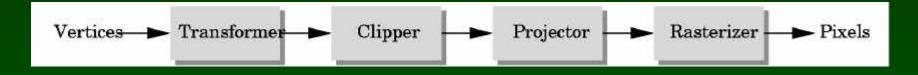
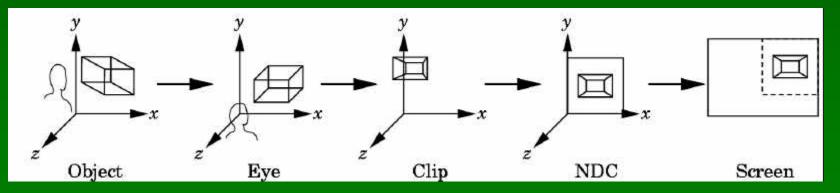
15-462 Computer Graphics I Lecture 13


Clipping

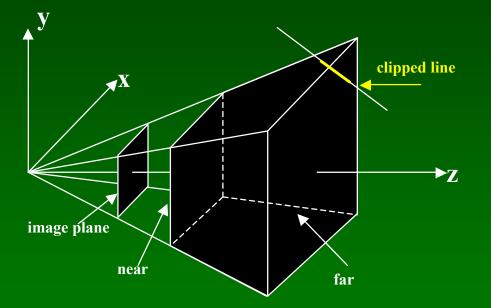
Line Clipping Polygon Clipping Clipping in Three Dimensions [Angel 8.3-8.7]

March 11, 2003 Frank Pfenning Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

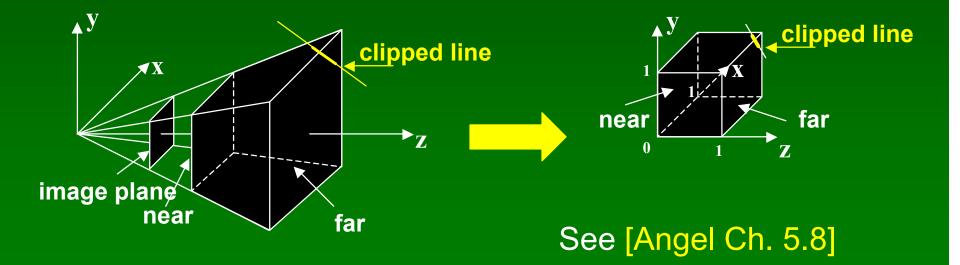

The Graphics Pipeline, Revisited

- Must eliminate objects outside viewing frustum
- Tied in with projections
 - Clipping: object space (eye coordinates)
 - Scissoring: image space (pixels in frame buffer)
- Introduce clipping in stages
 - 2D (for simplicity)
 - 3D (as in OpenGL)
- In a later lecture: scissoring


Transformations and Projections

- Sequence applied in many implementations
 - 1. Object coordinates to
 - 2. Eye coordinates to
 - 3. Clip coordinates to
 - 4. Normalized device coordinates to
 - 5. Screen coordinates

Clipping Against a Frustum


• General case of frustum (truncated pyramid)

Clipping is tricky because of frustum shape

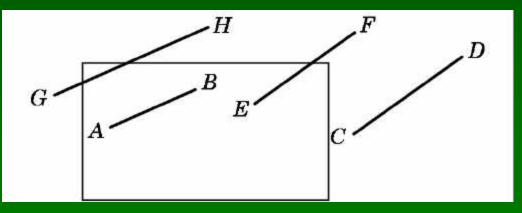
Perspective Normalization

- Solution:
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous tfm.

The Normalized Frustum

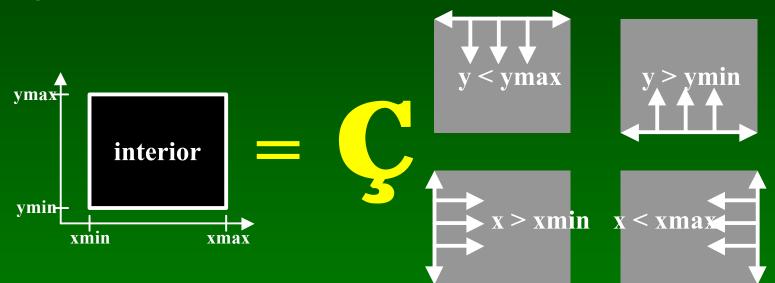
- OpenGL uses $-1 \le x, y, z \le 1$ (others possible)
- Clip against resulting cube
- Clipping against programmer-specified planes is different and more expensive
- Often a useful programming device

The Viewport Transformation


- Transformation sequence again:
 - 1. Camera: From object coordinates to eye coords
 - 2. Perspective normalization: to clip coordinates
 - 3. Clipping
 - 4. Perspective division: to normalized device coords.
 - 5. Orthographic projection (setting $z_p = 0$)
 - 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
- Often in OpenGL: resize callback

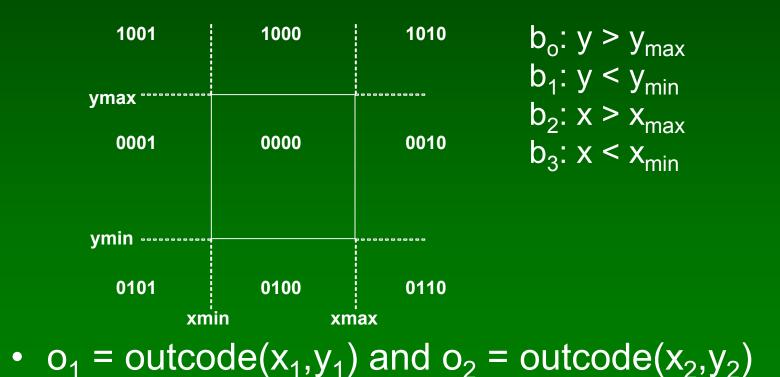
Line-Segment Clipping

- General: 3D object against cube
- Simpler case:
 - In 2D: line against square or rectangle
 - Before scan conversion (rasterization)
 - Later: polygon clipping
- Several practical algorithms
 - Avoid expensive line-rectangle intersections
 - Cohen-Sutherland Clipping
 - Liang-Barsky Clipping
 - Many more [see Foley et al.]


Clipping Against Rectangle

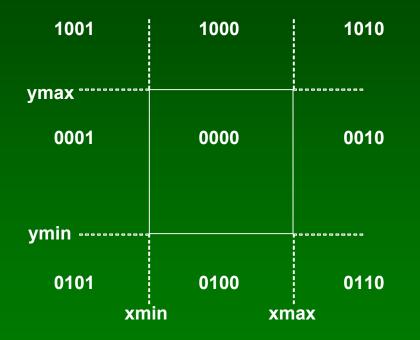
- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)

Cohen-Sutherland Clipping


 Clipping rectangle as intersection of 4 halfplanes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes


- Divide space into 9 regions
- 4-bit outcode determined by comparisons

15-462 Graphics I

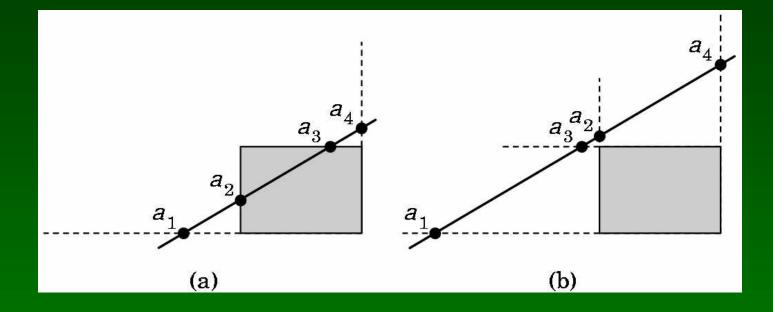
Cases for Outcodes

• Outcomes: accept, reject, subdivide

 $o_1 = o_2 = 0000$: accept $o_1 \& o_2 \neq 0000$: reject $o_1 = 0000, o_2 \neq 0000$: subdiv $o_1 \neq 0000, o_2 = 0000$: subdiv $o_1 \& o_2 = 0000$: subdiv

Cohen-Sutherland Subdivision

- Pick outside endpoint ($o \neq 0000$)
- Pick a crossed edge ($o = b_0 b_1 b_2 b_3$ and $b_k \neq 0$)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- Must converge (roundoff errors?)


Liang-Barsky Clipping

Starting point is parametric form

 $p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \le \alpha \le 1$ $x(\alpha) = (1 - \alpha)x_1 + \alpha x_2$ $y(\alpha) = (1 - \alpha)y_1 + \alpha y_2$

- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided

Ordering of intersection points

- Order the intersection points
- Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$

Liang-Barsky Efficiency Improvements

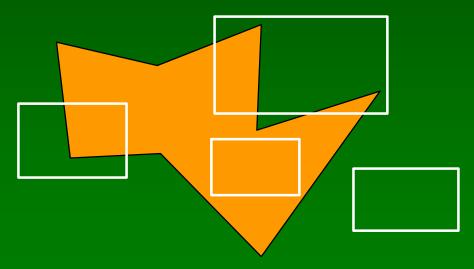
- Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed
- Efficiency improvement 2:
 - Equations for α_3 , α_2

 $y_{max} = (1 - \alpha_3)y_1 + \alpha_3 y_2$ $x_{min} = (1 - \alpha_2)x_1 + \alpha_2 x_2$

$$\alpha_3 = \frac{y_{max} - y_1}{y_2 - y_1} \quad \alpha_2 = \frac{x_{min} - x_1}{x_2 - x_1}$$

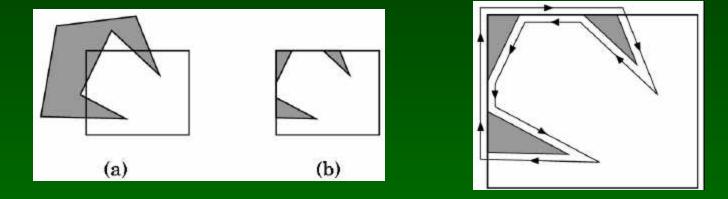
– Compare α_3 , α_2 without floating-point division

Line-Segment Clipping Assessment

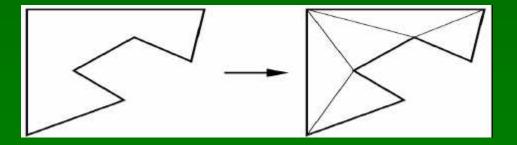

- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdiv) a drawback
- Liang-Barsky
 - Avoids recursive calls (multiple subdiv)
 - Many cases to consider (tedious, but not expensive)
 - Used more often in practice (?)

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions

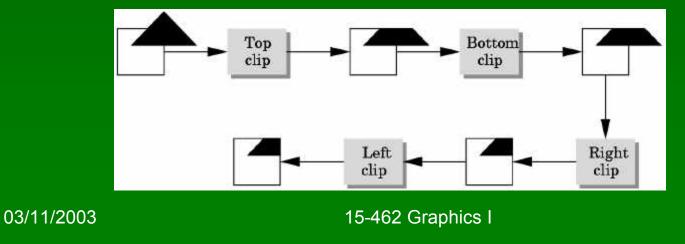

Polygon Clipping

- Convert a polygon into one ore more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)



Concave Polygons

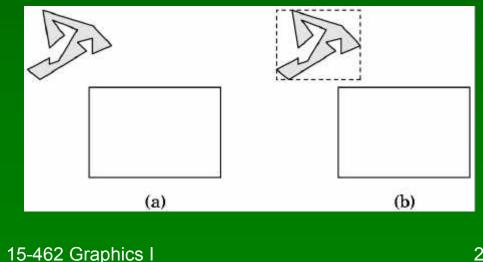
Approach 1: clip and join to a single polygon


Approach 2: tesselate and clip triangles

Sutherland-Hodgeman I

• Subproblem:

- Input: polygon (vertex list) and single clip plane
- Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

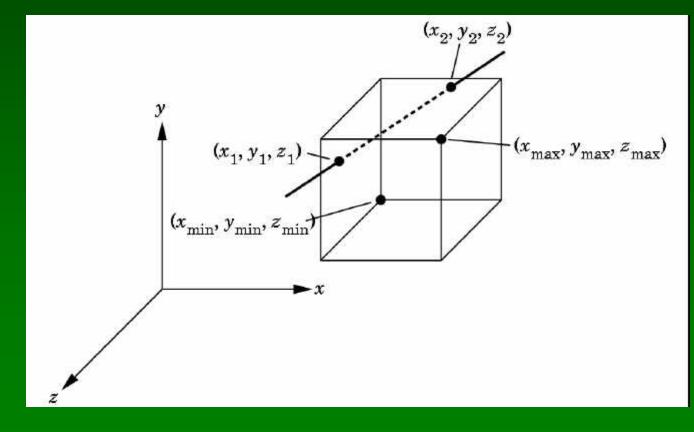


Sutherland-Hodgeman II

- To clip vertex list (polygon) against half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - out-to-in: output intersection and vertex
 - out-to-out: no output
 - Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

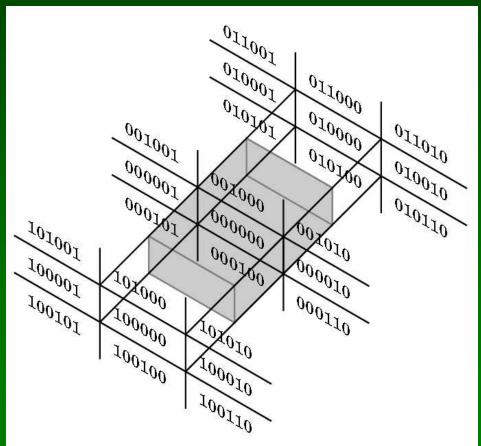
Other Cases and Optimizations

- Curves and surfaces ightarrow
 - Analytically if possible
 - Through approximating lines and polygons otherwise
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings


03/11/2003

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions


Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

- Use 6 bits in outcode
- b₄: z > z_{max}
 b₅: z < z_{min}
 Other calculations as before

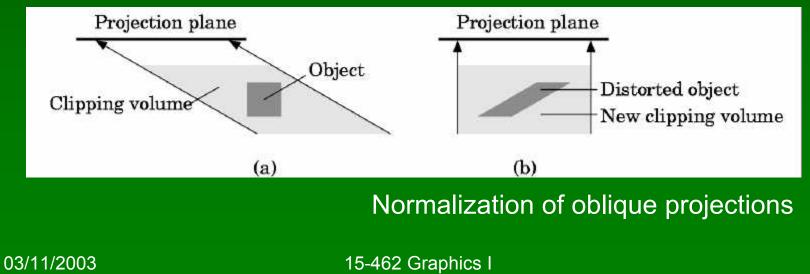
03/11/2003

15-462 Graphics I

Liang-Barsky in 3D

- Add equation $z(\alpha) = (1 \alpha) z_1 + \alpha z_2$
- Solve, for **p**₀ in plane and normal **n**:

 $p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$ n \cdot (p(\alpha) - p_0) = 0


• Yields

$$\alpha = \frac{\mathbf{n} \cdot (\mathbf{p}_0 - \mathbf{p}_1)}{\mathbf{n} \cdot (\mathbf{p}_2 - \mathbf{p}_1)}$$

Optimizations as for Liang-Barsky in 2D

Perspective Normalization

- Intersection simplifies for orthographic viewing
 - One division only (no multiplication)
 - Other Liang-Barsky optimizations also apply
- Otherwise, use perspective normalization
 - Reduces to orthographic case
 - Applies to oblique and perspective viewing

28

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Clipping to viewing frustum
 - Perspective normalization to orthographic projection
 - Apply clipping to cube from above
- Client-specific clipping
 - Use more general, more expensive form
- Polygon clipping
 - Sutherland-Hodgeman pipeline

Preview and Announcements

- Scan conversion
- Anti-aliasing
- Other pixel-level operations
- Assignment 5 due a week from Thursday!
- Start early!
- Sriram's office hours now Mon 4:30-6:30
- Movie
- Returning Midterm