Substructural Proofs as Automata

Frank Pfenning

Department of Computer Science Carnegie Mellon University

14th Asian Symposium on Programming Languages and Systems (APLAS 2016) Invited Talk Hanoi, Vietnam November 22, 2016

 \blacksquare For a constructive logic, relate:

- **Design of a language and logic for reasoning about its** programs go hand in hand
- \blacksquare Full synthesis takes place in type theory
- Considerable ingenuity may be required
- Best case: an isomorphism

Examples of Isomorphisms

Overview

- Subsingleton logic
- Proof reduction semantics
- Representing strings
- From transducers to proofs
- From proofs to transducers
- Two applications
- Full subsingleton logic
- 8 Encoding Turing machines
- Linear communicating automata

Subsingleton Logic

Fragment of linear logic with 0 or 1 antecedents

$$
\begin{array}{ll}\nA, B, C & ::= & A \oplus B \mid \mathbf{1} \mid A \otimes B \mid \perp \\
\Delta & ::= & \cdot \mid A\n\end{array}
$$

Rules for the \oplus , 1-fragment

$$
\frac{\Delta \vdash A \quad \Delta \vdash B \quad B \vdash C}{\Delta \vdash A \oplus B} \text{ } \Delta \vdash B \quad \Delta \vdash C
$$
\n
$$
\frac{\Delta \vdash A}{\Delta \vdash A \oplus B} \oplus R_1 \quad \frac{\Delta \vdash B}{\Delta \vdash A \oplus B} \oplus R_2 \quad \frac{A \vdash C \quad B \vdash C}{A \oplus B \vdash C} \oplus L
$$
\n
$$
\overline{\cdot \vdash 1} \quad 1R \quad \frac{\cdot \vdash C}{1 \vdash C} \quad 1L
$$

A Computational Interpretation

- Judgment $\Delta \vdash P : A$
- \blacksquare Δ and A are the left and right interface for process P
- Cut as (non-commutative!) parallel composition

$$
\frac{\Delta \vdash P : A \quad A \vdash Q : C}{\Delta \vdash (P \mid Q) : C} \text{ cut}_A
$$

 \blacksquare Identity as forwarding

$$
\overline{A\vdash \leftrightarrow :A} \text{ id}_A
$$

A process configuration Ω is an ordered parallel composition of processes with matching interface types

 $\Delta \vdash P_1 | P_2 | \ldots | P_n : A_n$

■ Computation for cut and identity

 cut : Ω_L | $(P \mid Q) \mid$ Ω_R $\;\longrightarrow$ $\;\Omega_L \mid$ $P \mid$ $\;Q \mid$ $\;\Omega_R$ $\hspace{.1cm}\text{id} \hspace{.1cm} : \hspace{.1cm} \Omega_L \hspace{.1cm} | \hspace{.1cm} (\leftrightarrow) \hspace{.1cm} | \hspace{.1cm} \Omega_R \hspace{.1cm} \longrightarrow \hspace{.1cm} \Omega_L \hspace{.1cm} | \hspace{.1cm} \Omega_R$

A process configuration Ω is an ordered parallel composition of processes with matching interface types

 $\Delta \vdash P_1 | P_2 | \ldots | P_n : A_n$

■ Computation for cut and identity

cut : $\Omega_L |_{\Lambda} (P |_{A} Q) |_{C} \Omega_R \longrightarrow \Omega_L |_{\Lambda} P |_{A} Q |_{C} \Omega_R$ $\hspace{.1cm}\text{id} \hspace{.1cm} : \hspace{.1cm} \Omega_L \hspace{.1cm} | \hspace{.1cm} (\leftrightarrow) \hspace{.1cm} | \hspace{.1cm} \Omega_R \hspace{.1cm} \longrightarrow \hspace{.1cm} \Omega_L \hspace{.1cm} | \hspace{.1cm} \Omega_R$

A process configuration Ω is an ordered parallel composition of processes with matching interface types

 $\Delta \vdash P_1 | P_2 | \ldots | P_n : A_n$

■ Computation for cut and identity

cut : $\Omega_L |_{\Lambda} (P |_{A} Q) |_{C} \Omega_R \longrightarrow \Omega_L |_{\Lambda} P |_{A} Q |_{C} \Omega_R$ id : $\Omega_L |_{A} (\leftrightarrow) |_{A} \Omega_R \longrightarrow \Omega_L |_{A} \Omega_R$

Cut Reduction as the Engine of Computation

- Consider when $\oplus R_i$ meets $\oplus L$
- \blacksquare \oplus L is prepared for either A or B to be true
- $\oplus R_1$ selects A, $\oplus R_2$ selects B
- Reduce principal cut to smaller cuts \sim

$$
\frac{\Delta\vdash A}{\Delta\vdash A\oplus B}\oplus R_1 \quad \frac{A\vdash C\quad B\vdash C}{A\oplus B\vdash C}\oplus L
$$

$$
\Delta\vdash C \quad \text{cut}_{A\oplus B}
$$

Cut Reduction as the Engine of Computation

- Consider when $\oplus R_i$ meets $\oplus L$
- \blacksquare \oplus L is prepared for either A or B to be true
- $\oplus R_1$ selects A, $\oplus R_2$ selects B
- Reduce principal cut to smaller cuts

$$
\frac{\Delta \vdash A \qquad \Delta \vdash A \oplus B \oplus R_1 \quad \frac{A \vdash C \quad B \vdash C}{A \oplus B \vdash C} \oplus L}{\Delta \vdash C} \text{cut}_{A \oplus B}
$$
\n
$$
\longrightarrow \frac{\Delta \vdash A \quad A \vdash C}{\Delta \vdash C} \text{cut}_{A}
$$

Plus symmetric version

Process Assignment and Reduction for $A \oplus B$

Process Assignment and Reduction for $A \oplus B$

 $⊪ ⊕R_i$ send, $⊕L$ receives $\Delta \vdash P : A$ $\Delta \vdash {\sf R}.{\pi}_1$; $P : {\sf A} \oplus {\sf B}$ $\oplus R_1$ $\Delta \vdash P : B$ $\Delta \vdash {\sf R}.{\pi}_2$; $P : {\sf A} \oplus {\sf B}$ $\oplus R_2$ $A \vdash Q_1 : C$ $B \vdash Q_2 : C$ $A \oplus B \vdash \mathsf{caseL}\, (\pi_1 \Rightarrow Q_1 \mid \pi_2 \Rightarrow Q_2) : C$ ⊕L

■ Computation rules (apply anywhere in a configuration)

 $(\mathsf{R}.\pi_1 : P) \mid \hspace{0.5cm} \textsf{caseL} \, (\pi_1 \Rightarrow Q_1 \mid \pi_2 \Rightarrow Q_2) \ \longrightarrow \ P \mid \hspace{0.2cm} Q_1$ $(\mathsf{R}.\pi_2 : P) \mid \quad \quad \textsf{caseL} \, (\pi_1 \Rightarrow Q_1 \mid \pi_2 \Rightarrow Q_2) \ \longrightarrow \ P \mid \ \ Q_2$

Process Assignment and Reduction for $A \oplus B$

 $⊪ ⊕R_i$ send, $⊕L$ receives $\Delta \vdash P : A$ $\Delta \vdash {\sf R}.{\pi}_1$; $P : {\sf A} \oplus {\sf B}$ $\oplus R_1$ $\Delta \vdash P : B$ $\Delta \vdash {\sf R}.{\pi}_2$; $P : {\sf A} \oplus {\sf B}$ $\oplus R_2$ $A \vdash Q_1 : C$ $B \vdash Q_2 : C$ $A \oplus B \vdash \mathsf{caseL}\, (\pi_1 \Rightarrow Q_1 \mid \pi_2 \Rightarrow Q_2) : C$ ⊕L

■ Computation rules (apply anywhere in a configuration)

$$
\begin{array}{ccc} \left(\mathsf{R}.\pi_1\text{ ; }P\right)|_{A\oplus B}\text{ caseL } (\pi_1\Rightarrow Q_1\mid \pi_2\Rightarrow Q_2) & \longrightarrow & P\mid_A Q_1 \\ \left(\mathsf{R}.\pi_2\text{ ; }P\right)|_{A\oplus B}\text{ caseL } (\pi_1\Rightarrow Q_1\mid \pi_2\Rightarrow Q_2) & \longrightarrow & P\mid_B Q_2 \end{array}
$$

Process Assignment and Reduction for 1

 \blacksquare 1R sends, 1L receives $\overline{\overline{}\vdots}$ $\overline{}$ $\overline{\$ $\cdot \vdash \mathsf{Q} : \mathsf{C}$ $\frac{1}{1 + \text{waitL}}$; Q : C $1L$

■ Computation rule

 $(\text{closeR}) |_1$ (waitL; Q) \longrightarrow Q

 \blacksquare In programming, need more than two branches

 A ::= $\bigoplus_{\ell \in L} {\ell : A_{\ell}} | 1 | \otimes_{\ell \in L} {\ell : A_{\ell}} | \perp$

Generalize rules straightforwardly

$$
\Delta \vdash P : A_k \quad (k \in L)
$$
\n
$$
\Delta \vdash R \cdot k ; P : \oplus_{\ell \in L} \{\ell : A_{\ell}\} \oplus R_k
$$
\n
$$
A_{\ell} \vdash Q_{\ell} : C \quad (\forall \ell \in L)
$$
\n
$$
\oplus_{\ell \in L} \{\ell : A_{\ell}\} \vdash \text{caseL } (\ell \Rightarrow Q_{\ell})_{\ell \in L} : C \quad \oplus L
$$

■ Computation rules (apply anywhere in a configuration)

$$
(\mathsf{R}.k;P) | \mathsf{caseL}(\ell \Rightarrow Q_{\ell})_{\ell \in L} \longrightarrow P | Q_{k}
$$

Summary of Process Reduction

- $P : \bigoplus_{\ell \in L} \{\ell : A_{\ell}\}\)$ sends $k \in L$, continues as A_k
- \blacksquare P : 1 sends closeR and terminates
- **Computation rules (apply anywhere in a configuration)**

$$
(P | Q) \longrightarrow P | Q
$$

\n
$$
(\leftrightarrow)
$$

\n
$$
(R.k ; P) | \text{ caseL} (\ell \Rightarrow Q_{\ell})_{\ell \in L} \longrightarrow P | Q_k
$$

\n
$$
(\text{closeR}) | (\text{waitL} ; Q) \longrightarrow Q
$$

Configurations are ordered: no explicit channels needed \sim for communication

- Symbols $a \in \Sigma$ as labels $a \in \Sigma$
- Strings as sequences of messages
- **Finish with endmarker \$ and close**

 $a_1 a_2 \ldots a_n$ ⁻¹ = R.a₁; R.a₂; ...; R.a_n; R.\$; closeR

 \blacksquare How do we type this?

- Symbols $a \in \Sigma$ as labels $a \in \Sigma$
- Strings as sequences of messages
- **Finish with endmarker \$ and close**

 $a_1 a_2 \ldots a_n$ ⁻¹ = R.a₁; R.a₂; ...; R.a_n; R.\$; closeR

- \blacksquare How do we type this?
- Need inductive type! For $\Sigma = \{a, b, ...\}$ we define

$$
string_{\Sigma} = \oplus \{a:?, b:?, ..., \$:?\}
$$

- Symbols $a \in \Sigma$ as labels $a \in \Sigma$
- Strings as sequences of messages
- **Finish with endmarker \$ and close**

 $a_1 a_2 \ldots a_n$ ⁻¹ = R.a₁; R.a₂; ...; R.a_n; R.\$; closeR

- \blacksquare How do we type this?
- Need inductive type! For $\Sigma = \{a, b, ...\}$ we define

string_{\overline{S}} = \oplus {a : string_{\overline{S}}, b : string_{\overline{S}}, ..., \$: ?}

- Symbols $a \in \Sigma$ as labels $a \in \Sigma$
- Strings as sequences of messages
- **Finish with endmarker \$ and close**

 $a_1 a_2 \ldots a_n$ ⁻¹ = R.a₁; R.a₂; ...; R.a_n; R.\$; closeR

- \blacksquare How do we type this?
- Need inductive type! For $\Sigma = \{a, b, ...\}$ we define

string_{\overline{S}} = \oplus {a : string_{\overline{S}}, b : string_{\overline{S}}, ..., \$: 1}

- Symbols $a \in \Sigma$ as labels $a \in \Sigma$
- Strings as sequences of messages
- **Finish with endmarker \$ and close**

 $a_1 a_2 \ldots a_n$ ⁻¹ = R.a₁; R.a₂; ...; R.a_n; R.\$; closeR

- \blacksquare How do we type this?
- Need inductive type! For $\Sigma = \{a, b, ...\}$ we define

$$
\begin{array}{rcl}\n\text{string}_{\Sigma} & = & \oplus \{a: \text{string}_{\Sigma}, b: \text{string}_{\Sigma}, \dots, \$: 1\} \\
& = & \oplus_{a \in \Sigma} \{a: \text{string}_{\Sigma}, \$: 1\}\n\end{array}
$$

- Symbols $a \in \Sigma$ as labels $a \in \Sigma$
- Strings as sequences of messages
- **Finish with endmarker \$ and close**

 $a_1 a_2 \ldots a_n$ ⁻¹ = R.a₁; R.a₂; ...; R.a_n; R.\$; closeR

- \blacksquare How do we type this?
- Need inductive type! For $\Sigma = \{a, b, ...\}$ we define

$$
string_{\Sigma} = \oplus \{a : string_{\Sigma}, b : string_{\Sigma}, \dots, \$\;:\; 1\}
$$

$$
= \oplus_{a \in \Sigma} \{a : string_{\Sigma}, \$\;:\; 1\}
$$

Sometimes omit the subscript Σ

A First Bijection

■ Representing strings

string $\mathbf{z} = \bigoplus_{a \in \Sigma} \{a : \text{string}_{\Sigma}, \$\ : \mathbf{1}\}\$ $[a_1 a_2 ... a_n] = R.a_1$; $R.a_2$; ...; $R.a_n$; $R.\$ \$; closeR

For a string w over alphabet Σ we have

 $\cdot \vdash \ulcorner w \urcorner$: string \leq

For any cut-free proof P , if

 $\cdot \vdash P$: string \sim

then $P = \sqrt{\ }w^{\dagger}$ for some string w over Σ

 \blacksquare There is a compositional bijection between strings and cut-free processes P : string

Subsequential Finite State Transducers

■ A subseqential finite state transducer (STM) starts in some initial state q_0 and

1 reads one symbol from an input string

- 2 writes zero or more symbols to an output string
- **3** transitions to the next state

Example: compressing each run of b 's into one b

As mixed string rewriting

$$
\begin{array}{ccc}\n a \, q_0 & \longrightarrow & q_0 \, a \\
 b \, q_0 & \longrightarrow & q_1 \, b \\
 \end{array}
$$

$$
\text{${\mathfrak s}$}_{{\mathfrak q}_0} \;\longrightarrow\; \text{${\mathfrak s}$}
$$

$$
a\,q_1\quad\longrightarrow\quad q_0\,a
$$

$$
b\,q_1\;\;\longrightarrow\;\;q_1
$$

 $\begin{array}{ccc} \sqrt[6]{\ast} & \mathfrak{g}_1 & \longrightarrow & \sqrt[6]{\ast} \end{array}$

SFTs as Processes

$$
Q_0 = \text{caseL} \text{ (} a \Rightarrow R.a \text{ ; } Q_0 \\ | \text{ } b \Rightarrow R.b \text{ ; } Q_1 \\ | \text{ } \text{\$} \Rightarrow R.\text{$$} \text{ ; } \text{waitL} \text{ ; closeR)} \\ Q_1 = \text{caseL} \text{ (} a \Rightarrow R.a \text{ ; } Q_0 \\ | \text{ } b \Rightarrow Q_1 \\ | \text{ } \text{\$} \Rightarrow R.\text{\$} \text{ ; } \text{waitL} \text{ ; closeR)} \end{array}
$$

As mixed string rewriting

$$
\begin{array}{rcl} a\,q_0 & \longrightarrow & q_0\,a \\ b\,q_0 & \longrightarrow & q_1\,b \end{array}
$$

$$
\begin{array}{ccccc}\n\mathfrak{g} & q_0 & \longrightarrow & \mathfrak{g}\n\end{array}
$$

$$
a q_1 \longrightarrow q_0 a
$$

$$
b\,q_1\;\;\longrightarrow\;\;q_1
$$

$$
\textcolor{gray}{\mathfrak{g}_{q_1}} \hspace{0.1cm} \longrightarrow \hspace{0.1cm} \textcolor{gray}{\mathfrak{g}}
$$

- Requires circular (coinductive) proofs [Santocanale 2001] [Fortier & Santocanale 2013] [Baelde, Doumane, & Saurin 2016]
- For fixed cut proofs (no cycle contains a cut), cut elimination yields cut-free circular proofs
- With arbitrary cuts, elimination may yield infinite proofs
- \blacksquare Here: circular proofs as mutually recursive process defns
- Computation (\sim cut elimination) will terminate if all process definitions are cut-free

SFTs Example 2: Incrementing a Bit String

- Example: Incrementing a bit string
- Least significant bit arrives first
- q_0 increments, q_1 copies

As mixed string rewriting

$$
\begin{array}{ccc}0\,q_0 & \longrightarrow & q_1\,1\\1 & & \end{array}
$$

$$
\begin{array}{ccc}1\,q_0 & \longrightarrow & q_0\,0 \\ \$\,q_0 & \longrightarrow & \$\,1\end{array}
$$

$$
0\ q_1\ \longrightarrow\ q_1\ 0
$$

$$
1\,q_1\;\;\longrightarrow\;\;q_1\,1
$$

$$
\textcolor{gray}{\mathfrak s}\, q_1\;\;\longrightarrow\;\; \textcolor{gray}{\mathfrak s}
$$

SFTs Example 2: Incrementing a Bit String

$$
Q_0 = \text{caseL} \left(0 \Rightarrow R.1 \, ; \, Q_1 \right.\newline \left.\begin{array}{l}\n | \, 1 \Rightarrow R.0 \, ; \, Q_0 \quad \qquad \downarrow \$ \Rightarrow R.1 \, ; \, R. \$ \, ; \, \text{waitL} \, ; \, \text{closeR} \end{array}\n\right)
$$
\n
$$
Q_1 = \text{caseL} \left(0 \Rightarrow R.0 \, ; \, Q_1 \quad \qquad \downarrow \$ \Rightarrow R.1 \, ; \, Q_1 \quad \qquad \downarrow \$ \Rightarrow R. \$ \, ; \, \text{waitL} \, ; \, \text{closeR} \right)
$$

As mixed string rewriting

$$
\begin{array}{ccc}\n0 q_0 & \longrightarrow & q_1 1 \\
1 q & \xrightarrow{\qquad} & q_1 \end{array}
$$

$$
\begin{array}{ccc}1\,q_0 & \longrightarrow & q_0\,0 \\ \$\,q_0 & \longrightarrow & \$\,1\end{array}
$$

$$
\begin{array}{ccc}0\,q_1 & \longrightarrow & q_1\,0 \\ 1\,q_1 & \longrightarrow & q_1\,1 \\ \$_{q_1}\end{array}
$$

A Second Bijection

Theorem (Representation of SFTs)

There is a bijection between SFTs T from Σ to Γ and cut-free, identity-free, circular processes P with

string_{\overline{Y}} \vdash P : string_Γ

such that

$$
\mathsf{S} w^R q_o \longrightarrow^* \mathsf{S} v^R \quad \text{iff} \quad \ulcorner w \urcorner \mid P \longrightarrow^* \ulcorner v \urcorner
$$

with corresponding steps.

A Second Bijection

Theorem (Representation of SFTs)

There is a bijection between SFTs T from Σ to Γ and cut-free, identity-free, circular processes P with

string_{Γ} \vdash P : string_{Γ}

such that

$$
\mathsf{S} w^R q_o \longrightarrow^* \mathsf{S} v^R \quad \text{iff} \quad \ulcorner w \urcorner \mid P \longrightarrow^* \ulcorner v \urcorner
$$

with corresponding steps.

- Technical condition on the operational semantics
	- **Either use asynchronous message passing**
	- or reduce under output prefixes (see paper)
	- or use an observer process to force computation

Processes as String Transducers

- Recall string $\Sigma = \bigoplus_{a \in \Sigma} \{a : \text{string}_{\Sigma}, \S : \mathbf{1}\}\$
- What can a cut-free, identity-free process P with string_{\overline{Y}} \vdash P : string_{Γ} do?
	- **Branch on a label received from the left**
		- If it receives $a \in \Sigma$, it recurses as string $\Sigma \vdash P'$: string
		- If it receives \$, it continues as $\mathbf{1} \vdash P'$: string_F
	- Send a label to the right
		- If it sends $a \in \Gamma$, it recurses as string $_{\Sigma} \vdash P'$: string_{Γ}
		- If it sends \$, it continus as string $_\Sigma \vdash P'$: $\mathbf{1}$
- $\mathbf{1} \vdash P$: string_Г can send finalizing output, then terminates
- **■** string_{\triangleright} \vdash P : **1** can finish reading input, then terminates

Asynchronous Output

■ Typed asynchronous output is already representable

Asynchronous Synchronous $R.k$; P $P | (R.k; \leftrightarrow)$ $\ldots |_{\Delta}(\mathsf{R}.k;\mathsf{P})\mid_{\oplus\mathsf{A}_{\ell}}\ldots \ \ldots |_{\Delta}\mathsf{P}\mid_{\mathsf{A}_{k}}(\mathsf{R}.k;\leftrightarrow)|_{\oplus\mathsf{A}_{\ell}}\ldots$

■ At the cost of one cut and one identity

Then $R.k$; \leftrightarrow represents a message

So $\sqrt{a} = R.a$; \leftrightarrow is possible

Works also for full session types [DeYoung et al. 2012]

 \blacksquare From synchronous to asynchronous by one commuting conversion and a cut/identity reduction

$$
P | (R.k; \leftrightarrow) \rightarrow R.k; (P | \leftrightarrow) \rightarrow R.k; P
$$

Composition of Transducers

Theorem (Cut Elimination [Fortier & Santocanale 2013])

If $\Delta \vdash P$: A and P is a fixed-cut circular proof then there is a cut-free circular proof Q with $\Delta \vdash Q : A$.

Theorem (Closure of SFTs under Composition)

If T and T' are two SFTs with appropriately matching alphabets, there there is an SFT T ; T' which applies T' to the output of T.

Proof.

Let P and P' be the corresponding fixed-cut proofs with $\operatorname{\sf string}_\Sigma \vdash P$: $\operatorname{\sf string}_\Gamma$ and $\operatorname{\sf string}_\Gamma \vdash P'$: $\operatorname{\sf string}_\Theta$. Then string $_\Sigma \vdash (P \mid P')$: string $_\Theta$ and, by cut elimination, there is cut-free proof Q with string ${}_{\Sigma} \vdash Q$: string ${}_{\Theta}$. Construct \mathcal{T} ; \mathcal{T}' from Q.

- For composition of SFTs, we can run their programs concurrently, passing messages between them from left to right
- We can establish a bijection between DFAs and processes

```
string<sub>\mathcal{F} \vdash P : \oplus \{\text{acc} : \mathbf{1}, \text{rej} : \mathbf{1}\}</sub>
```
By allowing multiple endmarkers instead of just \$, one theorem suffices (see paper)

- For type-checking, can assume for inputs and guarantee for outputs that they adhere to regular language specifications
- Example: no runs of b 's

$$
s_0 = \oplus \{a : s_0, b : s_1, \$: 1\}
$$

$$
s_1 = \oplus \{a : s_0, \$: 1\}
$$

Example: standard bit strings, without leading $0's$

$$
\begin{array}{rcl} \mathsf{std} & = & \oplus \{ \mathsf{0} : \mathsf{pos}, \mathsf{1} : \mathsf{std}, \mathsf{\$} : \mathbf{1} \} \\ \mathsf{pos} & = & \oplus \{ \mathsf{0} : \mathsf{pos}, \mathsf{1} : \mathsf{std} \end{array} \}
$$

Adding rules for $A \otimes B$

$$
\frac{\Delta\vdash A \quad \Delta\vdash B}{\Delta\vdash A\otimes B} \otimes R \qquad \frac{A\vdash C}{A\otimes B\vdash C} \otimes L_1 \quad \frac{B\vdash C}{A\otimes B\vdash C} \otimes L_2
$$

Now $&L_i$ send, $&R$ receives Labeled versions

$$
\frac{\Delta \vdash A_{\ell} \quad (\forall \ell \in L)}{\Delta \vdash \& \ell \in L \{\ell : A_{\ell}\}} \& R \qquad \frac{A_{k} \vdash C \quad (k \in L)}{\& \ell \in L \{\ell : A_{\ell}\} \vdash C}
$$

 $&L_k$

Completing the Process Language

New (symmetric) process expressions
\n
$$
\Delta \vdash P_{\ell} : A_{\ell} \quad (\forall \ell \in L)
$$
\n
$$
\Delta \vdash \text{caseR} \ (\ell \Rightarrow P_{\ell})_{\ell \in L} : \mathcal{B}_{\ell \in L} \{\ell : A_{\ell}\} \quad \mathcal{B}R
$$
\n
$$
\frac{A_{k} \vdash Q : C \quad (k \in L)}{\mathcal{B}_{\ell \in L} \{\ell : A_{\ell}\} \vdash L.k ; Q : C} \quad \mathcal{B}L_{k}
$$

New computation rule

$$
\mathsf{caseR} \, (\ell \Rightarrow P_\ell)_{\ell \in L} \mid (\mathsf{L} \mathsf{.k} \mathsf{;} \ Q) \longrightarrow P_k \mid Q
$$

Process expressions now:

$$
\begin{array}{rcl} P,Q & ::= & (P \mid Q) & \text{cut} \\ & | & \leftrightarrow & \text{id} \\ & \mathsf{R}.\mathsf{k} \text{ ; } P \mid \text{caseL} \ (\ell \Rightarrow Q_\ell)_{\ell \in L} \quad \oplus \\ & | & \text{closeR} \mid \text{waitL} \text{ ; } Q & \textbf{1} \\ & | & \text{caseR} \ (\ell \Rightarrow P_\ell)_{\ell \in L} \mid \mathsf{L}.\mathsf{k} \text{ ; } Q \quad \& \end{array}
$$

28 / 37

Turing Machines

- First: in mixed string rewriting form
- Transition function $\delta(q,a)=(q',b,$ left) or $(q',b,$ right)
- For each state q , we have two versions
	- q_l , looking left
	- q_R , looking right
- \blacksquare Transition rules

$$
a q_L \longrightarrow q'_L b \quad \text{if } \delta(q, a) = (q', b, \text{left})
$$
\n
$$
a q_L \longrightarrow b q'_R \quad \text{if } \delta(q, a) = (q', b, \text{right})
$$
\n
$$
\$ q_L \longrightarrow \$ _q_L \quad \text{for endmarker } \$, \text{ blank symbol } _
$$
\n
$$
q_R a \longrightarrow q'_L b \quad \text{if } \delta(q, a) = (q', b, \text{left})
$$
\n
$$
q_R a \longrightarrow b q'_R \quad \text{if } \delta(q, a) = (q', b, \text{right})
$$
\n
$$
q_R \$ \longrightarrow q_R _ \$ \quad \text{for endmarker } \$, \text{ blank symbol } _
$$

Turing Machines in Subsingleton Logic

Typing: we must be able to read symbols to the left and right of the read/write head

$$
\begin{array}{rcl}\n\text{tape}_{\Sigma} & = & \bigoplus_{a \in \Sigma} \{a : \text{tape}, \$: \mathbf{1}\} \\
\text{epat}_{\Sigma} & = & \bigotimes_{a \in \Sigma} \{a : \text{epat}, \$: \bot\}\n\end{array}
$$

Program encodes transition

$$
q_L = \text{caseL} \left(a \Rightarrow q'_L \mid (L.b; \leftrightarrow) \right) \quad \text{if } \delta(q, a) = (q', b, \text{left})
$$
\n
$$
\mid a' \Rightarrow (R.b'; \leftrightarrow) \mid q'_R \quad \text{if } \delta(q, a') = (q', b', \text{right})
$$
\n
$$
\mid \$\Rightarrow (R.\$\$; \leftrightarrow) \mid (R...; \leftrightarrow) \mid q_L\text{)}
$$
\n
$$
q_R = \text{caseR} \left(a \Rightarrow q'_L \mid (L.b; \leftrightarrow) \quad \text{if } \delta(q, a) = (q', b, \text{left})
$$
\n
$$
\mid a' \Rightarrow (R.b'; \leftrightarrow) \mid q'_R \quad \text{if } \delta(q, a') = (q', b', \text{right})
$$
\n
$$
\mid \$\Rightarrow (q_R \mid (L...; \leftrightarrow) \mid (L.\$\$; \leftrightarrow))
$$

 \blacksquare For halting state, see paper

- Proofs require embedded cuts, identity
- No longer satisfy circularity condition
	- **Proofs are recursive, not coinductive**
- Still, steps are simulated faithfully
- No isomorphism: many processes of the right type do not correspond to Turing machines
- Generalize Turing machine model!

A Concurrent Model: LCA

- **Linear Communicating Automata**
- Similar to Turing machines
	- \blacksquare Multiple read/write heads
	- Can spawn or terminate heads
- **Mixed string rewriting of configuration with arbitrary** interleaving of alphabet symbols and state symbols
- Distinguish 6 sets of states $q_{\{I,R\}}^{\{r,w\}}$ $\{L,R\}^{\{I,W\}}$, q_S , q_H

$$
\begin{array}{ccccccccc}\naq & \longrightarrow & q' & \text{read left} & \text{caseL}(\dots | a \Rightarrow Q' | \dots) \\
q & \longrightarrow & q' & \text{read right} & \text{caseR}(\dots | a \Rightarrow Q' | \dots) \\
q & \longrightarrow & aq' & \text{write left} & L.a ; Q' \\
q & \longrightarrow & q'a & \text{write right} & R.a ; Q' \\
q & \longrightarrow & q_1 q_2 & \text{spam} & (Q_1 | Q_2) \\
q & \longrightarrow & \cdot & \text{halt} & \leftrightarrow \text{or closeR or closeL}\n\end{array}
$$

LCAs can exhibit deadlock and race conditions

Potential deadlock q_L^r a q_R^r Potential race q_R^r a q_L^r

Use asynchronous representation of configuration

 $\lceil a \rceil = \lfloor a : \leftrightarrow \rceil$ or \sqrt{a} = R.a : \leftrightarrow

 \blacksquare Type LCAs like we would type their process expressions Concurrent, but no race conditions or deadlock

Linear communicating automata (LCAs) as concurrent Turing machines

- **Linear communicating automata (LCAs) as concurrent** Turing machines
- Subsingleton logic types LCAs, just as intuitionistic logic types λ -calculus
- Linear communicating automata (LCAs) as concurrent Turing machines
- Subsingleton logic types LCAs, just as intuitionistic logic types λ -calculus
	- **Types as regular languages and direction**
- Linear communicating automata (LCAs) as concurrent Turing machines
- Subsingleton logic types LCAs, just as intuitionistic logic types λ -calculus
	- **Types as regular languages and direction**
	- **Proofs as concurrent automata**
- Linear communicating automata (LCAs) as concurrent Turing machines
- Subsingleton logic types LCAs, just as intuitionistic logic types λ -calculus
	- **Types as regular languages and direction**
	- **Proofs as concurrent automata**
	- **Proof reduction as communication**
- Linear communicating automata (LCAs) as concurrent Turing machines
- Subsingleton logic types LCAs, just as intuitionistic logic types λ -calculus
	- **Types as regular languages and direction**
	- **Proofs as concurrent automata**
	- **Proof reduction as communication**
- **I** Isomorphism for subseq. finite-state transducers $(SFTs)$
- Linear communicating automata (LCAs) as concurrent Turing machines
- Subsingleton logic types LCAs, just as intuitionistic logic types λ -calculus
	- **Types as regular languages and direction**
	- **Proofs as concurrent automata**
	- **Proof reduction as communication**
- **I** Isomorphism for subseq. finite-state transducers $(SFTs)$
	- Use fixed-cut proofs only
	- **Encompasses deterministic finite state automata (DFAs)**
	- **Closure properties via cut elimination**
- Multiparty session types and communicating automata [Deniélou & Yoshida 2012]
- Undecidability of asynchronous session subtyping [Lange & Yoshida] [Bravetti, Carbone, & Zavattaro]
- Many other papers on session types [Honda 1993] [...]
- **Logical foundations of session types [Caires & Pf 2010]**
- Develop and apply subsingleton type theory to reason about automata
- Deterministic pushdown automata (DPDAs) and type constructors [DeYoung 2016]
- **Parallel cost semantics Silva & Pf 2016** and analysis
- Other constructions on automata via cut elimination
- Nondeterministic automata via redundant proofs
- Inductive/coinductive/recursive types
- \blacksquare Inductive/coinductive/recursive proofs

