
Stateful Authorization Logic
– Proof Theory and a Case Study

Deepak Garg
MPI-SWS

dg@mpi-sws.org

Frank Pfenning∗

Carnegie Mellon University
fp@cs.cmu.edu

July 15, 2011

Abstract

We present the design, proof theory and metatheory of a logic for represent-
ing and reasoning about authorization policies. A salient feature of the logic,
BL, is its support for system state in the form of interpreted predicates, upon
which authorization policies often rely. In addition, BL includes Abadi et al.’s
“says” connective and explicit time. BL is illustrated through a case study of
policies for sharing sensitive information created in the U.S. intelligence com-
munity. We discuss design choices in the interaction between state and other
features of BL and validate BL’s proof theory by proving standard metatheo-
retic properties like admissibility of cut.

Keywords: Authorization logic, proof theory, stateful policies, case
study

∗Corresponding author. Address: Gates Hillman Center 9101, Carnegie Mellon University,
Pittsburgh PA 15213, USA. Phone: +1 412 268-6343. Fax: +1 412 268-3608. Email: fp@cs.cmu.edu

1

1 Introduction

Many authorization policies rely on conditions that are controlled by the environ-
ment and whose changes are not stipulated by the policies themselves. For example,
a sensitive file may be accessible to the public if the file is marked unclassified;
an employee may enter her office if it is between 9 AM and 5 PM on a weekday;
a doctor may read any patient’s health records if there is a medical emergency.
Conditions such as “if the file is marked unclassified”, written in boldface in the pre-
vious sentence, have the following characteristics: (a) They influence consequences
of the authorization policy of interest, and (b) The authorization policy itself does
not stipulate when or how such conditions change, although, in conjunction with
other enforcement mechanisms in the system, it may constrain who may change
them (e.g., the list of individuals who may mark a file unclassified may be stipu-
lated by the authorization policy itself). We informally call conditions satisfying
these two criteria stateful, and any authorization policy relying on them a stateful
authorization policy.

Many formal proposals for representing, enforcing and reasoning about autho-
rization policies use logic to represent the policies. Central to such use of logic
is proof theory, which is used both to enforce the authorization policies through
proof-carrying authorization or PCA [3, 5, 6], and to facilitate logical inference to
analyze their consequences [11, 12]. Yet, despite several papers on proof theory of
authorization logics without state [1, 14, 18], to the best of our knowledge, there
has been no systematic work on proof theory for logics that can represent stateful
authorization policies. The main objective of this paper is to fill this gap: We ex-
amine in detail the proof theory of a new logic BL in which stateful authorization
policies can be represented.1 We validate the logic’s foundations by proving several
metatheoretic properties of its proof system including admissibility of cut, which is
a proof-theoretic statement of the logic’s soundness [26, 32]. Empirically, we illus-
trate BL and justify its expressiveness through a case study of policies for sharing
of sensitive U.S. intelligence information. Further, we discuss subtle design choices
in the interaction between state and other components of the logic. Orthogonal to
our main objective, we provide a new interpretation for the common access control
connective k says s [2], which makes it easier to express a common form of delegation
in the logic (Section 5.4).

At its core, BL is a first-order intuitionistic logic. To that we add the connective
k says s, which means that principal k supports statement s, and state predicates, a
subclass of predicates that can be verified through procedures external to the logic
that may refer to the system state. Finally, in order to represent real time, upon

1BL is an abbreviation Binder Logic. This name is a tribute to the authorization policy language
Binder [13], whose design inspired the early stages of our work.

2

which policies often rely, we include the connective s @ [u1, u2] from our prior work
with DeYoung [14]. s @ [u1, u2] means that formula s holds in the time interval
[u1, u2], but possibly not outside of it. Through its combination of state predicates,
explicit time (the @ connective), and the says connective, BL is a very expressive
authorization logic.

There are two main challenges in incorporating state in an authorization logic
like BL. The first is to decide the interaction between state predicates and other
features of the logic, especially explicit time. For example, we may choose to treat
time as a special case of the logic’s general treatment of state and thus eliminate
the need for the connective @. Some prior work follows this approach by provid-
ing in the logic a constant, say localtime, that evaluates to the time at which the
policy is interpreted [5, 8]. However, as we argue in Section 5.3, this results in a
loss of expressiveness as compared to providing the connective @ in the logic ex-
plicitly, because any policy that refers to more than one point of time cannot be
expressed if time is considered a part of the state. As a result, we include both the
@ connective and stateful atoms in BL. Another key decision is the interpretation
of the formula s @ [u1, u2] when s is a stateful atom. The obvious interpretation
is that the stateful atom s hold throughout the time interval [u1, u2]. However, as
we illustrate and explain in Section 3.3.1, this interpretation allows representation
of authorization policies that cannot be enforced by any reference monitor and,
to prevent representation of such policies, we make a deliberate decision to use a
non-obvious interpretation of s @ [u1, u2] when s is a stateful atom.

The second challenge in incorporating state is the integration of external pro-
cedures for checking state predicates with the inference rules of the logic without
breaking metatheoretic properties like admissibility of cut. In this regard, our proof
theory is guided by, and similar to, prior work on integrating decision procedures
for constraint domains into a logic [22, 33]. The key idea is to formally represent
the external procedure for checking state predicates by an abstract judgment E |= i
(any environment which satisfies all stateful atoms in E, also satisfies the stateful
atom i), and stipulating only a few, reasonable conditions on the judgment that are
enough to obtain metatheoretic properties of interest, including admissibility of cut.
We list these conditions in Section 3.2.

The rest of this paper is organized as follows. In Section 2, we present a part
of our case study to motivate the need for state in authorization policies and also
to illustrate, by way of example, the syntax and features of BL. In Section 3, we
introduce the logic BL and its proof theory incrementally. We start with a first-order
intuitionistic logic with the connective k says s, then add state predicates, and finally
add explicit time. Section 4 presents metatheoretic properties of the proof system.
Additional design choices, including the separation of state from time and our new
interpretation of says, are discussed in Section 5. Section 6 revisits the case study

3

Default
Working
Paper

DeclassifiedClassified
Created

Figure 1: Stages of a sensitive intelligence file in the U.S.

with more details. Related work is discussed in Section 7 and Section 8 concludes
the paper. Full proofs of theorems are presented in the first author’s thesis [17] and
the entire case study appears in a concise form in a separate technical report [20].

2 Case Study: Stateful Authorization by Example

As a canonical example of stateful authorization policies, we introduce our case
study: U.S. policies for access to sensitive intelligence information. The U.S. intelli-
gence community, a cooperative federation of 16 U.S. government agencies, produces
classified documents, which, although inaccessible to the general population, must
be accessible to authorized individuals both within the intelligence community and
outside it. Our case study formalizes the policies mandated for such access. Our
primary source of policies is a set of interviews of intelligence personnel conducted
by Brian Witten and Denis Serenyi of Symantec Corporation. Some parts of the
policies are based on Executive Orders of the White House [29, 30] or Director of
Central Intelligence Directives (DCIDs) [27, 28]. The policies presented here are
themselves unclassified, and do not necessarily represent current official practices.

For the purpose of formalization, we assume that the unit of sensitive information
is a digital file that is already classified or will potentially be classified. Two facts
about sensitive files are of interest to us. First, any sensitive file goes through a life
cycle consisting of up to four stages that are shown in Figure 1. Access to a file
depends on the stage of the file at the time of access. Second, transitions between
stages are dictated by non-mechanizable factors such as human intent and beliefs
and are, therefore, not prescribed by the authorization policy itself. As far as the
authorization policy is concerned, the stages can change unpredictably. Hence, for
the purposes of formalization and enforcement, it is natural to represent the stage
of a file as an element of system state external to the policy itself.

4

Value of extended attribute
status on file F

Meaning Who has access

default F is in default stage Owner
working T F is a working paper, put into

that stage at time T
Anyone, at the discretion of
owner

classified T T ′ F is classified from time T to
time T ′

Complex rules to decide ac-
cess

declassified F is declassified Everyone

Figure 2: Formalization of file stages and permissions allowed in them

Overview of file stages. We briefly describe the stages of a sensitive file. Every
newly created official file in an intelligence agency starts in a default stage, in which
it is accessible only to the creator (owner) of the file. A file in the default stage may
eventually either be deleted by the author, or its content may mature to something
publishable, in which case it is promoted, at the discretion of the author, to a working
paper. A working paper is more collaborative; access is provided at the discretion
of the owner (a group of individuals or an intelligence agency). A file remains a
working paper for at most 90 days, after which it must be either deleted, put back
in the same stage for 90 more days, classified or declassified. The last two happen
only after the content of a working paper is stable. Classifying or declassifying a
working paper involves opinion of both the authors and a trained individual called
an original classification authority (OCA). If the file is declassified, it is accessible
to anyone. Access to a classified file is subject to complicated rules. At the time of
classification, a file’s secrecy level (confidential, secret, or topsecret) is determined, as
are its compartments, which are project-specific classifications that further restrict
access. Access to a classified file is based on these attributes as well as others such
as the citizenship and employment status of the individual accessing the file. Every
classified file is automatically declassified after the lapse of a certain interval of time
that is stipulated when the file is classified.

Thus, allowed access to a file varies by stage and transitions between stages
involve human factors that are not stipulated by the policy itself, so the policy
is stateful in the sense mentioned in the introduction. For our formalization, we
assume that the stage of a file is represented as an extended attribute (file meta-
data) called status, which is stored in the file system with the file. Our formalization
of the policy relies on this extended attribute to determine who may access the file.
The relation between the possible values of status and allowed access is summarized
in Figure 2.

5

2.1 Formalizing State in BL

System state is represented in BL formulas through a special class of predicates
called state predicates. State predicates can be established in a proof through an
external procedure, which may vary by application. For formalizing the policy at
hand, we need two state predicates: (a) (has xattr f a v), which means that file
f has extended attribute a set to value v; in particular, the value of a special at-
tribute status determines the stage of a sensitive file, and (b) (owner f k), which
means that file f is owned by principal k. We write state predicates in boldface to
distinguish them from other predicates that are defined by the logical theory and
use juxtaposition for applying arguments to predicates, e.g., we write (owner f k)
instead of the more conventional owner(f, k). The letters f, a, v, k range over terms
of types file, attribute, attribute value, and principal, respectively. Following stan-
dard logic programming convention, we also use the uppercase letters F,A, V,K
for implicitly quantified variables of the corresponding types. (This convention is
explained further in Section 2.2.) We do not stipulate what principals are — they
may be individuals, agencies, or groups. We assume that a procedure to check both
has xattr and owner in the file system being used for implementation is available.

The attribute status in our formalization can take four possible values corre-
sponding to the four stages in Figure 1. These are listed in Figure 2, together with
a description of principals who have access to the file in each stage. Technically, the
words default, working, classified, and declassified are uninterpreted function symbols
in BL having arities 0, 1, 2, and 0, respectively. The arguments T , T ′ are variables
ranging over time points (discussed later).

2.2 Formalizing Policy Rules in BL

Authorization is formalized in the logic as a predicate (may k f p), which means that
principal k has permission p on file f . (may k f p) is not a state predicate because
it is defined by logical formulas, which are part of our formalization of the policy.
Representative examples of formulas defining (may k f p) are shown below:

admin claims (may K F read : -
has xattr F status default,
owner F K) ◦ [−∞,+∞].

admin claims ((may K F read : -
has xattr F status (classified T T ′),
indi/has-clearances/file K F,
owner F K ′,
K ′ says (may K F read)) @ [T, T ′]) ◦ [−∞,+∞].

admin claims ((may K F read : -
has xattr F status (classified T T ′)) @ [T ′,+∞]) ◦ [−∞,+∞].

6

admin claims ((may K F read : -
has xattr F status (working T),
owner F K ′,
K ′ says (may K F read),
T ′ = (T + 90d)) @ [T, T ′]) ◦ [−∞,+∞].

The notation s : - s1, . . . , sn means “formula s holds if formulas s1, . . . , sn hold”, and
is equal to (s1 ∧ . . . ∧ sn) ⊃ s. Uppercase variables like K, F and T occurring in
s, s1, . . . , sn are implicitly assumed to be universally quantified outside this formula.
The prefix admin claims . . . before each rule means that the rule is created by the
principal admin, who is assumed to be the ultimate authority on access decisions.
The prefix is formally discussed in Section 3. The suffix ◦ [−∞,+∞] at the end of
each rule means that each rule is valid forever.

The first rule above states that (it is the admin’s policy that) principal K may
read file F if F is in stage default and K owns F . The latter two facts are determined
by looking at the file’s meta-data through the external procedure for verifying state
predicates.

The second rule illustrates two central, but possibly unfamiliar, connectives of
authorization logics including BL: k says s and s @ [u1, u2]. The former connective,
says, is a principal-indexed modality and has been studied extensively in the context
of authorization logics [1–3, 18]. It means that principal k supports formula s or
declares that the formula is true. k says s can be established a priori (i.e., without a
proof) through a digital certificate that contains formula s and is signed by principal
k’s private key. In fact, this is the only way to establish a priori any formula other
than a state predicate, constraint (constraints are discussed below), or tautology.
s @ [u1, u2] captures real time in the logic; it means that formula s holds during the
time interval [u1, u2], but does not say anything about s outside this interval. The
second rule above states that principal K may read file F if F is classified from time
T to time T ′ (has xattr F status (classified T T ′)), K has the right clearances to
read file F (indi/has-clearances/file K F), and the owner K ′ of file F allows
K to read the file (K ′ says (may K F read)). The suffix @ [T, T ′] after the formula
means that the entire formula and, hence, its consequence (mayK F read) apply only
in the interval [T, T ′]. Beyond T ′ the file is effectively declassified and accessible to
everyone as captured in the third rule above, which means that during the interval
[T ′,+∞], any principal K may read a file F that was classified from time T to
time T ′.

Our fourth rule highlights the need for another integral feature of BL — con-
straints, such as the atom T ′ = (T+90d). Constraints are similar to state predicates
in that they are verified by an external procedure but different in that they are in-
dependent of state. Constraints are useful for reasoning about time. For instance,
the fourth rule means that principal K may read file F if F is a working paper,

7

the owner K ′ of F allows the access, and less than 90 days have elapsed since the
file became a working paper. The last condition enforces the previously mentioned
policy mandate that a file can remain a working paper for at most 90 days.

The second, third, and fourth rules above also exemplify an interesting interac-
tion between state and time: They apply over time intervals that depend on time
values (denoted T in the rules) obtained through state predicates. There are other
interesting interactions between state and time that do not occur in our case study
but are described in Section 3.3.

Most of the remaining rules in our case study define the predicate
(indi/has-clearances/file K F) from the second rule above. This predicate
relates credentials of an individual K and attributes of a classified file F to de-
termine whether or not K should have access to F . Since the rules defining this
predicate do not highlight any new features of the logic, we postpone their discussion
to Section 6.

3 The Logic BL: Syntax and Proof Theory

Having discussed the features of BL briefly, we now present the logic formally. To
keep the description accessible we stage the presentation into three steps, adding
more features to the logic at each step. In the first step of presentation (Section 3.1),
we consider the core of BL, sorted first-order intuitionistic logic, with the principal-
indexed modality k says s. We call this sub-logic BL0. In Section 3.2, we add state
predicates, calling the logic BL1. Finally, we add explicit time through the connec-
tive s @ [u1, u2] to obtain the full logic BL (Section 3.3). We omit a description
of the connectives for disjunction and existential quantification from this paper;
their details may be found in the first author’s thesis [17, Chapters 3 & 4]. Neither
connective presents adds any new technical challenges for the proof theory or the
metatheory of BL.

3.1 BL0: First-order Logic and says Modality

The first fragment of BL we consider, BL0, has the following syntax:

Sorts σ ::= principal | time | . . .
Terms t, u, k ::= Alice | Bob | admin | . . .
Predicates P ::= may | . . .
Atoms p ::= P t1 . . . tn
Formulas r, s ::= p | s1 ∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x:σ.s | k says s

Sorts are types for terms. We stipulate at least two sorts: that of principals, principal,
and that of time points, time (time points have a special significance in the full logic

8

BL, as discussed in Section 3.3). Although we do not stipulate the domain of terms,
it must include at least principals who are authorized access and who create policies
(Alice, Bob, admin, etc.). We also allow uninterpreted function symbols in terms.
As mentioned earlier, we use the letter k to denote terms of sort principal, f for files,
and u for terms of sort time. The letter t denotes a generic term.

Uninterpreted predicates P allowed in BL0 are to be distinguished from state
predicates that we have been writing in boldface so far. The latter are introduced
in Section 3.2. Formulas of BL0 are either atomic, p, or built from the usual connec-
tives of first-order logic — ∧ (conjunction), ⊃ (implication), > (truth), ⊥ (falsity),
∀ (universal quantification) — or, the principal-indexed modality k says s. As ex-
plained and illustrated in Section 2, k says s means that principal k supports or
states formula s, without necessarily implying that s is true. We often elide the sort
σ from the universal quantifier ∀x:σ.s when it is clear from the context.

As is standard in intuitionistic logic, negation, ¬s, may be defined as s ⊃ ⊥.
However, because our logic is intuitionistic, s ∨ ¬s does not hold for every s, nor
is proof by contradiction a valid method of deduction. It has been argued in prior
work [18] that absence of these features is beneficial for authorization logics because
it forces that evidence of authorization (proofs) be direct. Further, intuitionism
forces policy authors to explicitly specify in their policies the conditions under which
access is allowed; the dual approach of listing conditions under which access is
disallowed does not work in intuitionistic logic. A significant amount of recent work
on enforcement of authorization policies is based on intuitionistic logic (e.g., [1, 4,
23]). Following the same trend, we work with an intuitionistic logic, instead of a
classical one.

Proof theory of BL0. When using authorization logics in practice, access is
granted only if there is a proof which justifies the access. Therefore, to understand
the meaning of a proposition in authorization logic, we must understand how it can
be proved. This naturally leads us to the proof theory of BL0, i.e., a systematic study
of its formal proofs. We adopt Gentzen’s sequent calculus style [21] in describing
the proof theory and follow Martin-Löf’s judgmental approach [26], which has been
used previously to describe other modal logics [18, 32]. Briefly, a judgment J is an
assertion that can be established through proofs. For BL0 we need two kinds of
judgments: s true, meaning that formula s is true, and k claims s, meaning that
principal k claims or supports formula s (but s may or may not be true). The latter
is needed to define the meaning of the says modality. A sequent has the following
form, where Γ abbreviates a multi-set J1, . . . , Jn of judgments and Σ is a finite map
from first-order variables free in Γ, s, and k to their sorts.

Σ; Γ
k−→ s true

9

The informal meaning of the sequent is:

Parametrically in the variables in Σ, assuming that everything that prin-
cipal k claims is true, the judgment s true follows from the judgments
in Γ.

The principal k is called the view of the sequent, and can be roughly thought of
as the principal relative to whose statements we wish to prove the sequent (hence
the hypothesis “assuming that everything that principal k claims is true . . . ” in the
meaning of the sequent).

Example 3.1. Recall from Section 2.2 that principal admin is the ultimate authority
on access. Hence, to allow any access, we must prove the corresponding authoriza-
tion in the view of admin. For example, to allow Alice to read file secret.txt, we must

prove that Σ; Γ
admin−−−→ (may Alice secret.txt read) true, where Γ is the set of all rules

defining the policy.

Inference Rules. The sequent calculus for BL0 consists of several inference rules
for establishing sequents. Our first rule, (init), is standard and states that if atom p
is assumed as a hypothesis, then it can be concluded. We restrict the rule to atoms,
but it can be proved that a generalization to arbitrary formulas holds (we prove a
similar theorem for the entire logic BL in Section 4). The second rule, (claims),
captures the meaning of the view of a sequent: if k claims s is assumed and the view
is k, then s true can also be assumed.

Σ; Γ, p true
k−→ p true

init
Σ; Γ, k claims s, s true

k−→ r true

Σ; Γ, k claims s
k−→ r true

claims

Other inference rules of the sequent calculus are directed by connectives. We list
below rules for the says connective. The notation Γ↓ in (saysR) denotes the subset
of Γ containing only judgments of the form k′ claims s′, i.e., Γ↓ = {(k′ claims
s′) | k′ claims s′ ∈ Γ}. The rule (saysR) may be read as follows: We can establish
that k says s is true in hypotheses Γ in any view k0 (conclusion of the rule) if we
can prove only from Γ↓ in view k that s is true (premise). Hypotheses of the form
s′ true are removed from the premise because they may have been introduced in Γ
in the view k0, but may not be claimed or trusted by k, as illustrated at the end
of Example 3.2. The second rule (saysL) states that the judgment (k says s) true
entails the judgment k claims s. In fact, the two judgments are equivalent in BL0.
(Technically, we say that the connective says internalizes the judgment claims into
the syntax of formulas.)

Σ; Γ↓ k−→ s true

Σ; Γ
k0−→ (k says s) true

saysR
Σ; Γ, k claims s

k0−→ r true

Σ; Γ, (k says s) true
k0−→ r true

saysL

10

This interpretation of the says connective using views is novel, and has been chosen
to allow for representation of a specific form of delegation of authority, as discussed
in Section 5.4.

Rules for connectives of first-order logic (∧, ⊃, >, ⊥, ∀) have their standard
form, with the exception that the view passes unchanged from the premises to the
conclusion. We refer the reader to existing work for details [32]. As an example, we
list below the rules for conjunction (∧).

Σ; Γ
k−→ s1 true Σ; Γ

k−→ s2 true

Σ; Γ
k−→ (s1 ∧ s2) true

∧R
Σ; Γ, s1 true, s2 true

k−→ r true

Σ; Γ, (s1 ∧ s2) true
k−→ r true

∧L

Several standard metatheoretic properties including admissibility of cut and con-
sistency hold of BL0’s proof theory but we refrain from presenting them here because
we present similar properties for the larger logic BL in Section 4.

Example 3.2 (Rules for the connective says). We illustrate the rules for the con-

nective says. Consider the sequent ·; (k says p) true
k−→ (k′ says p) true, where k and

k′ are distinct ground principals and p is an atom. In words, this sequent states that
from the assumption k says p we can deduce k′ says p assuming that every statement
of principal k is true (because the view here is k). Intuitively, this sequent should
not have a proof in the logic because no relation between statements of k and those
of k′ has been assumed. We justify this intuition formally by trying to construct a
proof of the sequent reasoning backwards using the rules of calculus and explaining
why every such attempt fails. (We drop the empty context Σ from every sequent to
reduce clutter.)

To construct a proof of (k says p) true
k−→ (k′ says p) true, we can either try

to apply the (saysR) rule or the (saysL) rule. Trying the former, we reduce to

proving that ((k says p) true)↓ k′−→ p true, i.e., · k−→ p true, to which no other
rule applies, so this attempt fails. If we instead try the rule (saysL), we reduce to

proving (k says p) true, k claims p
k−→ (k′ says p) true. Now we can apply either

the rule (claims) or the rule (saysR). We show here the former case, which is more
interesting (the latter case fails as well). Using the rule (claims), it suffices to prove

that (k says p) true, k claims p, p true
k−→ (k′ says p) true. Now we are forced to use

(saysR), which reduces our goal to ((k says p) true, k claims p, p true)↓ k′−→ p true.
Observe that ((k says p) true, k claims p, p true)↓ = k claims p, so we need to show

that k claims p
k′−→ p true. No rule applies now, so the sequent is unprovable, as

expected.
Note that if in the rule (saysR) we were to allow all of Γ in the premise instead

of Γ↓, then this (intuitively unprovable) sequent would have a proof in BL0 because

11

after the last application of (saysR) in the above discussion, we would have ended

up with the sequent (k says p) true, k claims p, p true
k′−→ p true, which has a one-

step proof by the rule (init). In other words, in applying the (saysR) rule, we
would have changed the view from k in the conclusion to k′ in the premise and yet,
unjustifiably, retained in the premise the assumption p true, which was obtained
from the statement k says p made by principal k, not k′. By removing hypotheses of
the form s′ true in the premise of (saysR) we avoid this possibility and ensure that
statements of distinct principals are not confused in the logic a priori.

3.2 BL1: State Predicates

To represent stateful policies, examples of which were shown in Section 2, we extend
BL0 with a special class of atomic formulas called stateful atoms, denoted i, and
add a new form of hypotheses — a set of stateful atoms, E — to sequents. The

resulting logic, BL1, has sequents of the form Σ;E; Γ
k−→ s true, which informally

mean that:

Parametrically in the variables in Σ, assuming that everything that prin-
cipal k claims is true, the judgment s true follows from the judgments in
Γ in any environment that validates all stateful atoms in E.

In practice, stateful atoms in E may be discharged by an external procedure that
has access to the environment or system state.

Syntax. The syntax of BL1 formulas is shown below. The meta-variables p and t
inherit their syntax from BL0. State predicates I are assumed to be distinct from
uninterpreted predicates P .

State predicates I ::= has xattr | owner | . . .
Stateful atoms i ::= I t1 . . . tn
Formulas r, s ::= p | i | s1 ∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x:σ.s | k says s

Example 3.3. In BL1, Alice is allowed to read file secret.txt iff there is a proof of

Σ;E; Γ
admin−−−→ (may Alice secret.txt read) true, where Γ is the set of all rules defining

the policy and E is a set of stateful atoms that hold in the environment prevailing
at the time of access.

Proof Theory of BL1. We incorporate relations between stateful atoms into the
proof theory through an abstract judgment Σ;E |= i, which means that “for all
ground instances of variables in Σ, any environment that satisfies all stateful atoms
in E also satisfies atom i”. We do not stipulate any rules to establish this judgment
since they may vary from environment to environment. For instance:

12

• If names a.txt and b.txt alias the same file, then Σ, a, v; (has xattr a.txt a v) |=
(has xattr b.txt a v).

• If files inherit owners from containing directories, then Σ, k; (owner (/usr) k) |=
(owner (/usr/a.txt) k).

In the simplest instance, the judgment Σ;E |= i may hold if and only if i ∈ E.
Our metatheoretic results (Section 4) assume only the following properties of this
judgment, all of which follow from its intuitive explanation. Σ ` t : σ means that
term t has sort σ given the sorting Σ for variables.

Σ;E, i |= i (Identity)

Σ;E |= i implies both Σ, x:σ;E |= i and Σ;E,E′ |= i (Weakening)

Σ;E |= i and Σ;E, i |= i′ imply Σ;E |= i′ (Cut)

Σ, x:σ;E |= i implies Σ;E[t/x] |= i[t/x] if fv(t) ⊆ Σ and Σ ` t : σ
(Substitution)

As explained earlier, BL1 sequents have the form Σ;E; Γ
k−→ s true. BL1 inherits all

inference rules of BL0 with the proviso that the new context E passes unchanged
from the conclusion to premises in all rules. We do not reiterate these rules. Two
new rules for reasoning about stateful atoms are added. The first rule states that
the judgment i true holds if E |= i for the assumed state E. The second rule
means that a hypothesis i true implies that the stateful atom i holds. Together,
the two rules imply that the judgment i true is equivalent to the atom i holding
in the prevailing environment E, which closely couples the stateful formula i to its
intended interpretation.

Σ;E |= i

Σ;E; Γ
k−→ i true

stateR
Σ;E, i; Γ

k−→ s true

Σ;E; Γ, i true
k−→ s true

stateL

We list below admissible and inadmissible statements relating to stateful atoms
and the says connective. The second and third statements mean that a false stateful
atom signed by a principal does not contaminate the entire logic.

` i ⊃ k says i

6` (k says i) ⊃ i

6` (k says i) ⊃ (k′ says i) if k 6= k′

BL1’s proof theory satisfies several standard metatheoretic properties includ-
ing admissibility of cut and consistency but we refrain from presenting them here
because we present similar properties for the larger logic BL in Section 4.

13

3.3 BL: Explicit Time and @ Connective

Finally, we add explicit time to the logic by including the connective s @ [u1, u2].
This connective is based on our prior work with DeYoung for a different logic η [14],
which did not include state. The reason for considering the extension with time is
two-fold. First, explicit time is needed to correctly represent policy rules that have
a pre-determined expiration, as well as other rules that limit the temporal validity
of formulas (e.g., the second, third, and fourth rules of Section 2). Second, there
are important design decisions in the interaction between state and time that we
wish to highlight. In particular, due to this interaction the obvious interpretation of
stateful atoms allows expressing unenforceable policies in BL, so we use a somewhat
non-intuitive interpretation of stateful atoms in BL, as explained in Section 3.3.1.

Since s @ [u1, u2] means that s holds throughout the interval [u1, u2], it seems
reasonable that s @ [u1, u2] imply s @ [u′1, u

′
2] if u1 ≤ u′1 and u′2 ≤ u2. To make such

properties admissible in the logic, we need a theory of the total order u1 ≤ u2 on
time points and, for expressing certain policies (e.g., the fourth rule in Section 2),
we also need a theory of arithmetic over time points. We include both by adding
a single constraint domain of time points to the logic. From the perspective of
proof theory, constraints are similar to state. However, the external procedure for
verifying constraints does not depend on state.

Syntax. Time points are either integers or one of the elements {−∞,+∞}. The
numbers represent time elapsed in seconds from a fixed point of reference. In the con-
crete syntax, we often write absolute time points in the format
YYYY:MM:DD:hh:mm:ss. We include an infix function symbol + of arity 2. A
new syntactic class of atomic formulas called constraints, denoted c, is also added.
Constraints are predicates of one of two forms: u1 ≤ u2 and u1 = u2.

Terms t, u, k ::= Alice | Bob | YYYY:MM:DD:hh:mm:ss | −∞ | +∞ |
u1 + u2 | . . .

Constraints c ::= u1 ≤ u2 | u1 = u2
Formulas r, s ::= p | i | c | s1 ∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x:σ.s | k says s |

s @ [u1, u2]

3.3.1 Proof Theory of BL

The addition of time requires a significant change to the logic’s judgments [14]. In-
stead of the judgments s true and k claims s, we use refined judgments s ◦ [u1, u2]
(s is true throughout the interval [u1, u2]) and k claims s ◦ [u1, u2] (k claims
that s is true throughout the interval [u1, u2]). Sequents in BL have the form

14

Σ; Ψ;E; Γ
k,u1,u2−−−−→ s ◦ [u′1, u

′
2]. Here, Ψ is a set of constraints. The meaning of the

sequent is:

Parametrically in the variables in Σ, assuming that everything that prin-
cipal k claims about intervals containing [u1, u2] is true, the judgment
s ◦ [u′1, u

′
2] follows from the judgments in Γ in any environment that

validates all stateful atoms in E, if all constraints in Ψ hold.

Besides the addition of constraints as hypotheses, another change is the addition of
an interval of time to the view. This is not particularly important since we could also
have constructed a logic without time intervals in views (for details of the trade-offs
involved in making this choice, see [17, Section 4.4]).

Relations between constraints are incorporated into the logic through an abstract
judgment Σ; Ψ |= c, which is similar to Σ;E |= i. As for the latter judgment,
our metatheoretic properties rely only on basic properties of Σ; Ψ |= c. These
properties include analogues of properties (Identity) – (Substitution) of Section 3.2.
In addition, we require that ≤ be reflexive and transitive.

Σ; Ψ |= u ≤ u (Reflexivity)

Σ; Ψ |= u1 ≤ u2 and Σ; Ψ |= u2 ≤ u3 imply Σ; Ψ |= u1 ≤ u3 (Transitivity)

Inference rules of the sequent calculus for BL are derived from those of BL1, tak-
ing into account carefully the interaction between time and the different connectives.
This interaction is non-trivial in most cases, as was observed in prior work [14].

Basic rules. The following two rules relate the judgments of BL. Rule (init) gen-
eralizes its homonym from BL0: If we assume that atom p holds throughout the in-
terval [u′1, u

′
2], then we can conclude that p holds throughout a subinterval [u1, u2],

i.e., if u′1 ≤ u1 and u2 ≤ u′2. Rule (claims) allows us to promote the hypothesis
k claims s ◦ [u1, u2] to s ◦ [u1, u2] if the principal in the view ν is k, and the interval
[ub, ue] in ν is a subinterval of [u1, u2].

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, p ◦ [u′1, u

′
2]

ν−→ p ◦ [u1, u2]
init

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

ν = k, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2
Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]

ν−→ r ◦ [u′1, u
′
2]

claims

15

Connective @. As in prior work [14], s @ [u1, u2] internalizes the judgment s ◦
[u1, u2] into the syntax of formulas. Because s @ [u1, u2] means that s holds through-
out [u1, u2], a further qualification by adding ◦ [u′1, u

′
2] as in (s @ [u1, u2]) ◦ [u′1, u

′
2]

does not add anything to the meaning, so the judgments s ◦ [u1, u2] and s @ [u1, u2] ◦ [u′1, u
′
2]

are equivalent. As a result, we can replace (s @ [u1, u2]) ◦ [u′1, u
′
2] with s ◦ [u1, u2]

in the both the hypotheses and the conclusion of a sequent, which is precisely what
the following two rules for the @ connective allow. (Here, ν denotes an arbitrary
view k, u1, u2.)

Σ; Ψ;E; Γ
ν−→ s ◦ [u1, u2]

Σ; Ψ;E; Γ
ν−→ (s @ [u1, u2]) ◦ [u′1, u

′
2]

@R

Σ; Ψ;E; Γ, s ◦ [u1, u2]
ν−→ r ◦ [u′′1 , u

′′
2]

Σ; Ψ;E; Γ, (s @ [u1, u2]) ◦ [u′1, u
′
2]

ν−→ r ◦ [u′′1 , u
′′
2]

@L

State predicates. If i is a stateful atom, what should i ◦ [u1, u2] mean? One
possibility (which we don’t use in BL) is to apply the usual meaning of s ◦ [u1, u2],
namely that the stateful atom i holds throughout the time interval [u1, u2]. Although
intuitive, this interpretation can result in policies that are impossible to enforce.
Consider, for example, the policy (i @ [T, T + 5]) ⊃ ((may K F read) @ [T, T]).
Intuitively, the policy says that a principal K may read file F at time T if i holds in
the interval [T, T + 5]. Thus, permission to access file F at time T refers to state at
later points of time, which is, of course, impossible to enforce in a reference monitor.

To avoid such non-enforceable policies, we make a substantial design decision
in BL: We assume that all stateful atoms are interpreted at exactly one point of
time and i ◦ [u1, u2] simply means that i holds in the environment at this point of
time (independent of u1 and u2). The logic does not stipulate what that point of
time is, but it seems practical to use the time at which the access happens. In that
interpretation, i ◦ [u1, u2] means that i holds at the time of access. Following this
decision, the following rules for stateful atoms are self-explanatory:

Σ;E |= i

Σ; Ψ;E; Γ
ν−→ i ◦ [u1, u2]

stateR
Σ; Ψ;E, i; Γ

ν−→ r ◦ [u′1, u
′
2]

Σ; Ψ;E; Γ, i ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

stateL

Seemingly, we are limiting the logic’s expressiveness because we are eliminating
(enforceable) policy rules that refer to stateful atoms in intervals prior to access.
Such policy rules occur rarely; in particular, no such rule occurs in our entire case
study. Further, even when they occur, such policy rules can be encoded by requir-
ing evidence of the stateful atom(s) having been true in the past (e.g., a trusted
observer’s certificate) to exist at the time of access. As a result, we consider our
design reasonable.

16

Constraints. Constraints and state predicates have similar treatments in the
proof theory. Consequently, the rules governing constraints are:

Σ; Ψ |= c

Σ; Ψ;E; Γ
ν−→ c ◦ [u1, u2]

consR
Σ; Ψ, c;E; Γ

ν−→ r ◦ [u′1, u
′
2]

Σ; Ψ;E; Γ, c ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

consL

As opposed to other formal systems [22, 33], we do not allow the deduction of
logical falsity ⊥ and, hence, every formula, when constraints Ψ are contradictory.
The absence of such deduction is desirable for an authorization logic because it
prevents implicit authorizations, as explained in Section 5.2.

Connective says. The rules for says are similar to the rules for the same connective
in BL0, but also take into account time intervals. For example, rule (saysR) states
that (k says s) ◦ [u1, u2] can be established in any view ν from hypotheses Γ if from
the hypotheses Γ↓ (the subset of Γ containing assumptions of the form k′ claims s′ ◦
[u′1, u

′
2]), we can prove s ◦ [u1, u2] in the view k, u1, u2. Rule (saysL) relies on the

fact that (k says s) claims [u1, u2] and k claims s ◦ [u1, u2] are equivalent judgments
in BL.

Σ; Ψ;E; Γ↓ k,u1,u2−−−−→ s ◦ [u1, u2]

Σ; Ψ;E; Γ
ν−→ (k says s) ◦ [u1, u2]

saysR

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

Σ; Ψ;E; Γ, (k says s) ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

saysL

Connective ⊃. Based on prior work [14], a proof of (s1 ⊃ s2) ◦ [u1, u2] is a method
of converting a proof of s1 ◦ [u′1, u

′
2] to a proof of s2 ◦ [u′1, u

′
2] for any subinterval

[u′1, u
′
2] of [u1, u2]. Accordingly, the rule (⊃R) means that (s1 ⊃ s2) ◦ [u1, u2] is

provable (conclusion) if for fresh variables x1 and x2, s2 ◦ [x1, x2] is provable from
the assumptions [x1, x2] ⊆ [u1, u2] and s1 ◦ [x1, x2] (premise). Dually, the rule (⊃L)
allows us to assume s2 ◦ [u′1, u

′
2] (second premise) if s1 ◦ [u′1, u

′
2] is provable (first

premise), [u′1, u
′
2] ⊆ [u1, u2] (third and fourth premises), and (s1 ⊃ s2) ◦ [u1, u2] has

been assumed (hypotheses of conclusion).

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]
ν−→ s2 ◦ [x1, x2]

Σ; Ψ;E; Γ
ν−→ (s1 ⊃ s2) ◦ [u1, u2]

⊃R

Σ; Ψ;E; Γ, (s1 ⊃ s2) ◦ [u1, u2]
ν−→ s1 ◦ [u′1, u

′
2]

Σ; Ψ;E; Γ, (s1 ⊃ s2) ◦ [u1, u2], s2 ◦ [u′1, u
′
2]

ν−→ r ◦ [u′′1, u
′′
2]

Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2
Σ; Ψ;E; Γ, (s1 ⊃ s2) ◦ [u1, u2]

ν−→ r ◦ [u′′1, u
′′
2]

⊃L

17

Other connectives. Other connectives of BL (∀, ∧, >, ⊥) do not have a signifi-
cant interaction with time because these connectives commute with the @ connec-
tive. This results in straightforward inference rules that are shown in Appendix A.

Disjunctive reasoning about intervals of time. BL’s proof system does not,
in general, allow combining proofs of s ◦ [u1, u2] and s ◦ [u2, u3] into a single proof
of s ◦ [u1, u3] when [u1, u2] and [u2, u3] are overlapping intervals. The reason for
this decision is to keep automatic proof search tractable: If we were to allow such
combinations in the proof system, then a procedure to find a proof of s ◦ [u1, u3]
would, in general, have try the infinitely many choices of intervals [u1, u2] and [u2, u3]
whose union is [u1, u3]. (A detailed discussion of proof search for BL is beyond
the scope of this paper, but we point the reader to [17, Chapter 6] for details.)
Whereas the absence of such combinations has theoretical implications, e.g., there
are judgments like s ◦ [u1, u3] in the earlier sentences that may hold intuitively but
cannot be proved in the logic, it does not necessarily limit expressiveness in practice.
For instance, the formula s @ [u1, u3] may be justified in a reference monitor using
two proofs instead of just one, where the first proof establishes s ◦ [u1, u2] and the
second proof establishes s ◦ [u2, u3] for some u2.

3.3.2 Summary

We summarize the proof system of BL by listing below some admissible and some
inadmissible properties. s ≡ r denotes (s ⊃ r) ∧ (r ⊃ s), ` s means that Σ; ·; ·; · ν−→
s ◦ [u1, u2] for all u1, u2, ν and appropriate Σ, and 6` s means that the latter is not
true for s in the stated generality.

1. ` ((u1 ≤ u′1) ∧ (u′2 ≤ u2)) ⊃ ((s @ [u1, u2]) ⊃ (s @ [u′1, u
′
2]))

2. ` ((s @ [u1, u2]) @ [u′1, u
′
2]) ≡ (s @ [u1, u2])

3. ` ((s1 ∧ s2) @ [u1, u2]) ≡ ((s1 @ [u1, u2]) ∧ (s2 @ [u1, u2]))

4. ` ((∀x.s) @ [u1, u2]) ≡ (∀x.(s @ [u1, u2])) if (x 6∈ u1, u2)

5. ` > @ [u1, u2]

6. ` (⊥ @ [u1, u2]) ⊃ s

7. There is no interval [u1, u2] such that ` ⊥ @ [u1, u2]

8. ` ((s1 ⊃ s2) @ [u1, u2]) ≡ (∀x1.∀x2.(((u1 ≤ x1) ∧ (x2 ≤ u2) ∧ (s1 @ [x1, x2]))
⊃ (s2 @ [x1, x2])))

9. ` ((k says s) @ [u1, u2]) ⊃ (k says (s @ [u1, u2]))

18

10. 6` (k says (s @ [u1, u2])) ⊃ ((k says s) @ [u1, u2])

Property 1 states that if a formula s is true throughout an interval [u1, u2],
then it is also true throughout any subinterval [u′1, u

′
2]. Property 2 states that the

meaning of a formula with a top-level @ connective, like s @ [u1, u2], is not altered
by a further qualification with @. Properties 3 and 4 mean that the connective @
commutes with the connectives ∧ and ∀. Property 6 means that if ⊥ holds in any
interval of time [u1, u2], then any formula s is provable. Property 7 states that,
without any assumptions, we cannot derive ⊥ in any interval of time; together with
Property 6, this is a proof-theoretic statement of the logic’s consistency. Property 8
asserts that s1 ⊃ s2 holds throughout the interval [u1, u2] iff the truth of s1 in every
subinterval [x1, x2] implies the truth of s2 in the same subinterval. Properties 9 and
10 mean that @ commutes with says in one direction only.

4 Metatheory of BL

We prove several important metatheoretic properties of BL.2 The first lemma below
states that proofs respect substitution of stateful atoms, which, in a sense, means
that the proof theory preserves the meaning of the judgment Σ;E |= i. A similar
property holds for constraints, but we do not state it explicitly.

Lemma 4.1 (State substitution). Σ;E |= i and Σ; Ψ;E, i; Γ
ν−→ r ◦ [u1, u2] imply

Σ; Ψ;E; Γ
ν−→ r ◦ [u1, u2].

Proof. By induction on the given derivation of Σ; Ψ;E, i; Γ
ν−→ r ◦ [u1, u2]. For the

case of rule (stateR), we rely on the property (Cut) from Section 3.2.

BL’s proof system also satisfies standard metatheoretic properties like closure
under weakening of hypotheses and substitution of ground terms for parameters.
We do not state these explicitly. The next significant metatheoretic property is
subsumption, which allows us to make the time intervals in views and conclusions
smaller.

Theorem 4.2 (Subsumption). Suppose Σ; Ψ |= u1 ≤ u′1 and Σ; Ψ |= u′2 ≤ u2.
Then, the following hold.

1. If Σ; Ψ;E; Γ
k,u1,u2−−−−→ J , then Σ; Ψ;E; Γ

k,u′1,u
′
2−−−−→ J .

2. If Σ; Ψ;E; Γ
ν−→ s ◦ [u1, u2], then Σ; Ψ;E; Γ

ν−→ s ◦ [u′1, u
′
2].

2Proofs of all lemmas and theorems with key induction cases are present in the first author’s
thesis [17, Chapter 4].

19

Proof. (1) follows by induction on the given derivation. (2) also follows by induction
on the given derivation, using (1) for the case of rule (saysR).

Theorem 4.2(2) is relevant in practice because it formalizes the following (intu-
itive) fact: To authorize an access over an interval [u′1, u

′
2], it is okay to validate the

access over a larger interval [u1, u2].
Our main metatheoretic results are the admissibility of cut — that the proof

of a judgment can be used to discharge the same judgment used as a hypothesis
in another proof — and identity — any judgment assumed as hypothesis can be
concluded. Admissibility of cut is a proof-theoretic statement of soundness of a
logic. Dually, identity is a proof-theoretic statement of completeness of the logic’s
inference rules. Together, the proofs of the two theorems show that the rules of the
logic fit well with each other [32].

Theorem 4.3 (Admissibility of cut). Σ; Ψ;E; Γ
ν−→ s ◦ [u1, u2] and Σ; Ψ;E; Γ, s ◦

[u1, u2]
ν−→ s′ ◦ [u′1, u

′
2] imply Σ; Ψ;E; Γ

ν−→ s′ ◦ [u′1, u
′
2].

Proof. First, we strengthen the theorem by adding a second statement:

Σ; Ψ;E; Γ↓ k,u1,u2−−−−→ s ◦ [u1, u2] and Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u

′
2]

imply Σ; Ψ;E; Γ
ν−→ s′ ◦ [u′1, u

′
2]. Both statements are then proved simultaneously

by lexicographic induction, first on the structure of s, and then on the depths of
the two given derivations, as in prior work [31]. The proof uses Lemma 4.1 and
Theorem 4.2.

Theorem 4.4 (Identity). Σ; Ψ;E; Γ, s ◦ [u1, u2]
ν−→ s ◦ [u1, u2].

Proof. By induction on s.

By an analysis of inference rules, it also follows that the logic is proof-theoretically
consistent, i.e., ⊥ cannot be established a priori (i.e., in an empty context). Similarly,
k says ⊥ cannot be proved a priori.

Theorem 4.5 (Consistency). (1) Σ; ·; ·; · 6 ν−→ ⊥ ◦ [u1, u2], and (2) Σ; ·; ·; · 6 ν−→ (k says
⊥) ◦ [u1, u2].

Proof. By exhaustive backwards application of all applicable rules and failing to
complete a proof in each case.

5 Discussion

We end our description of the logic BL by discussing briefly how policies written
in it may be enforced, why we do not allow deduction of arbitrary formulas from

20

contradictory constraints, analyzing the possibility of treating time as a special case
of state (instead of using the connective @), and commenting on the interpretation
of the says connective that we use in BL.

5.1 Enforcement of BL Policies

Policies expressed in BL can be enforced using the standard architecture of proof-
carrying authorization (PCA) [3, 5]. PCA combines cryptography and formal proofs
for rigorous policy enforcement. A minor novelty in using it for BL is in the treat-
ment of system state. Although a detailed discussion of enforcement of BL policies
through PCA is the subject of a separate paper [19], we briefly discuss the main
ideas here.

The central tenet of enforcing policies expressed in any logic is to allow an access
ϕ iff the prevailing policy Γ entails it, i.e., Γ ` ϕ. In an implementation, logical
judgments constituting the access policy, i.e., the context Γ, may be established by
signed certificates. For example, a reference monitor may admit the BL judgment
k claims s ◦ [u1, u2] as a valid policy rule if there exists a certificate containing
formula s, digitally signed by principal k and having validity [u1, u2]. The judgment
ϕ representing access depends on the policy, but is generally straightforward. For
example, if BL is used to represent file access policies, then the judgment ϕ repre-
senting principal k’s access to read file f at time u may be (may read k f) ◦ [u, u].

The new aspect of enforcement for BL is the representation of state on which
authorization may depend. This is not difficult to incorporate because state can
be represented explicitly in BL’s sequents through the context E. In particular, a
reference monitor may authorize access ϕ iff there exist E and Γ such that for a
fresh view ν:

1. There is a proof of ·;E; ·; Γ
ν−→ ϕ.

2. There are digital certificates to justify each hypothesis in Γ, as described above.

3. All stateful atoms in E can be checked on the system state using a given
trusted external procedure for their verification.

Because the logic BL is undecidable, it is unreasonable to require the reference
monitor to find the proof in step (1) and, instead, push the onus of providing E, Γ,
the proof of (1) and the certificates of (2) to the principal requesting access. The
reference monitor then only needs to verify that the proof provided for (1) is correct,
that the certificates provided for (2) check cryptographically and that (3) holds, all
of which are relatively straightforward. This architecture, which moves the burden
of providing evidence to the principal requesting access, is called proof-carrying au-
thorization (PCA). We have implemented a PCA-based file system, PCFS, that can

21

enforce policies wirtten in BL [19]. The implementation includes both a verifier for
BL proofs (which is needed for step (1) above) as well as a goal-directed automatic,
but incomplete, theorem prover for BL.

5.2 Reasoning from Contradictory Constraints

Some formal systems containing both logical deduction and constraints allow the
deduction of ⊥ and, hence, every formula if assumed constraints Ψ are contradic-
tory [22, 33]. BL does not allow such deduction because it can result in unexpected,
implicit consequences of policies. For example, consider the following policy rule
which says that if the price of an item x is greater than $75, then it can be pur-
chased in an office with the manager’s approval (the function price(x) returns the
price of item x):

pol = ∀x. (((price(x) > 75) ⊃ (approves manager x)) ⊃ (purchase x))

Note that this policy rule does not explicitly list the conditions under which items
priced less than $75 may be purchased; such items may be covered by other policy
rule(s). However, if we allow deduction of arbitrary formulas from contradictory
constraints then, in the resulting logic, this policy allows the purchase of any item
priced less than $75. For instance, if a is an item with price(a) = 10, then we would
be able to prove in the resulting logic that Σ; Ψ; ·; pol ◦ [−∞,+∞]

ν−→ (purchase a) ◦
[−∞,+∞] for Σ = a, Ψ = (price(a) = 10) and arbitrary ν. A sequent calculus
proof of this fact is shown in Figure 3. The key step in the proof is the topmost
rule in the figure: The contradictory constraints price(a) = 10 and price(a) > 75
allow the deduction of the formula (approves manager a) ◦ [x1, x2].

Such implicit consequences of policies are clearly undesirable and, to prevent
them, BL does not allow deduction of arbitrary formulas from contradictory con-
straints.

5.3 Time as a Special Case of State?

In BL, time is represented using the connective s @ [u1, u2]. However, time is
inherently an element of system state. This raises the following natural question:
Is a representation of time separate from state necessary? Specifically, if we include
in our logic an interpreted constant, say localtime, which evaluates to the current
time (as in some prior work [5, 8]), and drop the connective @, will we have the
same expressiveness as BL? The answer to this question is no; BL is strictly more
expressive than a logic without @ but with a constant localtime.

This difference exists because BL’s @ connective allows us to say that a formula
holds at a specific point of time (or throughout an interval of time), whereas the

22

Ψ = (price(a) = 10) (Ψ, price(a) > 75) is contradictory

Σ, x1:time, x2:time; Ψ, price(a) > 75; ·; · ν−→ (approves manager a) ◦ [x1, x2]

Σ, x1:time, x2:time; Ψ; ·; (price(a) > 75) ◦ [x1, x2]
ν−→ (approves manager a) ◦ [x1, x2]

consL

Σ; Ψ; ·; · ν−→ (price(a) > 75) ⊃ (approves manager a)
⊃R

Σ; Ψ; ·; ((price(a) > 75) ⊃ (approves manager a)) ⊃ (purchase a)
ν−→ purchase a

⊃L

Σ; Ψ; ·; pol ν−→ purchase a
∀L

Figure 3: Proof of statement from Section 5.2 in BL’s sequent calculus extended
with reasoning from contradictory constraints. To simplify notation, we omit the
suffix ◦ [−∞,+∞] from judgments, unnecessary hypothesis, and premises that are
trivially provable.

constant localtime only allows us to relate the current time to other points of time.
Consequently, any policy that refers to the truth of formulas at two different points
of time cannot be expressed using localtime alone. For instance, the BL policy rule
(p @ [u, u]) ⊃ (p′ @ [u + 5, u + 5]) (if predicate p holds at time u, then p′ holds at
u + 5) is impossible to represent in such a setup. Similarly, policy rules that are
valid on time intervals that depend on time points written in system state can be
represented using @ but cannot be expressed using localtime alone. The second and
fourth rules of Section 2.2 are examples of such rules. Consequently, representing
time through the @ connective is useful even when state is included in the logic.

5.4 Delegation with BL’s says Connective

The connective k says s merits additional discussion because its interpretation is BL0

(and, by inheritance, in BL1 and BL) is different from that in prior work. Starting
with the work of Lampson et al. [24], the says connective has been included in several
authorization logics [1, 2, 18]. However, in each case, the inference rules defining says
(and, hence, the formal meaning of k says s) are different. For instance, Lampson
et al. [24] and Abadi et al. [2] treat (k says ·) as a normal necessitation modality of
classical modal logic. In more recent papers, Abadi [1] and the authors [18], treat
(k says ·) as a lax modality [16]. Each treatment has its own merits and demerits in
expressing and reasoning about policies. In BL0, BL1, and BL we define says with
a new and non-standard set of inference rules using views (rules (saysR), (saysL)
and (claims) in Section 3.1). This new interpretation has been chosen to allow for
accurate representation of a specific form of delegation (transfer of authority) from
one principal to another, which, we believe, none of the prior definitions of says allow.
In this section, we justify this new choice. We base our discussion on BL0 instead

23

of BL to keep the notation simple and introduce an axiomatic characterization
(Hilbert-style presentation) of BL0’s says connective to facilitate our discussion.

Axiomatic characterization of BL0. Besides the sequent calculus defined in
Section 3.1, BL0 can be equivalently characterized by taking any axiomatization
of first-order intuitionistic logic and adding the following rule and axioms for the
connective says. (Standard notation: ` s means that s is provable without assump-
tions.)

` s
` k says s

(N)

` (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2)) (K)
` (k says s) ⊃ k′ says k says s (I)
` k says ((k says s) ⊃ s) (C)

Theorem 5.1 (Equivalence of proof systems). The above rule and axioms for says,
together with any axiomatization of intuitionistic first-order logic, are equivalent to
the sequent calculus for BL0, i.e., for any s and k without free variables, ` s if and

only if ·; · k−→ s true.

Proof. By simulating a proof in the sequent calculus in the axiomatic calculus and
viceversa. The technique is standard. For details see [17, Chapter 3].

Delegation in BL0. Our interpretation of the says connective allows for a very
intuitive representation of the following form of delegation, which appears repeatedly
in our case study: Principal k asserts that it will support the formula s if principal
k′ supports the formula s′, but principal k has no authority over s′. This delegation
can be represented in BL0 by the formula: k says ((k′ says s′) ⊃ s). Concretely, k
only needs to sign the formula “(k′ says s′) ⊃ s” with its private key to cause this
delegation. If k′ supports s′, i.e., k′ says s′, then we can easily derive k says s using
the axioms (I), (K) and the basic rule of modus ponens (if ` r ⊃ r′ and ` r, then
` r′):

1. By (I) on k′ says s′, derive k says k′ says s′.

2. By (K) on k says ((k′ says s′) ⊃ s) and modus ponens, derive (k says k′ says
s′) ⊃ (k says s).

3. By modus ponens on (2) and (1), derive k says s.

(A sequent calculus proof of the same fact is shown in Appendix B.)

24

Neither of the other two interpretations of says mentioned at the beginning of this
section allow for such an intuitive representation of this form of delegation. If k says ·
is interpreted as a normal necessitation modality as in [2, 24], then k says s cannot
be derived from k says ((k′ says s′) ⊃ s) and k′ says s′ because this interpretation
of says does not admit the axiom (I). The “correct” representation of delegation in
this logic is (k′ says s′) ⊃ (k says s), not k says ((k′ says s′) ⊃ s). However, unlike
the latter formula, the former formula does not have a top-level says connective, so
it not clear which principal’s signed certificate will establish the delegation.

If, instead, k says · is interpreted as a lax modality as in [1, 18], then we face a
different problem: In lax logic, from the delegation formula k says ((k′ says s′) ⊃ s)
and the formula k says s′ (not the formula (k′ says s′)), it is possible to derive
k says s. Thus principal k retains control over the formula s′, even as it delegates
the formula to k′, which may be undesirable, as in the following example from our
case study:

admin claims (((indi/has-background K topsecret) : -
BA says (indi/has-ssbi K T),
T ′ = (T + 5y)) @ [T, T ′]) ◦ [−∞,+∞].

In words, the principal admin says that principal K has topsecret clearance if a
person certified to check others’ background, BA, says that K has passed a SSBI
(single scope background investigation). Although the predicate (indi/has-ssbi
K T) has been delegated to BA by admin, the latter has no authority over this
predicate. Consequently, this rule cannot be represented easily if says were to be
interpreted as a lax modality. (Other, similar examples of delegation appear in
Section 6.)

In summary, our interpretation of the says connective allows for a very intuitive
and accurate representation of a specific and common form of delegation, which is
not the case in earlier authorization logics.

6 Case Study Revisited

We revisit the case study of U.S. policies for access to sensitive intelligence informa-
tion that was introduced in Section 2. In that section, we listed the top-level rules
for access to a sensitive intelligence file and mentioned that authorization to read
a classified file depends on the accessing individual possessing required clearances,
represented by the predicate (indi/has-clearances/file K F) in the second rule
of Section 2. In this section, we list the rules that define this predicate.

Verification of the predicate (indi/has-clearances/file K F) requires match-
ing attributes of the file F to attributes of the individual K. Attributes of file F
include its secrecy level (confidential, secret, or topsecret), citizenship requirements

25

for access, and compartments (projects or divisions) that F is associated with. To
access the file, K must have a secrecy clearance higher than that of the file, satisfy
the file’s citizenship requirements and be a member of all compartments the file is
associated with. In the following we describe these attributes and discuss the policy
rules that ascribe them to files and individuals. We start with a description of file
attributes (Section 6.1), then describe attributes of principals (Section 6.2), and
finally define the predicate (indi/has-clearances/file K F) (Section 6.3).

Notational conventions. We omit the suffix ◦ [−∞,+∞] from BL’s judgments,
abbreviating k claims s ◦ [−∞,+∞] to k claims s. As in Section 2, any variables in
uppercase letters (K, F , etc.) in s are implicitly universally quantified immediately
inside the prefix (k claims ·). (s : - s1, . . . , sn) denotes ((s1 ∧ . . . ∧ sn) ⊃ s). We
follow a descriptive naming convention for predicates. A predicate name has the
form entity/attribute/ . . ., where entity determines the entity whose attribute
the predicate describes and attribute is a description of the property the predicate
defines. Examples of entities are file and indi (individuals or principals). “. . .”
may be any other relevant qualifiers. Common among these qualifiers is h which
denotes a helper predicate that is used in the definition of the predicate without
the h. As before, state predicates are written in boldface. The principal admin
is the ultimate authority on all matters related to access and delegates part of its
authority to other principals using BL rules presented later.

6.1 File Classification

When a file is classified, credentials are issued to determine its classification at-
tributes, namely, its secrecy level, citizenship requirements for access, and its com-
partments. Each of these attributes must be established before the classified file can
be accessed.

- Secrecy level: The secrecy level of a file is an indicator of the sensitivity of the
contents of the file. It is one of confidential, secret, or topsecret, in increasing
order of sensitivity.3 Read access to a classified file is restricted to individuals
who have secrecy clearance at a level equal to or greater than the secrecy level
of the file.

- Citizenship requirement: A list of countries is associated with every classified
file. Access is restricted only to citizens of those countries, and to those of the

3There is another secrecy level called sbu (sensitive but unclassified), or “for official use only”.
Files at this level are not classified – sbu is merely a directive to officials to be more careful than
usual when handling such files. Therefore, we do not consider sbu in our formalization.

26

U.S. A commonly used abbreviation is “NOFORN” (no access to foreigners),
which corresponds to an empty list of countries.

- Associated compartments: A compartment is a description of the purpose
of a file, e.g., a project name or a division within the intelligence community.
Every classified file is associated with zero or more compartments. Read access
to a classified file is restricted only to those individuals who are associated
with all compartments that the file is associated with (and possibly other
compartments also).

The authority to decide which files need to be classified, and what secrecy level,
citizenship requirements, and associated compartments apply to a classified file
rests with very high ranking officers of the executive branch of the government
and their representatives. These individuals are called Original Classification Au-
thorities (OCAs). In our formal model, the predicate indi/is-oca O means that
principal O is an OCA.

Compartment attributes. A compartment is created by an OCA. The OCA
also fixes several compartment attributes that determine when an individual may
be cleared into the compartment. Of these attributes, we model three prominent
ones: (1) The minimum secrecy level at the which the individual must be cleared, (2)
The minimum level of background check the individual must pass, and (3) Whether
or not the individual has to pass a polygraph test. Formally, we define the predicate
compartment/is C L L′ B to mean that C is a valid compartment (in practice, C
is a unique string naming the compartment), clearance into which requires:

- A secrecy clearance at level L or higher.

- A background check equivalent to that needed for secrecy clearance at level
L′ or higher.

- A polygraph test if the Boolean B is yes. Alternatively, if B is no, then a
polygraph test is not necessary to be cleared into C.

Secrecy clearances, background checks and polygraph tests are described in Sec-
tion 6.2. The following rule delegates the authority to create compartments from
admin to every OCA O.

admin claims ((compartment/is C L L′ B) : -
indi/is-oca O,
O says (compartment/is C L L′ B)).

When a compartment is created it is assigned a special security officer (SSO), who
manages the compartment. Written guidelines that determine what can and what

27

cannot be classified into the compartment are also associated with the compartment.
These guidelines constitute the security classification guide (SCG) of the compart-
ment. In our formal model we abstract away the details of a SCG, and treat it only as
a symbolic constant. Let the predicate compartment/has-sso C S mean that prin-
cipal S is compartment C’s special security officer, and let (compartment/has-scg
C SCG) mean that SCG is the security classification guide of compartment C.

In the following, we discuss BL rules for determining the secrecy level, citizen-
ship requirements, and compartments associated with a file. The compartments
associated with a file must be decided first since they are necessary to authorize the
file’s secrecy level and its citizenship requirements.

Determining a file’s associated compartments. Let the predicate
file/has-compartments F CL mean that file F is associated with exactly the
compartments in the list CL. According to official guidelines, establishing this
predicate requires two kinds of approvals: (a) An approval from an OCA stating
that this should be the case, and (b) Approvals from the SSOs of all compartments
in the list CL stating that the file may be associated with all the compartments in
CL. Modeling the second requirement in BL is slightly tricky; we use a recursively
defined helper predicate file/has-compartments/h F CL CL′ which means that
the SSOs of all compartments in CL′ agree that F should be associated with all
compartments in CL. The following rule uses this predicate with CL′ = CL to
allow a file to be associated with a list of compartments CL.

admin claims ((file/has-compartments F CL) : -
indi/is-oca O,
O says (file/has-compartments F CL),
file/has-compartments/h F CL CL).

The following two rules define the helper predicate (file/has-compartments/h F CL
CL′) by induction on CL′. The symbol nil denotes the empty list and | is an infix
binary function that concatenates an element to a list.

admin claims (file/has-compartments/h F CL nil).

admin claims ((file/has-compartments/h F CL (C ′ | CL′)) : -
compartment/has-sso C ′ S,
S says (file/has-compartments F CL),
file/has-compartments/h F CL CL′).

The second rule above means that admin will trust that the SSOs of all compartments
in C ′ | CL′ agree that F should be associated with the compartments in CL if
(a) The SSO S of compartment C ′ agrees to this fact (first two conditions of the

28

rule) and (b) Recursively, the SSOs of all compartments in CL′ agree to this fact
(third condition).

Determining a file’s secrecy level. According to official guidelines, a file’s se-
crecy level may be set to L if: (a) An OCA says that this should be case, and
(b) The SSOs of all compartments associated with the file agree that the SCGs of
their respective compartments allow the file to be given secrecy level L. Formally,
let the predicate file/has-level F L mean that file F has secrecy level L, and
file/has-level/h F L CL mean that the SSOs of all compartments in the list CL
agree that F may be given secrecy level L in accordance with their respective SCGs.
Then, the following rule formalizes the above conditions for assigning the secrecy
level L to file F .

admin claims ((file/has-level F L) : - indi/is-oca O,
O says (file/has-level F L),
file/has-compartments F CL,
file/has-level/h F L CL).

The following two rules define the predicate file/has-level/h F L CL by induc-
tion on the list CL. The predicate file/has-level/scg F L SCG is intended to
mean that the security classification guide SCG mandates that file F be given se-
crecy level L.

admin claims (file/has-level/h F L nil).

admin claims ((file/has-level/h F L (C ′ | CL′)) : -
compartment/has-sso C ′ S,
compartment/has-scg C ′ SCG,
S says (file/has-level/scg F L SCG),
file/has-level/h F L CL′).

According to the second rule above, admin asserts that the SSOs of all compartments
in C ′ | CL′ agree that F should have secrecy level L if (a) The SSO S of C ′ states that
this assignment of level would be in accordance with the SCG of C ′ (third condition
of the rule), and (b) Recursively, the SSOs of all compartments in CL′ agree with this
assignment (fourth condition). It follows from these rules that if no compartments
are associated with a file F , i.e., if admin says (file/has-compartments F nil), then
an OCA O’s statement O says (file/has-level F L) suffices to give a security level
L to F .

The second rule above is another example of the kind of delegation mentioned in
Section 5.4 because the rule transfers authority over the predicate
file/has-level/scg from principal admin to principal S, but admin has no ju-
risdiction over the predicate.

29

Determining a file’s citizenship requirements. Determining the citizenship
requirements for reading a file is similar to determining the file’s secrecy level, so
we omit its details. Briefly, an OCA approves the list of countries to whose citizens
access must be restricted, and the SSOs of all compartments associated with the file
must certify that this list would be allowed by their respective SCGs. The predicate
file/has-citizenship F UL means that reading file F requires a citizenship of
one of the countries in the list UL (or of the U.S.).

Summary of file classification. In summary, classifying a file requires creden-
tials to determine associated compartments, its secrecy level and citizenship re-
quirements for access to it. These credentials are issued by various individuals
including an OCA and the SSO’s of all compartments the file is associated with. In
practice, any issued credential will be valid for only a stipulated duration of time.
For example, if an OCA O says that file F should have secrecy level L from 2009
to 2011, this would be represented in BL as (O claims (file/has-level F L)) ◦
[2009:01:01:00:00:00, 2011:12:31:23:59:59]. BL’s inference rules propagate these time
restrictions to other facts derived from the credentials and policy rules.

6.2 Individual Clearances

Individuals require clearance both at secrecy levels and into compartments, as well as
citizenship of specific countries to read classified files. We call these three primary
clearances of individuals. In order to obtain primary clearances, other auxiliary
clearances are needed. These include polygraph tests and background checks. In
this section we formalize the rules for obtaining auxiliary clearances, as well as rules
for combining them to determine primary clearances. We start with the auxiliary
clearances.

6.2.1 Auxiliary Clearances

Polygraph clearance. Individuals may have to pass a polygraph test to get clear-
ance into certain compartments. Polygraph tests are administered and certified by
trained individuals, whom we call polygraph administrators. The procedures for
identifying polygraph administrators are beyond the scope of our formalization; we
simply assume that the predicate indi/is-polygraph-admin PA means that prin-
cipal PA is a trusted polygraph administrator. Let indi/has-polygraph K mean
that principal K has passed a polygraph test. The following rule states that if PA is
a polygraph administrator, and PA says that K has passed a polygraph test, then
admin will trust the latter.

30

admin claims ((indi/has-polygraph K) : -
indi/is-polygraph-admin PA,
PA says (indi/has-polygraph K)).

Background checks. A background check is necessary to get clearance both at
secrecy levels and into compartments. There are two commonly used background
checks: (1) National Agency Check with Local Agency Check and Credit Check
or NACLC, and (2) Single Scope Background Investigation or SSBI. NACLC is an
investigation of an individual’s criminal records and credit history. SSBI includes
the NACLC and in addition requires interviews of colleagues and investigation of
family history. We assume that certain principals called background administrators
are certified to check others’ backgrounds.

From the perspective of formalization, it is very convenient to abstract back-
ground checks by the secrecy level for which they are mandatory. For example, a
background check at level confidential would correspond to a background check that
is needed to get clearance at secrecy level confidential. This abstraction is useful be-
cause official guidelines mandate that background checks expire after fixed intervals
of time that depend on the secrecy level for which the checks are conducted. The
actual check corresponding to each secrecy level and its expiration time is shown in
the table below.

Abstract level of background check Actual background check needed and
expiration

confidential NACLC, expires in 15 years
secret NACLC, expires in 10 years
topsecret SSBI, expires in 5 years

Let indi/is-background-adminBAmean that principalBA is a background admin-
istrator, i.e., certified to conduct background checks. Further, let indi/has-naclcK T
mean that principal K passed an NACLC at time T , and indi/has-ssbi K T mean
that principal K passed an SSBI at time T . The following rules define the predicate
indi/has-background K L, which means that principal K has a background check
that is needed for clearance at secrecy level L. There are three rules, one for each
possible value of L. A salient point to observe is the use of the @ connective for
automatically expiring background checks in accordance with the table above. The
symbol y following a number means “years”. Hence, 15y means 15 years. As an
example, the first rule below means that if BA is a background administrator and
BA states that K passed an NACLC at time T , then admin asserts that K has a
background check at level confidential in the interval [T, T + 15y].

31

admin claims (((indi/has-background K confidential) : -
indi/is-background-admin BA,
BA says (indi/has-naclc K T)) @ [T, T + 15y]).

admin claims (((indi/has-background K secret) : -
indi/is-background-admin BA,
BA says (indi/has-naclc K T)) @ [T, T + 10y]).

admin claims (((indi/has-background K topsecret) : -
indi/is-background-admin BA,
BA says (indi/has-ssbi K T)) @ [T, T + 5y]).

The remaining policy rules refer only to the predicate indi/has-background K L,
not to the predicates indi/has-naclc K T and indi/has-ssbi K T .

6.2.2 Primary Clearances

An individual’s clearance at a secrecy level, clearance into compartments, as well as
citizenship directly determine what classified files she has access to. We now describe
rules that define how clearances are determined. Let the predicate
indi/has-citizenship/list K UL mean that K is a citizen of at least one of
the countries in the list UL.

Clearance at secrecy levels. As mentioned earlier, an individual must pass a
background check at level L in order to get clearance at secrecy level L. In addition,
the individual must have a need to get the clearance. Since the factors determin-
ing this need are varied and are not completely specified, we simply assume that
the predicate indi/needs-level K L means that principal K has a need to get
clearance at secrecy level L. Let indi/has-level K L mean that individual K has
clearance at secrecy level L. level/below L L′ means that level L is below the level
L′ in the order confidential < secret < topsecret. It is defined later. The following
rule states that K has clearance at secrecy level L if K needs this clearance, and K
has passed a background check at some level L′ which is higher than L.

admin claims ((indi/has-level K L) : -
indi/needs-level K L,
indi/has-background K L′,
level/below L L′).

As explained earlier, the validity of indi/has-background K L′ is limited to 15, 10,
or 5 years depending on L′. The above rule and the inference rules of BL transfer the
same restrictions to indi/has-level K L. The predicate level/below is defined
by the following rules.

32

admin claims (level/below L L).

admin claims (level/below confidential secret).

admin claims (level/below secret topsecret).

admin claims (level/below confidential topsecret).

Clearance into compartments. To be cleared into a compartment, an indi-
vidual must satisfy all its requirements – secrecy level, background check, and a
polygraph test if needed. These requirements are uniquely determined from the
predicate compartment/is C L L′ B, which is established when the compart-
ment C is created (Section 6.1). Let the predicates indi/has-comp-level K C,
indi/has-comp-background K C, and indi/has-comp-polygraph K C mean that
an individual has clearance at an appropriate secrecy level, background check, and
polygraph check (if needed) for being cleared into compartment C. The following
rules define these predicates by considering respectively the 2nd, 3rd, and 4th argu-
ments of the predicate compartment/is C L L′ B. An underscore represents an
implicitly named variable, whose instantiated value is irrelevant to the rule.

admin claims ((indi/has-comp-level K C) : -
compartment/is C L ,
indi/has-level K L′′,
level/below L L′′).

admin claims ((indi/has-comp-background K C) : -
compartment/is C L′ ,
indi/has-background K L′′,
level/below L′ L′′).

admin claims ((indi/has-comp-polygraph K C) : -
compartment/is C yes,
indi/has-polygraph K).

admin claims ((indi/has-comp-polygraph K C) : -
compartment/is C no).

Using the above predicates, we define the predicate indi/has-compartment K C
which means that an individual K is cleared into the compartment C. An important
fact to observe here is that in addition to satisfying the three requirements of the
compartment, the SSO S of the compartment must certify the clearance, and, as in
the case of clearance at secrecy levels, the principal must actually need the clearance
(predicate indi/needs-compartment K C).

33

admin claims ((indi/has-compartment K C) : -
indi/needs-compartment K C
compartment/has-sso C S,
S says (indi/has-compartment K C),
indi/has-comp-level K C,
indi/has-comp-background K C,
indi/has-comp-polygraph K C).

Finally, the following two rules define a related, useful predicate
indi/has-compartment/list K CL which means that K is cleared into all com-
partments in the list CL.

admin claims (indi/has-compartment/list K nil).

admin claims ((indi/has-compartment/list K (C | CL)) : -
indi/has-compartment K C,
indi/has-compartment/list K CL).

6.3 Clearances to Classified Files

Building on predicates defined in the previous sections, we now provide rules that
define the central predicate (indi/has-clearances/file K F). First, we define
the following three auxiliary predicates using straightforward rules shown below:
(a) indi/has-level/file K F , which means that principal K has secrecy clear-
ance at a level higher than that of file F , (b) indi/has-comps/file K F , which
means that principal K is cleared into all compartments that F is associated with,
and (c) indi/has-cit/file K F , which means that principal K is a citizen of at
least one country in the citizenship requirement list of F .

admin claims ((indi/has-level/file K F) : -
file/has-level F L,
indi/has-level K L′,
level/below L L′).

admin claims ((indi/has-comps/file K F) : -
file/has-compartments F CL,
indi/has-compartment/list K CL).

admin claims ((indi/has-cit/file K F) : -
file/has-citizenship F UL,
indi/has-citizenship/list K UL).

admin claims ((indi/has-cit/file K F) : -
indi/has-citizenship K usa).

The last rule above means that any U.S. citizen satisfies the citizenship requirement
for reading a file, irrespective of the latter’s actual citizenship requirements. The

34

following rule defines the predicate indi/has-clearances/file K F using these
three predicates.

admin claims ((indi/has-clearances/file K F) : -
indi/has-level/file K F,
indi/has-comps/file K F,
indi/has-cit/file K F).

7 Related Work

Several formal frameworks for authorization policies allow for representation of state,
but no prior proposal has considered an integration of state and logic from a proof-
theoretic perspective. Perhaps closest to BL’s treatment of stateful atoms is the
Nexus Authorization Logic (NAL) [34] that is used for authorizing access in several
components of the Nexus operating system. NAL includes support for state predi-
cates in a manner similar to that stipulated in Section 3.2, i.e., the reference monitor
verifies certain predicates using trusted decision procedures that may refer to the
system state. Several other logic-based frameworks for representing authorization
policies [5, 8, 10, 25] do not make a distinction between constraints and state predi-
cates, and consequently support system state implicitly as part of their support for
constraints. However, we believe that maintaining this distinction is important from
the perspective of both implementation and reasoning about policies expressed in
logic.

There has also been some work on declarative languages and logics in which
authorization policies and state transitions can be represented and reasoned about
simultaneously [7, 9, 15]. In contrast, BL’s state predicates are meant to model situ-
ations where rules for state transitions are not specified. Some recent programming
languages, e.g., [11, 12], use type systems to enforce state-dependent authorization
policies that are represented in first-order logic. Stateful atoms are not distinguished
from others in the proof theory used in these languages.

The connective k says s has been included in several past proposals for writ-
ing access policies, starting with the work of Abadi et al [2]. The BL connective
s @ [u1, u2] is based on our prior work with DeYoung [14], and our treatment of
constraints goes further back to work on reconciling constraint domains and proof
theory of linear logic [22, 33]. Study of proof theory for authorization logics was
initiated in our prior work [18]. The present paper incorporates many ideas from
that work, especially the use of intuitionistic first-order logic as a foundation for
authorization policies.

35

8 Conclusion

A proof-theoretic treatment of state in an authorization logic requires careful design.
Part of the complication arises due to the well-understood difficulty of reconciling
external verification procedures with proof theory, but most of the design choices
arise in the interaction between state predicates and other features of authorization
logic, in particular, explicit time. The logic BL strikes a good balance in this design
space, as evident from its strong metatheoretic foundations and validation through
a realistic case study of policies for access to sensitive intelligence information in
the U.S. It makes several important design decision, e.g., it does not treat time as
a special case of state to improve expressiveness and limits the interaction between
state and time to avoid representation of unenforceable policies.

Several avenues remain for future work. We have not yet explored semantic
models of BL, e.g., standard Kripke models. We expect this to be interesting for
BL because its judgements include time intervals via the suffix ◦ [u1, u2] so it may
be possible to prove soundness and completeness over Kripke models whose possible
worlds are intervals of time. This would provide an independent justification to
some of our design choices with respect to time. The interpretation of state would
likely be non-obvious to remain consistent with our decision to treat i ◦ [u1, u2]
independent of the interval [u1, u2] for any stateful atom i.

A second, related avenue of future work is decidability problems for fragments
of BL. The entire logic BL is clearly undecidable because it is a superset of first-
order logic. However, because decision procedures could be practically useful in
implementing the logic, it would be useful to find decidable fragments of the logic
that are reasonably expressive.

Acknowledgments. This research was supported in part by the AFRL under
grant no. FA87500720028, and the iCAST project sponsored by the National Sci-
ence Council, Taiwan under grant no. NSC97-2745-P-001-001. The first author was
also supported by the AFOSR MURI “Collaborative Policies and Assured Infor-
mation Sharing.” We thank Denis Serenyi and Brian Witten for providing textual
descriptions of policies for the case study and for subsequent discussions on them.

References

[1] Mart́ın Abadi. Access control in a core calculus of dependency. Electronic Notes
in Theoretical Computer Science, 172:5–31, 2007. Computation, Meaning, and
Logic: Articles dedicated to Gordon Plotkin.

[2] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A

36

calculus for access control in distributed systems. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):706–734, 1993.

[3] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In
6th ACM Conference on Computer and Communications Security (CCS), pages
52–62, 1999.

[4] Kumar Avijit, Anupam Datta, and Robert Harper. Distributed programming
with distributed authorization. In Proceedings of the Fifth ACM Workshop on
Types in Language Design and Implementation (TLDI), 2009.

[5] Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD
thesis, Princeton University, 2003.

[6] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason
Rouse, and Peter Rutenbar. Device-enabled authorization in the Grey system.
In 8th Information Security Conference (ISC), pages 431–445, 2005.

[7] Moritz Y. Becker. Specification and analysis of dynamic authorisation policies.
In 22nd IEEE Computer Security Foundations Symposium (CSF), pages 203–
217, 2009.

[8] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and seman-
tics of a decentralized authorization language. In 20th IEEE Computer Security
Foundations Symposium, pages 3–15, 2007.

[9] Moritz Y. Becker and Sebastian Nanz. A logic for state-modifying authoriza-
tion policies. In 12th European Symposium on Research in Computer Security
(ESORICS), pages 203–218, 2008.

[10] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management ap-
plied to health records. In 17th IEEE Computer Security Foundations Workshop
(CSFW), pages 139–154, 2004.

[11] Johannes Borgström, Andrew D. Gordon, and Riccardo Pucella. Roles, stacks,
histories: A triple for Hoare. Technical Report MSR-TR-2009-97, Microsoft
Research, 2009.

[12] Niklas Broberg and David Sands. Paralocks: Role-based information flow con-
trol and beyond. SIGPLAN Notices, 45(1):431–444, 2010.

[13] John DeTreville. Binder, a logic-based security language. In Proceedings of
the IEEE 2002 Symposium on Security and Privacy (S&P’02), pages 105–113,
May 2002.

37

[14] Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic
with explicit time. In 21st IEEE Computer Security Foundations Symposium
(CSF), pages 133–145, 2008. Extended version available as Carnegie Mellon
University Technical Report CMU-CS-07-166.

[15] Henry DeYoung and Frank Pfenning. Reasoning about the consequences of
authorization policies in a linear epistemic logic, 2009. Workshop on Foun-
dations of Computer Security (FCS), http://www.cs.cmu.edu/~hdeyoung/

papers/fcs09.pdf.

[16] M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and
Computation, 137(1):1–33, August 1997.

[17] Deepak Garg. Proof Theory for Authorization Logic and Its Application to a
Practical File System. PhD thesis, Carnegie Mellon University, 2009. Available
as Technical Report CMU-CS-09-168. Online at http://www.mpi-sws.org/

~dg/papers.html.

[18] Deepak Garg and Frank Pfenning. Non-interference in constructive authoriza-
tion logic. In 19th Computer Security Foundations Workshop (CSFW), pages
283–293, 2006.

[19] Deepak Garg and Frank Pfenning. A proof-carrying file system. In Proceedings
of the 31st IEEE Symposium on Security and Privacy (Oakland), pages 349–
364, 2010.

[20] Deepak Garg, Frank Pfenning, Denis Serenyi, and Brian Witten. A logical
representation of common rules for controlling access to classified information.
Technical Report CMU-CS-09-139, Carnegie Mellon University, 2009. Available
online at http://www.mpi-sws.org/~dg/papers.html.

[21] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland,
1969.

[22] Limin Jia. Linear Logic and Imperative Programming. PhD thesis, Department
of Computer Science, Princeton University, 2008.

[23] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko,
Joseph Schorr, and Steve Zdancewic. Aura: A programming language for
authorization and audit. In Proceedings of the International Conference on
Functional Programming (ICFP), pages 27–38, 2008.

38

http://www.cs.cmu.edu/~hdeyoung/papers/fcs09.pdf
http://www.cs.cmu.edu/~hdeyoung/papers/fcs09.pdf
http://www.mpi-sws.org/~dg/papers.html
http://www.mpi-sws.org/~dg/papers.html
http://www.mpi-sws.org/~dg/papers.html

[24] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Au-
thentication in distributed systems: Theory and practice. ACM Transactions
on Computer Systems, 10(4):265–310, 1992.

[25] Ninghui Li, John C. Mitchell, and W.H. Winsborough. Design of a role-based
trust-management framework. In 23rd IEEE Symposium on Security and Pri-
vacy (Oakland), pages 114–130, 2002.

[26] Per Martin-Löf. On the meanings of the logical constants and the justifications
of the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[27] Office of the Director of Central Intelligence. DCID 1/19: Security policy for
sensitive compartmented information and security policy manual, 1995. http:
//www.fas.org/irp/offdocs/dcid1-19.html.

[28] Office of the Director of Central Intelligence. DCID 1/7: Security controls
on the dissemination of intelligence information, 1998. http://www.fas.org/

irp/offdocs/dcid1-7.html.

[29] Office of the Press Secretary of the White House. Executive order 12958: Classi-
fied national security information, 1995. http://www.fas.org/sgp/clinton/

eo12958.html.

[30] Office of the Press Secretary of the White House. Executive order 13292: Fur-
ther amendment to executive order 12958, as amended, classified national secu-
rity information, 2003. http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=

EO_13292_.

[31] Frank Pfenning. Structural cut elimination I. Intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, 2000.

[32] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001.

[33] Uluç Saranli and Frank Pfenning. Using constrained intuitionistic linear logic
for hybrid robotic planning problems. In International Conference on Robotics
and Automation (ICRA), pages 3705–3710, 2007.

[34] Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. Nexus Authorization
Logic (NAL): Design rationale and applications. ACM Transactions on Infor-
mation and System Security, 14(1):8:1–8:28, 2011.

39

http://www.fas.org/irp/offdocs/dcid1-19.html
http://www.fas.org/irp/offdocs/dcid1-19.html
http://www.fas.org/irp/offdocs/dcid1-7.html
http://www.fas.org/irp/offdocs/dcid1-7.html
http://www.fas.org/sgp/clinton/eo12958.html
http://www.fas.org/sgp/clinton/eo12958.html
http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=EO_13292_
http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=EO_13292_

A Inference Rules of BL

This appendix lists all the inference rules of BL’s sequent calculus (Section 3.3.1).

Σ; Ψ |= u′1 ≤ u1 Σ; Ψ |= u2 ≤ u′2
Σ; Ψ;E; Γ, p ◦ [u′1, u

′
2]

ν−→ p ◦ [u1, u2]
init

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2], s ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

ν = k, ub, ue Σ; Ψ |= u1 ≤ ub Σ; Ψ |= ue ≤ u2
Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]

ν−→ r ◦ [u′1, u
′
2]

claims

Σ; Ψ;E; Γ
ν−→ s ◦ [u1, u2]

Σ; Ψ;E; Γ
ν−→ (s @ [u1, u2]) ◦ [u′1, u

′
2]

@R

Σ; Ψ;E; Γ, s ◦ [u1, u2]
ν−→ r ◦ [u′′1, u

′′
2]

Σ; Ψ;E; Γ, (s @ [u1, u2]) ◦ [u′1, u
′
2]

ν−→ r ◦ [u′′1, u
′′
2]

@L

Σ;E |= i

Σ; Ψ;E; Γ
ν−→ i ◦ [u1, u2]

stateR
Σ; Ψ;E, i; Γ

ν−→ r ◦ [u′1, u
′
2]

Σ; Ψ;E; Γ, i ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

stateL

Σ; Ψ |= c

Σ; Ψ;E; Γ
ν−→ c ◦ [u1, u2]

consR
Σ; Ψ, c;E; Γ

ν−→ r ◦ [u′1, u
′
2]

Σ; Ψ;E; Γ, c ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

consL

Σ; Ψ;E; Γ↓ k,u1,u2−−−−→ s ◦ [u1, u2]

Σ; Ψ;E; Γ
ν−→ (k says s) ◦ [u1, u2]

saysR

Σ; Ψ;E; Γ, k claims s ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

Σ; Ψ;E; Γ, (k says s) ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

saysL

Σ, x1:time, x2:time; Ψ, u1 ≤ x1, x2 ≤ u2;E; Γ, s1 ◦ [x1, x2]
ν−→ s2 ◦ [x1, x2]

Σ; Ψ;E; Γ
ν−→ (s1 ⊃ s2) ◦ [u1, u2]

⊃R

Σ; Ψ;E; Γ, (s1 ⊃ s2) ◦ [u1, u2]
ν−→ s1 ◦ [u′1, u

′
2]

Σ; Ψ;E; Γ, (s1 ⊃ s2) ◦ [u1, u2], s2 ◦ [u′1, u
′
2]

ν−→ r ◦ [u′′1, u
′′
2]

Σ; Ψ |= u1 ≤ u′1 Σ; Ψ |= u′2 ≤ u2
Σ; Ψ;E; Γ, (s1 ⊃ s2) ◦ [u1, u2]

ν−→ r ◦ [u′′1, u
′′
2]

⊃L

40

Σ; Ψ;E; Γ
ν−→ s1 ◦ [u1, u2] Σ; Ψ;E; Γ

ν−→ s2 ◦ [u1, u2]

Σ; Ψ;E; Γ
ν−→ (s1 ∧ s2) ◦ [u1, u2]

∧R

Σ; Ψ;E; Γ, s1 ◦ [u1, u2], s2 ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

Σ; Ψ;E; Γ, (s1 ∧ s2) ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

∧L

Σ; Ψ;E; Γ
ν−→ > ◦ [u1, u2]

>R
Σ; Ψ;E; Γ,⊥ ◦ [u1, u2]

ν−→ r ◦ [u′1, u
′
2]
⊥L

Σ, x:σ; Ψ;E; Γ
ν−→ s ◦ [u1, u2]

Σ; Ψ;E; Γ
ν−→ (∀x:σ.s) ◦ [u1, u2]

∀R

Σ; Ψ;E; Γ, (∀x:σ.s) ◦ [u1, u2], s[t/x] ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2] Σ ` t : σ

Σ; Ψ;E; Γ, (∀x:σ.s) ◦ [u1, u2]
ν−→ r ◦ [u′1, u

′
2]

∀L

B Sequent Calculus Proof from Section 5.4

This appendix lists a BL0 sequent calculus proof of k says s from the hypotheses
k says ((k′ says s′) ⊃ s) and k′ says s′. We simplify notation slightly by abbreviating
the judgment s true to s. α is an arbitary principal. Proof branches labeled (Iden-
tity) are applications of the identity theorem for BL0 (analogue of Theorem 4.4 of
BL).

(Identity)

Σ; s′
k′−→ s′

Σ; k′ claims s′
k′−→ s′

claims

Σ; k′ claims s′
k−→ k′ says s′

saysR
(Identity)

Σ; s
k−→ s

Σ; (k′ says s′) ⊃ s, k′ claims s′
k−→ s

⊃L

Σ; k claims ((k′ says s′) ⊃ s), k′ claims s′
k−→ s

claims

Σ; k claims ((k′ says s′) ⊃ s), k′ claims s′
α−→ k says s

saysR

Σ; k says ((k′ says s′) ⊃ s), k′ says s′
α−→ k says s

saysL×2

41

	Introduction
	Case Study: Stateful Authorization by Example
	Formalizing State in BL
	Formalizing Policy Rules in BL

	The Logic BL: Syntax and Proof Theory
	BL0: First-order Logic and says Modality
	BL1: State Predicates
	BL: Explicit Time and @ Connective
	Proof Theory of BL
	Summary

	Metatheory of BL
	Discussion
	Enforcement of BL Policies
	Reasoning from Contradictory Constraints
	Time as a Special Case of State?
	Delegation with BL's says Connective

	Case Study Revisited
	File Classification
	Individual Clearances
	Auxiliary Clearances
	Primary Clearances

	Clearances to Classified Files

	Related Work
	Conclusion
	Inference Rules of BL
	Sequent Calculus Proof from Section 5.4

