

Outline

- Substructuring
- · Progressive Refinement
- Bidirectional Reflectance Distribution Function
- · Combining Radiosity and Ray Tracing

Substructuring

- Radiosity assumed constant across patch
- Impact of number of patches
 - Few: fast, but very inaccurate (blocky)
 - Many: slow $O(n^2)$, but much more accurate
- Substructuring
 - Introduce elements as a substructure for patches
 - Use adaptively where radiosity varies rapidly
 - Distinguish elements and patches to avoid explosion

15-462 Graphics I

Elements vs. Patches

- · Analyse transport from patch onto elements
- · Do not analyze element-to-element detail
- This means
 - Compute form factors from elements to patches
 Do not compute form factors from patches to
 - elements
 - Use weighted patch to parent-of-element
 - Complexity $O(m\cdot n)$ for m elements, n patches

15-462 Graphics I

8

- Typically substructured areas
 - Near lights

04/10/2003

Shadow boundaries

Outline

04/10/2003

04/10/2003

- Substructuring
- · Progressive Refinement
- Bidirectional Reflectance Distribution Function

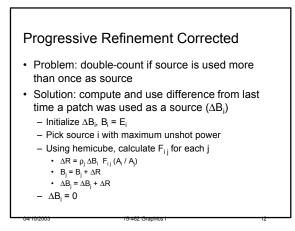
15-462 Graphics

Combining Radiosity and Ray Tracing

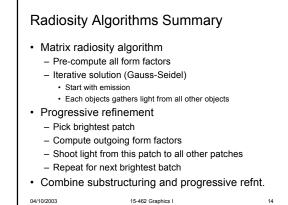
Matrix Radiosity Revisited

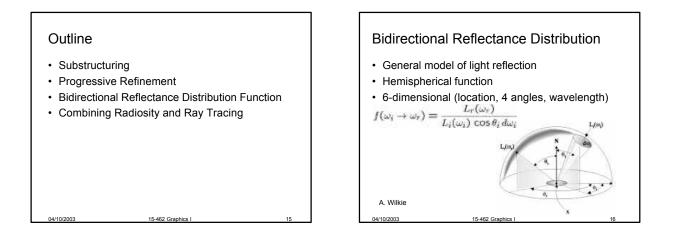
- · Compute all form factors F₁₁
- Make initial approximation to radiosity
 Emitting elements B_i = E_i
 - Other elements $B_i = 0$
- Apply equation to get next approximation
 - $B'_i = E_i + \rho_i \sum_j F_{ij} B_j$
- Iterate with new approximation
- Intuitively

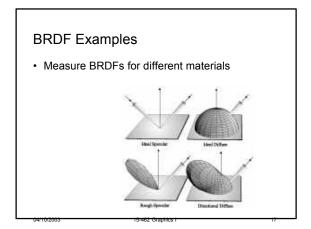
04/10/2003

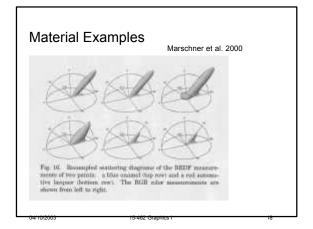

- Gather incoming light for each element i

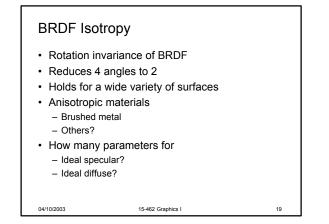
15-462 Graphics

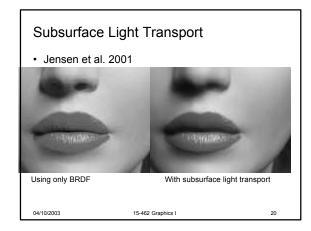

Base new estimate on previous estimate

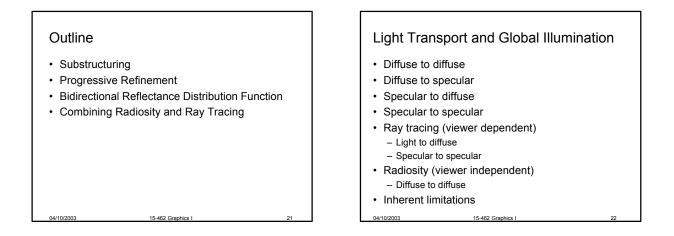

Progressive Refinement

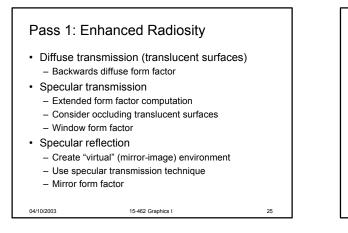

- · Shoot light instead of gathering light
- Basic algorithm
 - Initialize emitting element with $B_i = E_i$
 - Initialize others with with $B_i = 0$
 - Pick source i (start with brightest)
 - Using hemicube around source, calculate F_{ii}
 - For each j \neq i, approximate B'_i = $\rho_i B_i F_{ij} (A_i / A_j)$
 - Pick next source i and iterate until convergence
- Each iteration is O(n)
- · May or may not keep F_{ii} after each iteration



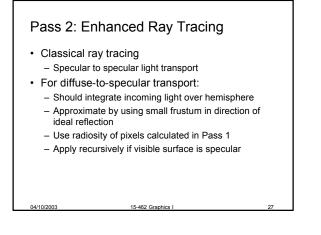

Some Special Cases Radiosity A • Image after we have iterated through all light sources? • Matrix radios • Shadows, but no interreflections • Pre-comput • Can incrementally display image while iterating • Start with e • Add ambient light at each stage for visibility • Progressive • Incremental form factor computation • Progressive • Pick brighte • Compute ou • Shoot light f • Repeat for r • Combine sub • Combine sub

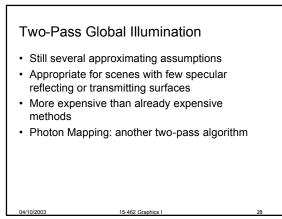


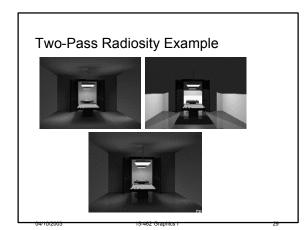


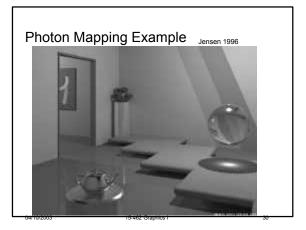


Specular Radiosity


- Diffuse radiosity
 - Light reflected equally in all directions
 - Relationship between patches limited to form factor
- · Specular radiosity
 - Retain viewer independence (unlike ray tracing)
 - Light reflected differently in different directions
 - For each source and each direction, need to calculation interaction
 - Not practical


Two-Pass Approach


- · View-dependent specular is tractable
- · View-independent diffuse is tractable
- · First pass view independent
 - Enhanced radiosity
- Second pass is view dependent
 - Enhanced ray tracing



Pass 1 Result Account only for one specular reflection between surfaces (diffuse-specular-diffuse) Accurate diffuse component Solve enhanced radiosity equation as before Viewer independent solution

Summary

04/10/2003

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function

15-462 Graphics I

31

Combining Radiosity and Ray Tracing

Preview

04/10/2003

• Tuesday: Scientific Visualization

15-462 Graphics I

32