuation K which contains enough information to carry
out the rest of the evaluation necessary to compute the overall value. For example,
to evaluate a pair 〈e1, e2〉 we first compute the value of e1, remembering that the
next task will be the evaluation of e2, after which the two values have to be paired.
This also shows the need for intermediate instructions, such as “evaluate the second
element of a pair” or “combine two values into a pair”. One particular kind of
instruction, written simply as e, triggers the first step in the computation based on
the structure of e.

Because we always fully evaluate one expression before moving on to the next,
the continuation has the form of a stack. Because the result of evaluating the current
expression must be communicated to the continuation, each item on the stack is a
function from values to instructions. Finally, when we have computed a value, we
return it by applying the first item on the continuation stack. Thus the following
structure emerges, to be supplement by further auxiliary instructions as necessary.

Instructions i ::= e | return v
Continuations K ::= init | K; λx. i

Machine States S ::= K � I | answer v

Here, init is the initial continuation, indicating that nothing further remains to
be done. The machine state answer v represents the final value of a computation
sequence. Based on the general consideration, we have the following transitions of
the abstract machine.

S =⇒ S′ S goes to S′ in one computation step

st init
init � return v =⇒ answer v

st return
K; λx. i � return v =⇒ K �[v/x]i

st vl
K � v =⇒ K � return v

Further rules arise from considering each expression constructor in turn, possibly
adding new special-purpose intermediate instructions. We will write the rules in the
form label :: S =⇒ S′ as a more concise alternative to the format used above. The
meaning, however, remains the same: each rules is an axiom defining the transition
judgment.

188

st z :: K � z =⇒ K � return z∗

st s :: K � s e
=⇒ K; λx. return (s∗ x) � e

st case :: K � case e1 of z⇒ e2 | s x⇒ e3

=⇒ K; λx1. case1 x1 of z⇒ e2 | s x⇒ e3 � e1

st case1 z :: K � case1 z∗ of z⇒ e2 | s x⇒ e3 =⇒ K � e2

st case1 s :: K � case1 s∗ v1 of z⇒ e2 | s x⇒ e3 =⇒ K � [v′1/x]e3

We can see that the case construct requires a new instruction of the form
case1 v1 of z⇒ e2 | s x⇒ e3. This is distinct from case e1 of z⇒ e2 | s x⇒ e3

in that the case subject is known to be a value. Without an explicit new construct,
computation could get into an infinite loop since every value is also an expression
which evaluates to itself. It should now be clear how pairs and projections are
computed; the new instructions are 〈v1, e2〉1, fst1, and snd1.

st pair :: K � 〈e1, e2〉 =⇒ K; λx1. 〈x1, e2〉1 � e1

st pair1 :: K � 〈v1, e2〉1 =⇒ K; λx1. return 〈v1, x2〉∗ � e2

st fst :: K � fst e =⇒ K; λx. fst1 x � e
st fst1 :: K � fst 〈v1, v2〉∗ =⇒ K � return v1

st snd :: K � snd e =⇒ K; λx. snd1 x � e
st snd1 :: K � snd 〈v1, v2〉∗ =⇒ K � return v2

Neither functions, nor definitions or recursion introduce any essentially new
ideas. We add two new forms of instructions, app1 and app2, for the intermediate
forms while evaluating applications.

st lam :: K � lam x. e =⇒ K � return lam∗x. e
st app :: K � e1 e2 =⇒ K; λx1. app1 x1 e2 � e1

st app1 :: K � app1 v1 e2 =⇒ K; λx2. app1 v1 x2 � e2

st app2 :: K � app2 (lam x. e′1) v2 =⇒ K � [v2/x]e
′
1

st letv :: K � let val x = e1 in e2 =⇒ K; λx1. [x1/x]e2 � e1

st letn :: K � let name u = e1 in e2 =⇒ K � [e1/x]e2

st fix :: K � fix u. e =⇒ K � [fix u. e/u]e

The complete set of instructions as extracted from the transitions above:

Instructions i ::= e | return v
| case1 v1 of z⇒ e2 | s x⇒ e3 Natural numbers
| 〈v1, e2〉1 | fst1 v | snd1 v Pairs
| app1 v1 e2 | app2 v1 v2 Functions

The implementation of instructions, continuations, and machine states in Elf uses
infix operations to make continuations and states more readable.

6.5. A CONTINUATION MACHINE 189

% Machine Instructions

inst : type. %name inst I

ev : exp -> inst.

return : val -> inst.

case1 : val -> exp -> (val -> exp) -> inst.

pair1 : val -> exp -> inst.

fst1 : val -> inst.

snd1 : val -> inst.

app1 : val -> exp -> inst.

app2 : val -> val -> inst.

% Continuations

cont : type. %name cont K

init : cont.

; : cont -> (val -> inst) -> cont.

%infix left 8 ;

% Continuation Machine States

state : type. %name state S

: cont -> inst -> state.

answer : val -> state.

%infix none 7 #

The following declarations constitute a direct translation of the transition rules
above.

=> : state -> state -> type. %name => St

%infix none 6 =>

% Natural Numbers

st_z : K # (ev z) => K # (return z*).

st_s : K # (ev (s E)) => (K ; [x:val] return (s* x)) # (ev E).

st_case : K # (ev (case E1 E2 E3)) => (K ; [x1:val] case1 x1 E2 E3) # (ev E1).

st_case1_z : K # (case1 (z*) E2 E3) => K # (ev E2).

st_case1_s : K # (case1 (s* V1’) E2 E3) => K # (ev (E3 V1’)).

% Pairs

st_pair : K # (ev (pair E1 E2)) => (K ; [x1:val] pair1 x1 E2) # (ev E1).

st_pair1 : K # (pair1 V1 E2) => (K ; [x2:val] return (pair* V1 x2)) # (ev E2).

190

st_fst : K # (ev (fst E)) => (K ; [x:val] fst1 x) # (ev E).

st_fst1 : K # (fst1 (pair* V1 V2)) => K # (return V1).

st_snd : K # (ev (snd E)) => (K ; [x:val] snd1 x) # (ev E).

st_snd1 : K # (snd1 (pair* V1 V2)) => K # (return V2).

% Functions

st_lam : K # (ev (lam E)) => K # (return (lam* E)).

st_app : K # (ev (app E1 E2)) => (K ; [x1:val] app1 x1 E2) # (ev E1).

st_app1 : K # (app1 V1 E2) => (K ; [x2:val] app2 V1 x2) # (ev E2).

st_app2 : K # (app2 (lam* E1’) V2) => K # (ev (E1’ V2)).

% Definitions

st_letv : K # (ev (letv E1 E2)) => (K ; [x1:val] ev (E2 x1)) # (ev E1).

st_letn : K # (ev (letn E1 E2)) => K # (ev (E2 E1)).

% Recursion

st_fix : K # (ev (fix E)) => K # (ev (E (fix E))).

% Values

st_vl : K # (ev (vl V)) => K # (return V).

% Return Instructions

st_return : (K ; C) # (return V) => K # (C V).

st_init : (init) # (return V) => (answer V).

Multi-step computation sequences could be represented as lists of single step
transitions. However, we would like to use dependent types to guarantee that, in
a valid computation sequence, the result state of one transition matches the start
state of the next transition. This is difficult to accomplish using a generic type of
lists; instead we introduce specific instances of this type which are structurally just
like lists, but have strong internal validity conditions.

S
∗

=⇒ S′ S goes to S′ in zero or more steps

e
c
↪→ v e evaluates to v using the continuation machine

stop
S
∗

=⇒ S

S =⇒ S′ S′
∗

=⇒ S′′
step

S
∗

=⇒ S′′

init � e ∗
=⇒ answer v

cev

e
c
↪→ v

We would like the implementation to be operational, that is, queries of the
form ?- ceval peq V. should compute the value V of a given e. This means the

6.5. A CONTINUATION MACHINE 191

S =⇒ S′ should be the first subgoal and hence the second argument of the step
rule. In addition, we employ a visual trick to display computation sequences in a
readable format by representing the step rule as a left associative infix operator.

=>* : state -> state -> type. %name =>* C

%infix none 5 =>*

stop : S =>* S.

<< : S =>* S’’

<- S => S’

<- S’ =>* S’’.

%infix left 5 <<

ceval : exp -> val -> type. %name ceval CE

cev : ceval E V

<- (init) # (ev E) =>* (answer V).

We then get a reasonable display of the sequence of computation steps which
must be read from right to left.

?- C : (init) # (ev (app (lam [x] (vl x)) z)) =>* (answer V).

Solving...

V = z*,

C =

stop << st_init << st_vl << st_app2 << st_return << st_z

<< st_app1 << st_return << st_lam << st_app.

The overall task now is to prove that e ↪→ v if and only if e
c
↪→ v. In one

direction we have to find a translation from tree-structured derivations D :: e ↪→ v
to sequential computations C :: init � e ∗

=⇒ answer v. In the other direction we
have to find a way to chop a sequential computation into pieces which can be
reassembled into a tree-structured derivation.

We start with the easier of the two proofs. We assume that e ↪→ v and try to

show that e
c
↪→ v. This immediately reduces to showing that init � e ∗

=⇒ answer v.
This does not follow directly by induction, since subcomputations will neither start
from the initial computation nor return the final answer. If we generalize the claim
to state that for all continuations K we have that K � e ∗

=⇒ K � return v, then it
follows directly by induction, using some simple lemmas regarding the concatenation
of computation sequences (see Exercise 6.18).

We can avoid explicit concatenation of computation sequences and obtain a more
direct proof (and more efficient program) if we introduce an accumulator argument.

192

This argument contains the remainder of the computation, starting from the state
K � return v. To the front of this given computation we add the computation from
K � e ∗

=⇒ K � return v, passing the resulting computation as the next value of the
accumulator argument. Translating this intuition to a logical statement requires
explicitly universally quantifying over the accumulator argument.

Lemma 6.1 For any closed expression e, value v and derivation D :: e ↪→ v, if
C′ :: K � return v

∗
=⇒ answer w for any K and w, then C :: K � e ∗

=⇒ answer w.

Proof: The proof proceeds by induction on the structure of D. Since the accumu-
lator argument must already hold the remainder of the overall computation upon
appeal to the induction hypothesis, we apply the induction hypothesis on the im-
mediate subderivations of D in right-to-left order.

The proof is implemented by a type family

ccp : eval E V

-> K # (return V) =>* (answer W)

-> K # (ev E) =>* (answer W)

-> type.

Operationally, the first argument is the induction argument, the second argument
the accumlator, and the last the output argument.

We only show a couple of cases in the proof; the others follow in a similar
manner.

Case:

D =
ev lam

lam x. e1 ↪→ lam∗ x. e1

C′ :: K � return lam∗ x. e1
∗

=⇒ answer w Assumption
C :: K � lam x. e1 =⇒ answer w By st lam followed by C′

In this case we have added a step st lam to a computation; in the implemen-
tation, this will be an application of the step rule for the S

∗
=⇒ S′ judgment,

which is written as << in infix notation. Recall that the reversal of the evalu-
ation order means that computations (visually) proceed from right to left.

ccp_lam : ccp (ev_lam) C’ (C’ << st_lam).

Case:

D =

D1

e1 ↪→ lam x. e′1

D2

e2 ↪→ v2

D3

[v2/x]e
′
1 ↪→ v

ev app
e1 e2 ↪→ v

6.5. A CONTINUATION MACHINE 193

C′ :: K � return v
∗

=⇒ answer w Assumption

C3 :: K �[v2/x]e
′
1
∗

=⇒ answer w By ind. hyp. on D3 and C′
C′2 :: K; λx2. app2 (lam∗ x. e′1) x2 � return v2

∗
=⇒ answer w

By st return and st app2 followed by C3
C2 :: K; λx2. app2 (lam∗ x. e′1) x2 � e2

∗
=⇒ answer w

By ind. hyp. on D2 and C′2
C′1 :: K; λx1. app1 x1 e2 � return lam∗ x. e′1

∗
=⇒ answer w

By st return and st app1 followed by C2.
C1 :: K; λx1. app1 x1 e2 � e1

∗
=⇒ answer w By ind. hyp. on D1 and C′1

C :: K � e1 e2
∗

=⇒ answer w By st app followed by C1.

The implementation threads the accumulator argument, adding steps con-
cerned with application as in the proof above.

ccp_app : ccp (ev_app D3 D2 D1) C’ (C1 << st_app)

<- ccp D3 C’ C3

<- ccp D2 (C3 << st_app2 << st_return) C2

<- ccp D1 (C2 << st_app1 << st_return) C1.

2

From this, the completeness of the abstract machine follows directly.

Theorem 6.2 (Completeness of the Continuation Machine) For any closed expres-

sion e and value v, if e ↪→ v then e
c
↪→ v.

Proof: We use Lemma 6.1 with K = init, w = v, and C′ the computation with
st init as the only step, to conclude that there is a computation C :: init � e ∗

=⇒
answer v. Therefore, by rule cev, e

c
↪→ v.

The implementation is straightforward, using ccp, the implementation of the
main lemma above.

ceval_complete : eval E V -> ceval E V -> type.

cevcp : ceval_complete D (cev C)

<- ccp D (stop << st_init) C.

2

Now we turn our attention to the soundness of the continuation machine: when-
ever it produces a value v then the natural semantics can also produce the value v
from the same expression. This is more difficult to prove than completeness. The
reason is that in the completeness proof, every subderivation of D :: e ↪→ v can

194

inductively be translated to a sequence of computation steps, but not every se-
quence of computation steps corresponds to an evaluation. For example, the partial
computation

K � e1 e2
∗

=⇒ K; λx1. app1 x1 e2 � e1

represents only a fragment of an evaluation. In order to translate a computation
sequence we must ensure that it is sufficiently long. A simple way to accomplish this
is to require that the given computation goes all the way to a final answer. Thus, we
have a state K � e at the beginning of a computation sequence C to a final answer
w, there must be some initial segment of C′ which corresponds to an evaluation of e
to a value v, while the remaining computation goes from K � return v to the final
answer w. This can then be proved by induction.

Lemma 6.3 For any continuation K, closed expression e and value w, if C ::
K � e ∗

=⇒ answer w then there is a value v a derivation D :: e ↪→ v, and a
subcomputation C′ of C of the form K � return v

∗
=⇒ answer w.

Proof: By complete induction on the structure of C. Here complete induction, as
opposed to a simple structural induction, means that we can apply the induction
hypothesis to any subderivation of C, not just to the immediate subderivations.
It should be intuitively clear that this is a valid induction principle (see also Sec-
tion 6.4).

In the implementation we have chosen not to represent the evidence for the
assertion that C′ is a subderivation of C. This can be added, either directly to the
implementation or as a higher-level judgment (see Exercise ??). This information
is not required to execute the proof on specific computation sequences, although it
is critical for seeing that it always terminates.

csd : K # (ev E) =>* (answer W)

-> eval E V

-> K # (return V) =>* (answer W)

-> type.

We only show a few typical cases; the others follow similarly.

Case: The first step of C is st lam followed by C1 :: K � return lam∗ x. e
∗

=⇒
answer w.

In this case we let D = ev lam and C′ = C1. The implementation (where step
is written as << in infix notation):

csd_lam : csd (C’ << st_lam) (ev_lam) C’.

Case: The first step of C is st app followed by C1 :: K; λx1. app1 x1 e2 � e1
∗

=⇒
answer w, where e = e1 e2.

6.5. A CONTINUATION MACHINE 195

D1 :: e1 ↪→ v1 for some v1 and

C′1 :: K; λx1. app1 x1 e2 � return v1
∗

=⇒ answer w By ind. hyp. on C1
C′′1 :: K �app1 v1 e2

∗
=⇒ answer w By inversion on C′1

C2 :: K; λx2. app2 v1 x2 � e2
∗

=⇒ answer w By inversion on C′′1
D2 :: e2 ↪→ v2 form some v2 and

C′2 :: K; λx2. app2 v1 x2 � return v2
∗

=⇒ answer w By ind. hyp. on C2
C′′2 :: K �app2 v1 v2

∗
=⇒ answer w By inversion on C′2

v1 = lam x. e′1 and

C3 :: K �[v2/x]e
′
1
∗

=⇒ answer w By inversion on C′′2
D3 :: [v2/x]e

′
1 ↪→ v for some v and

C′ :: K � return v
∗

=⇒ answer w By ind. hyp on C3
D :: e1 e2 ↪→ v By rule ev app from D1, D2, and D3.

The evaluation D and computation sequence C′ now satisfy the requirements
of the lemma. The appeals to the induction hypothesis are all legal, since
C > C1 > C′′1 > C2 > C′2 > C′′2 > C3 > C′, where > is the subcomputation
judgment. Each of the subcomputation judgments in this chain follows either
immediately, or by induction hypothesis.

The implementation:

csd_app : csd (C1 << st_app) (ev_app D3 D2 D1) C’

<- csd C1 D1 (C2 << st_app1 << st_return)

<- csd C2 D2 (C3 << st_app2 << st_return)

<- csd C3 D3 C’.

2

Once again, the main theorem follows directly from the lemma.

Theorem 6.4 (Soundness of the Continuation Machine) For any closed expression

e and value v, if e
c
↪→ v then e ↪→ v.

Proof: By inversion, C :: init � e ∗
=⇒ answer v. By Lemma 6.3 there is a derivation

D :: e ↪→ v′ and C′ :: init � return v′
∗

=⇒ answer v for some v′. By inversion on C′
we see that v = v′ and therefore D satisfies the requirements of the theorem.

ceval_sound : ceval E V -> eval E V -> type.

cevsd : ceval_sound (cev C) D

<- csd C D (stop << st_init).

2

196

6.6 Relating Relations between Derivations

Upon inspection we see that the higher-level judgments implementing our soundness
and completeness proofs are similar. Consider:

csd : K # (ev E) =>* (answer W)

-> eval E V

-> K # (return V) =>* (answer W)

-> type.

ccp : eval E V

-> K # (return V) =>* (answer W)

-> K # (ev E) =>* (answer W)

-> type.

The families csd and ccp relate derivations of exactly the same judgments, the only
difference being their order. But the analogy is even stronger. By inspecting the
(higher-level) rules for application in each of these families,

csd_app : csd (C1 << st_app) (ev_app D3 D2 D1) C’

<- csd C1 D1 (C2 << st_app1 << st_return)

<- csd C2 D2 (C3 << st_app2 << st_return)

<- csd C3 D3 C’.

ccp_app : ccp (ev_app D3 D2 D1) C’ (C1 << st_app)

<- ccp D3 C’ C3

<- ccp D2 (C3 << st_app2 << st_return) C2

<- ccp D1 (C2 << st_app1 << st_return) C1.

we conjecture the the premisses are also identical, varying only in their order. This
turns out to be true. Thus the translations between evaluations and computation
sequences form a bijection: translating in either of the two directions and then back
yields the original derivation.

We find it difficult to make such an argument precise in informal mathematical
language, since we have not reified the translations between evaluation trees and
computation sequences, except in LF. However, this can be done as in Section 3.7
or directly via an ordinary mathematical function. Either of these is tedious and
serves only to transcribe the Elf implementation of the soundness and completeness
proofs into another language, so we will skip this step and simply state the theorem
directly.

Theorem 6.5 Evaluations D :: e ↪→ v and computations CE :: e
c
↪→ v are in

bijective correspondence.

6.7. CONTEXTUAL SEMANTICS 197

Proof: We examine the translations implicit in the constructive proofs of complete-
ness (Lemma 6.1 and Theorem 6.2) and soundness (Lemma 6.3 and Theorem 6.4)
to show that they are inverses of each other. More formally, the argument would
proceed by induction on the definition of the translation in each direction.

The implementation makes this readily apparent. We only show the declaration
of this level 31 type family and the cases for functions.

peq : csd C D C’

-> ccp D C’ C

-> type.

% Functions

peq_lam : peq (csd_lam) (ccp_lam).

peq_app : peq (csd_app SD3 SD2 SD1) (ccp_app CP1 CP2 CP3)

<- peq SD1 CP1

<- peq SD2 CP2

<- peq SD3 CP3.

Note that the judgment peq must be read in both directions in order to obtain the
bijective property. At the top level, the relation directly reduces to the inductively
defined judgment above.

proof_equiv : ceval_sound CE D -> ceval_complete D CE -> type.

pequiv : proof_equiv (cevsd SD) (cevcp CP)

<- peq SD CP.

2

6.7 Contextual Semantics

One might ask if the continuations we have introduced in Section 6.5 are actually
necessary to describe a small-step semantics. That is, can we describe a semantics
where the initial expression e is successively transformed until we arrive at a value
v? The answer is yes, although each small step in this style of semantic description
is complex: First we have to isolate a subexpression r of e to be reduced next,
then we actually perform the reduction from r to r′, and finally we reconstitute an
expression e′ in an occurrence of r has been replaced by r′.

This style of semantic description is called a contextual semantics, since its
central idea is the decomposition of an expression e into an evaluation context C
and a redex r. The evaluation context C contains a hole which, when filled with

1[check terminology]

198

r yields e, and when filled with the reduct r′ yields e′, the next expression in the
computation sequence. By restricting evaluation contexts appropriately we can
guarantee that the semantics remains deterministic.

Unlike the other forms of semantic description we have encountered, the contex-
tual semantics makes the relation between the reduction rules of a λ-calculus (as
we will see in Section 7.4) and the operational semantics of a functional language
explicit. On the other hand, each “small” step in this semantics requires complex
auxiliary operations and it is therefore not as direct as either the natural semantics
or the continuation machine.

We first identify the reductions on the representation of Mini-ML which sepa-
rates values and expressions (see Section 6.5). These reductions are of two kinds:
essential reductions which come directly from an underlying λ-calculus, and aux-
iliary reductions which are used to manage the passage from expression to their
corresponding values. The latter ones are usually omitted in informal presenta-
tions, but we do not have this luxury in Elf due to the absence of any form of
subtyping in LF.

e =⇒ e′ e reduces to e′ in one step

First, the essential reductions. Note that every value is regarded as an expression,
but the corresponding coercion is not shown in the concrete syntax.

red case z :: case z∗ of z⇒ e2 | s x⇒ e3 =⇒ e2

red case s :: case s∗ v′1 of z⇒ e2 | s x⇒ e2 =⇒ [v′1/x]e3

red fst :: fst 〈v1, v2〉∗ =⇒ v1

red snd :: snd 〈v1, v2〉∗ =⇒ v2

red app :: (lam x. e′1) v2 =⇒ [v2/x]e
′
1

red letv :: let val x = v1 in e2 =⇒ [v1/x]e2

red letn :: let name u = e1 in e2 =⇒ [e1/u]e2

red fix :: fix u. e =⇒ [fix u. e/u]e

In addition, we have the following auxiliary reductions.

red z :: z =⇒ z∗

red s :: s v =⇒ s∗ v
red pair :: 〈v1, v2〉 =⇒ 〈v1, v2〉∗
red lam :: lam x. e =⇒ lam∗ x. e

Expressions which are already values cannot be reduced any further. We say that
e is a redex if there is an e′ such that e =⇒ e′.

The implementation of the one-step reduction and redex judgments are straight-
forward.

==> : exp -> exp -> type.

%infix none 8 ==>

6.7. CONTEXTUAL SEMANTICS 199

red_z : z ==> (vl z*).

red_s : s (vl V) ==> vl (s* V).

red_case_z : case (vl z*) E2 E3 ==> E2.

red_case_s : case (vl (s* V1’)) E2 E3 ==> E3 V1’.

red_pair : pair (vl V1) (vl V2) ==> vl (pair* V1 V2).

red_fst : fst (vl (pair* V1 V2)) ==> (vl V1).

red_snd : snd (vl (pair* V2 V2)) ==> (vl V2).

red_lam : lam E ==> vl (lam* E).

red_app : app (vl (lam* E1’)) (vl V2) ==> E1’ V2.

red_letv : letv (vl V1) E2 ==> E2 V1.

red_letn : letn E1 E2 ==> E2 E1.

red_fix : fix E ==> E (fix E).

% no red_vl rule

%%% Redices

redex : exp -> type.

rdx : redex E

<- E ==> E’.

The specification of the reduction judgment already incorporates some of the
basic decision regarding the semantics of the language. For example, we can see
that pairs are eager, since fst e can be reduced only when e is a value (and thus
consists of a pair of values). Similarly, the language is call-by-value (rule red app)
and letname is call-by-name (rule red letn). However, we have not yet specified in
which order subexpressions must be evaluated. This is fixed by specifying precisely
in which context a redex must appear before it can be reduced. In other words,
we have to define evaluation contexts. We write [] for the hole in the evaluation
context, filling the hole in an evaluation context C with an expression r is written
as C[r].

Evaluation Contexts C ::= [] Hole
| s C | case C of z⇒ e2 | s x⇒ e3 Natural numbers
| 〈C, e2〉 | 〈v1, C〉 | fst C | snd C Pairs
| C e2 | v1 C Functions
| let val x = C in e2 Definitions

A hole [] is the only base case in this definition. It is instructive to consider

200

which kinds of occurrences of a hole in a context are ruled out by this definition.
For example, we cannot reduce any redex in the second component of a pair until
the first component has been reduced to a value (clause 〈v1, C〉). Furthermore, we
cannot reduce in a branch of a case expression, in the body of a let val expression,
or anywhere in the scope of a let name or fix construct.

Single step reduction can now be extended to one-step computation.

e =⇒1 e
′ e goes to e′ in one computation step

r =⇒ r′
ostp

C[r] =⇒1 C[r′]

The straightforward implementation requires the check that a function from
expressions to expression is a valid evaluation context from Exercise ??, written
here as evctx.

evctx : (exp -> exp) -> type.

% Exercise...

one_step : exp -> exp -> type.

ostp : one_step (C R) (C R’)

<- evctx C

<- redex R

<- R ==> R’.

An operationally more direct implementation uses a splitting judgment which
relates an expression e to an evaluation context C and a redex r such that e = C[r].
We only show this judgment in its implementation. It illustrates how index functions
can be manipulated in Elf programs. The splitting judgment above uses an auxiliary
judgment which uses an accumulator argument for the evaluation context C which
is computed as we descend into the expression e. This auxiliary judgment relates
C and e (initially: C = [] and e is the given expression) to a C ′ and e′ such that e′

is a redex and C[e] = C ′[e′].

%%% Splitting an Expression

split : (exp -> exp) -> exp -> (exp -> exp) -> exp -> type.

%{ split C E C’ E’

Evaluation context C and expression E are given,

C’ and E’ are constructed.

Invariant: (C E) == (C’ E’)

}%

6.7. CONTEXTUAL SEMANTICS 201

% Redices

sp_redex : split C E C E

<- redex E.

% Natural Numbers

% no sp_z

sp_s : split C (s E1) C’ E’

<- split ([h:exp] C (s h)) E1 C’ E’.

sp_case : split C (case E1 E2 E3) C’ E’

<- split ([h:exp] C (case h E2 E3)) E1 C’ E’.

% Pairs

sp_pair2 : split C (pair (vl V1) E2) C’ E’

<- split ([h:exp] C (pair (vl V1) h)) E2 C’ E’.

sp_pair1 : split C (pair E1 E2) C’ E’

<- split ([h:exp] C (pair h E2)) E1 C’ E’.

sp_fst : split C (fst E) C’ E’

<- split ([h:exp] C (fst h)) E C’ E’.

sp_snd : split C (snd E) C’ E’

<- split ([h:exp] C (snd h)) E C’ E’.

% Functions

% no sp_lam

sp_app2 : split C (app (vl V1) E2) C’ E’

<- split ([h:exp] C (app (vl V1) h)) E2 C’ E’.

sp_app1 : split C (app E1 E2) C’ E’

<- split ([h:exp] C (app h E2)) E1 C’ E’.

% Definitions

sp_letv : split C (letv E1 E2) C’ E’

<- split ([h:exp] C (letv h E2)) E1 C’ E’.

% no sp_letn

% Recursion

% no sp_fix

% Values

% no sp_vl

%%% Top-Level Splitting

202

split_exp : exp -> (exp -> exp) -> exp -> type.

spe : split_exp E C E’

<- split ([h:exp] h) E C E’.

The splitting judgment is then used in the definition of contextual evaluation in
lieu of an explicit check.

one_step : exp -> exp -> type.

ostp : one_step E (C R’)

<- split_exp E C R

<- R ==> R’.

%%% Full Contextual Evaluation

xeval : exp -> val -> type.

xev_vl : xeval (vl V) V.

xev_step : xeval E V

<- one_step E E’

<- xeval E’ V.

Evaluation contexts bear a close resemblance to the continuations in Section 6.5.
In fact, there is a bijective correspondence between evaluation contexts (following
the grammar above) and the kind of continuation which arises from computation
starting with the initial continuation init. We do not investigate this relationship
here.2

6.8 Additional Exercises

Exercise 6.17 Show that the purely expression-based natural semantics of Sec-
tion 2.3 is equivalent to the one based on a separation between expressions and
values in Section 6.5. Implement your proof, including all necessary lemmas, in Elf.

Exercise 6.18 Carry out the alternative proof of completeness of the continuation
machine sketched on page 191. Implement the proof and all necessary lemmas in
Elf.

2[an earlier version of these notes contained a buggy translation here. please search and de-
stroy!]

6.8. ADDITIONAL EXERCISES 203

Exercise 6.19 Do the equivalence proof in Lemma 6.1 and the alternative in Ex-
ercise 6.18 define the same relation between derivations? If so, exhibit the bijection
in the form of a higher-level judgment relating the Elf implementations as in Sec-
tion 6.6. Be careful to write out necessary lemmas regarding concatenation. You
may restrict yourself to functional abstraction, application, and the necessary com-
putation rules.

Exercise 6.20 [an exercise about the mechanical translation from small-
step to big-step semantics]

