15-462 Computer Graphics |

Lecture 15

Image Processing

March 18, 2003
Frank Pfenning

Blending

Display Color Models
Filters

Dithering

Image Compression

Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Blending

Frame buffer
— Simple color model: R, G, B; 8 bits each
— a-channel A, another 8 bits

Alpha determines opacity, pixel-by-pixel

— a = 1: opaque

— a = 0: transparent

Blend translucent objects during rendering

Achieve other effects (e.g., shadows)

03/18/2003 15-462 Graphics |

Image Compositing

« Compositing operation

— Source: s =[s, Sy S, S,

— Destination: d =[d, d; d, d,]

— b =[b, b, b, b,] source blending factors

— ¢ =[c; ¢4 ¢, C,] destination blending factors

—d’ =[bs, +cd, b, +cd, bys,+cpd, bs,+c,d]
« Overlay n images with equal weight

— Set a-value for each pixel in each image to 1/n

— Source blending factor is “a
— Destination blending factor is “1”

03/18/2003 15-462 Graphics |

Blending in OpenGL

* Enable blending
glEnable(GL_BLEND);

» Set up source and destination factors

glBlendFund(source_factor, dest_factor);

e Source and destination choices
- GL_ONE, GL ZERO
- GL_SRC_ALPHA, GL ONE MINUS SRC ALPHA
- GL _DST ALPHA, GL ONE MINUS DST ALPHA

03/18/2003 15-462 Graphics |

Blending Errors

» Operations are not commutative
* Operations are not idempotent

 |nteraction with hidden-surface removal
— Polygon behind opaque one should be culled
— Translucent in front of others should be composited

— Solution: make z-buffer read-only for translucent
polygons with glDepthMask (GL FALSE) ;

03/18/2003 15-462 Graphics |

Antialiasing Revisited

Single-polygon case first

Set a-value of each pixel to covered fraction
Use destination factor of “1 — a”

Use source factor of “a”

This will blend background with foreground
Overlaps can lead to blending errors

03/18/2003 15-462 Graphics |

Antialiasing with Multiple Polygons

* Initially, background color C,, a, =0
* Render first polygon; color C, fraction a,
- Cy=(1-2a,)C, + a,C,
— a4 = a4
* Render second polygon; assume fraction a,
 |If no overlap (a), then
- C'y=(1-a,)Cy + a,C,
— a4g=a,;ta,

03/18/2003 15-462 Graphics |

Antialiasing with Overlap

 Now assume overlap (b)

* Average overlap is a a,

- Soayg=a,+a,—aa,

 Make front/back decision for color as usual

03/18/2003 15-462 Graphics |

Antialiasing in OpenGL

* Avoid explicit a-calculation in program
* Enable both smoothing and blending

glEnable(GL_POINT_SMOOTH);

glEnable(GL_LINE_SMOOTH);

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

03/18/2003 15-462 Graphics |

Outline

* Blending

* Display Color Models
* Filters

* Dithering

* Image Compression

03/18/2003 15-462 Graphics |

Displays and Framebuffers

Image stored in memory as 2D pixel array,
called framebuffer

Value of each pixel controls color
Video hardware scans the framebuffer at 60Hz

Depth of framebuffer is information per pixel
— 1 bit: black and white display (cf. Smithsonian)

— 8 bit: 256 colors at any given time via colormap

— 16 bit: 5, 6, 5 bits (R,G,B), 2% = 65,536 colors

— 24 bit: 8, 8, 8 bits (R,G,B), 224 = 16,777,216 colors

03/18/2003 15-462 Graphics |

Fewer Bits: Colormaps

Colormaps typical for 8 bit framebuffer depth
With screen 1024 * 768 = 786432 = 0.75 MB
Each pixel value is index into colormap
Colormap is array of RGB values, 8 bits each
All 224 colors can be represented

Only 28 = 256 at a time

Poor approximation of full color

Who owns the colormap?

Colormap hacks: affect image w/o changing
framebuffer (only colormap)

03/18/2003 15-462 Graphics |

More Bits: Graphics Hardware

« 24 bits: RGB
+ 8 bits: A (a-channel for opacity)
+ 16 bits: Z (for hidden-surface removal)
* 2. double buffering for smooth animation
= 96 bits
For 1024 * 768 screen: 9 MB

03/18/2003 15-462 Graphics |

Image Processing

2D generalization of signal processing

Image as a two-dimensional signal

Point processing: modify pixels independently
Filtering: modify based on neighborhood
Compositing: combine several images

Image compression: space-efficient formats

Other topics (not in this course)
— Image enhancement and restoration
— Computer vision

03/18/2003 15-462 Graphics |

Outline

* Blending

* Display Color Models
* Filters

* Dithering

* Image Compression

03/18/2003 15-462 Graphics |

Point Processing

* Input: a(x,y); Output: b(x,y) = f(a(x,y))
« Useful for contrast adjustment, false colors
« Examples for grayscale, 0 <v <1 4,
— f(v) = v (identity)
— f(v) = 1-v (negate image)
— f(v) = vP, p < 1 (brighten)
— f(v) = vP, p > 1 (darken)
« Gamma correction compensates
monitor brightness loss

03/18/2003 15-462 Graphics |

Gamma Correction Example

G=1.0;f(v)=v G=0.5; f(v) =v05=v2 G=2.5;f(v) = v125 =04

03/18/2003 15-462 Graphics | 17

Signals and Filtering

* Audio recording is 1D signal: amplitude(t)
Image is a 2D signal: color(x,y)
Signals can be continuous or discrete

Raster images are discrete
— In space: sampled in x, y
— In color: quantized in value

Filtering: a mapping from signal to signal

03/18/2003 15-462 Graphics |

Linear and Shift-Invariant Filters

* Linear with respect to input signal
 Shift-invariant with respect to parameter

e Convolutionin 1D
— a(t) is input signal
— b(s) is output signal
— h(u) is filter
— Shorthand:b=a® h (=h® a, as an aside)

« Convolution in 2D

b(z,y) = >, >, alu,v)h(z—u,y—v)

U——0O0 V——0OO

03/18/2003 15-462 Graphics |

Filters with Finite Support

 Filter h(u,v) is 0 except in given region
* Represent h in form of a matrix

« Example: 3 x 3 blurring filter

b(z,y) == (a(z—1,y—1) Ha(z,y—1) Ha(z+1,y—1)
? ta(z—1,y) +a(z,y) +a(z+ 1,y)
+a(z—1,y+1) Ha(z,y+1) Falz+1,y+1))

 As function % if —1<wu,v<1

O otherwise
 |In matrix form

03/18/2003 15-462 Graphics |

Blurring Filters

* Average values of surrounding pixels
* Can be used for anti-aliasing
Size of blurring filter should be odd
What do we do at the edges and corners?

For noise reduction, use median, not average
— Eliminates intensity spikes
— Non-linear filter

03/18/2003 15-462 Graphics |

Examples of Blurring Filter

Pictures have been removed for printing
purposes due to a PowerPoint bug

Original Image Blur 3x3 mask Blur 7x7 mask

03/18/2003 15-462 Graphics |

Example Noise Reduction

Pictures have been removed for printing
due to a PowerPoint bug

Original image Image with noise Median filter (5x57?)

03/18/2003 15-462 Graphics |

Edge Filters

* Discover edges in image
* Characterized by large gradient

* Approximate square root

da da
Va| = | =+ ||
ox Oy

* Approximate partial derivatives, e.q.

P xalz 4+ 1) —alz—1)
ox

03/18/2003 15-462 Graphics |

Sobel Filter

* Edge detection filter, with some smoothing
* Approximate

« Sobel filter is non-linear
— Square and square root (more exact computation)
— Absolute value (faster computation)

03/18/2003 15-462 Graphics |

Sample Filter Computation

» Part of Sobel filter, detects vertical edges

25|25|25|25

SO |O

SIO|IC|IO

g

0
0
0
0
0
0
0
0
0
0

(el ferll ferl ferll (el ferl fen)l fevl fan)l e}
(el ferll ferl ferll (el ferl fen)l [evl fan)l e}
SIO|IC|IO|O|O oio S
(el ferll ferl ferll (el ferl fen)l [evl fan)l e}
(el ferll ferl ferll (el ferl fen)l fevl fan)l e}
=) [o) ol [ol [o) o) [l fal Fal e

SIO|ICOC|IO|O O
SIOC|IC|IO|IOC IO

0[0|0]25]25
a

03/18/2003 15-462 Graphics |

Example of Edge Filter

Images have been removed due to a PowerPoint bug

Original image Edge filter, then brightened

03/18/2003 15-462 Graphics |

Outline

* Blending

* Display Color Models
* Filters

* Dithering

* Image Compression

03/18/2003 15-462 Graphics |

Dithering

Compensates for lack of color resolution
Give up spatial resolution for color resolution
Eye does spatial averaging

Black/white dithering to achieve gray scale

— Each pixel is black or white

— From far away, color determined by fraction of white
— For 3x3 block, 10 levels of gray scale

e

03/18/2003 15-462 Graphics |

Halftone Screens

* Regular patterns create some artefacts

— Avoid stripes
— Avoid isolated pixels (e.g. on laser printer)
— Monotonicity: keep pixels on at higher intensities

« Example of good 3x3 dithering matrix

— For intensity n, turn on pixels 0..n—1

03/18/2003 15-462 Graphics |

Floyd-Steinberg Error Diffusion

Approximation without fixed resolution loss
Scan in raster order

At each pixel, draw least error output value
Divide error into 4 different fractions

Add the error fractions into adjacent, unwritten
pixels

03/18/2003 15-462 Graphics |

Floyd-Steinberg Example

Images have been removed due to
a PowerPoint bug

Gray Scale Ramp

«Some worms
«Some checkerboards

Enhance edges

Peter Anderson

03/18/2003 15-462 Graphics |

Color Dithering

Example: 8 bit framebuffer
— Set color map by dividing 8 bits into 3,3,2 for RGB
— Blue is deemphasized since we see it less well

Dither RGB separately
— Works well with Floyd-Steinberg

Assemble results into 8 bit index into colormap
Generally looks good

03/18/2003 15-462 Graphics |

Outline

* Blending

* Display Color Models
* Filters

* Dithering

* Image Compression

03/18/2003 15-462 Graphics |

Image Compression

* Exploit redundancy
— Coding: some pixel values more common
— Interpixel: adjacent pixels often similar
— Psychovisual: some color differences imperceptible

* Distinguish lossy and lossless methods

03/18/2003 15-462 Graphics |

Some Image File Formats

Depth

File Size

Comments

24

Small

Lossy compression

Medium

Good general purpose

Medium

Popular, but 8 bit

24

Big

Easy to read/write

03/18/2003

1,2,4,8,24

Huge

Good for printing

15-462 Graphics |

Image Sizes

102471024 at 24 bits uses 3 MB

Encyclopedia Britannica at 300 pixels/inch and
1 bit/pixes requires 25 gigabytes (25K pages)
90 minute movie at 640x480, 24 bits per pixels,
24 frames per second requires 120 gigabytes

Applications: HDTV, DVD, satellite image
transmission, medial image processing, fax, ...

03/18/2003 15-462 Graphics |

Exploiting Coding Redundancy

Not limited to images (text, other digital info)
Exploit nonuniform probabilities of symbols
Entropy as measure of information content

— H =-S Prob(s,) log, (Prob(s;))

— If source is independent random variable need H bits
|dea:

— More frequent symbols get shorter code strings
— Best with high redundancy (= low entropy)

Common algorithms

— Huffman coding
— LZW coding (gzip)

03/18/2003 15-462 Graphics |

Huffman Coding

* Codebook is precomputed and static
— Use probability of each symbol to assign code
— Map symbol to code
— Store codebook and code sequence

* Precomputation is expensive
 What is “symbol” for image compression?

03/18/2003 15-462 Graphics |

Lempel-Ziv-Welch (LZW) Coding

Compute codebook on the fly

Fast compression and decompression
Can tune various parameters

Both Huffman and LZW are lossless

03/18/2003 15-462 Graphics |

Exploiting Interpixel Redundancy

* Neighboring pixels are correlated

« Spatial methods for low-noise image
— Run-length coding:
« Alternate values and run-length

* Good if horizontal neighbors are same
« Can be 1D or 2D (e.g. used in fax standard)

— Quadtrees:
* Recursively subdivide until cells are constant color

— Region encoding:
» Represent boundary curves of color-constant regions

 Combine methods
* Not good on natural images directly

03/18/2003 15-462 Graphics |

Improving Noise Tolerance

Predictive coding:
— Predict next pixel based on prior ones
— Output difference to actual

Fractal image compression
— Describe image via recursive affine transformation

Transform coding
— Exploit frequency domain

— Example: discrete cosine transform (DCT)
— Used in JPEG

Transform coding for lossy compression

03/18/2003 15-462 Graphics |

Discrete Cosine Transform

« Used for lossy compression (as in JPEG)

n—1n-—1
Fu0) = e()e(v) 3 3 f(a,y) cos 22T U o5 (20F D0m

x=0 y=0
where c(u) = 1/v/n if u =0, c¢(u) = /2/n otherwise

« JPEG (Joint Photographic Expert Group)
— Subdivide image into n x n blocks (n = 8)
— Apply discrete cosine transform for each block
— Quantize, zig-zag order, run-length code coefficients
— Use variable length coding (e.g. Huffman)

 Many natural images can be compressed to 4
bits/pixels with little visible error

03/18/2003 15-462 Graphics |

Summary

Display Color Models
— 8 bit (colormap), 24 bit, 96 bit

Filters

— Blur, edge detect, sharpen, despeckle
Dithering

— Floyd-Steinberg error diffusion
Image Compression

— Coding, interpixel, psychovisual redundancy
— Lossless vs. lossy compression

03/18/2003 15-462 Graphics |

Preview

* Assignment 5 due Thursday
* Assignment 6 out Thursday
« Thursday: Ray Tracing

03/18/2003 15-462 Graphics |

