
Substructural Proofs as Automata

Frank Pfenning

Department of Computer Science
Carnegie Mellon University

14th Asian Symposium on
Programming Languages and Systems (APLAS 2016)

Invited Talk
Hanoi, Vietnam

November 22, 2016

1 / 37

Church and Turing

Computation

Logic Synthesis

λ-Calculus

Intuitionistic Logic Proofs as Programs

[Church 1936]

[Heyting 1930] [Howard 1969]

Turing Machines

? ?

[Turing 1937]

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

2 / 37

Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines

? ?

[Turing 1937]

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

2 / 37

Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines ? ?

[Turing 1937]

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

2 / 37

Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines ? ?

[Turing 1937]

Linear Communicating

Subsingleton Logic

Substructural Proofs
Automata as Automata

[Santocanale 2001]

[this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

2 / 37

Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines ? ?

[Turing 1937]

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

2 / 37

Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines ? ?

[Turing 1937]

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

2 / 37

Curry-Howard Correspondence

For a constructive logic, relate:

Logic Computation

Proposition Type

Proof Program

Proof Reduction Computation

Design of a language and logic for reasoning about its
programs go hand in hand

Full synthesis takes place in type theory

Considerable ingenuity may be required

Best case: an isomorphism

3 / 37

Examples of Isomorphisms

Logic Computation
Intuitionistic axiomatic proofs Combinatory reduction

[Curry 1935]

Intuitionistic natural deduction Functional computation
[Howard 1969]

Temporal logic Partial evaluation
[Davies 1996]

S4 modal logic Staged computation
[Davies & Pf 1996]

Linear sequent calculus Concurrent computation
[Caires & Pf 2010] [Wadler 2012]

Fixed cut Finite state transduction
subsingleton logic [this paper]

4 / 37

Overview

1 Subsingleton logic

2 Proof reduction semantics

3 Representing strings

4 From transducers to proofs

5 From proofs to transducers

6 Two applications

7 Full subsingleton logic

8 Encoding Turing machines

9 Linear communicating automata

5 / 37

Subsingleton Logic

Fragment of linear logic with 0 or 1 antecedents

A,B ,C ::= A⊕ B | 1 | A N B | ⊥
∆ ::= · | A

Rules for the ⊕, 1-fragment

A ` A
idA

∆ ` B B ` C

∆ ` C
cutB

∆ ` A

∆ ` A⊕ B
⊕R1

∆ ` B

∆ ` A⊕ B
⊕R2

A ` C B ` C

A⊕ B ` C
⊕L

· ` 1
1R

· ` C

1 ` C
1L

6 / 37

A Computational Interpretation

Judgment ∆ ` P : A

∆ and A are the left and right interface for process P

Cut as (non-commutative!) parallel composition

∆ ` P : A A ` Q : C

∆ ` (P | Q) : C
cutA

Identity as forwarding

A ` ↔ : A
idA

7 / 37

Process Configurations

A process configuration Ω is an ordered parallel
composition of processes with matching interface types

∆ ` P1 | P2 | . . . | Pn : An

Computation for cut and identity

cut : ΩL |

∆

(P |

A

Q) |

C

ΩR −→ ΩL |

∆

P |

A

Q |

C

ΩR

id : ΩL |

A

(↔) |

A

ΩR −→ ΩL |

A

ΩR

8 / 37

Process Configurations

A process configuration Ω is an ordered parallel
composition of processes with matching interface types

∆ ` P1 | P2 | . . . | Pn : An

Computation for cut and identity

cut : ΩL |∆ (P |A Q) |C ΩR −→ ΩL |∆ P |A Q |C ΩR

id : ΩL |

A

(↔) |

A

ΩR −→ ΩL |

A

ΩR

8 / 37

Process Configurations

A process configuration Ω is an ordered parallel
composition of processes with matching interface types

∆ ` P1 | P2 | . . . | Pn : An

Computation for cut and identity

cut : ΩL |∆ (P |A Q) |C ΩR −→ ΩL |∆ P |A Q |C ΩR

id : ΩL |A (↔) |A ΩR −→ ΩL |A ΩR

8 / 37

Cut Reduction as the Engine of Computation

Consider when ⊕Ri meets ⊕L
⊕L is prepared for either A or B to be true

⊕R1 selects A, ⊕R2 selects B

Reduce principal cut to smaller cuts

∆ ` A

∆ ` A⊕ B
⊕R1

A ` C B ` C

A⊕ B ` C
⊕L

∆ ` C
cutA⊕B

−→
∆ ` A A ` C

∆ ` C
cutA

Plus symmetric version

9 / 37

Cut Reduction as the Engine of Computation

Consider when ⊕Ri meets ⊕L
⊕L is prepared for either A or B to be true

⊕R1 selects A, ⊕R2 selects B

Reduce principal cut to smaller cuts

∆ ` A

∆ ` A⊕ B
⊕R1

A ` C B ` C

A⊕ B ` C
⊕L

∆ ` C
cutA⊕B

−→
∆ ` A A ` C

∆ ` C
cutA

Plus symmetric version

9 / 37

Process Assignment and Reduction for A⊕ B

⊕Ri send, ⊕L receives

∆ ` P : A

∆ ` R.π1 ; P : A⊕ B
⊕R1

∆ ` P : B

∆ ` R.π2 ; P : A⊕ B
⊕R2

A ` Q1 : C B ` Q2 : C

A⊕ B ` caseL (π1 ⇒ Q1 | π2 ⇒ Q2) : C
⊕L

Computation rules (apply anywhere in a configuration)

(R.π1 ; P) |

A⊕B

caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |

A

Q1

(R.π2 ; P) |

A⊕B

caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |

B

Q2

10 / 37

Process Assignment and Reduction for A⊕ B

⊕Ri send, ⊕L receives

∆ ` P : A

∆ ` R.π1 ; P : A⊕ B
⊕R1

∆ ` P : B

∆ ` R.π2 ; P : A⊕ B
⊕R2

A ` Q1 : C B ` Q2 : C

A⊕ B ` caseL (π1 ⇒ Q1 | π2 ⇒ Q2) : C
⊕L

Computation rules (apply anywhere in a configuration)

(R.π1 ; P) |

A⊕B

caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |

A

Q1

(R.π2 ; P) |

A⊕B

caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |

B

Q2

10 / 37

Process Assignment and Reduction for A⊕ B

⊕Ri send, ⊕L receives

∆ ` P : A

∆ ` R.π1 ; P : A⊕ B
⊕R1

∆ ` P : B

∆ ` R.π2 ; P : A⊕ B
⊕R2

A ` Q1 : C B ` Q2 : C

A⊕ B ` caseL (π1 ⇒ Q1 | π2 ⇒ Q2) : C
⊕L

Computation rules (apply anywhere in a configuration)

(R.π1 ; P) |A⊕B caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |A Q1

(R.π2 ; P) |A⊕B caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |B Q2

10 / 37

Process Assignment and Reduction for 1

1R sends, 1L receives

· ` closeR : 1
1R

· ` Q : C

1 ` waitL ; Q : C
1L

Computation rule

(closeR) |1 (waitL ; Q) −→ Q

11 / 37

Generalize to Labeled Sum

In programming, need more than two branches

A ::= ⊕`∈L{` : A`} | 1 | N`∈L{` : A`} | ⊥

Generalize rules straightforwardly

∆ ` P : Ak (k ∈ L)

∆ ` R.k ; P : ⊕`∈L{` : A`}
⊕Rk

A` ` Q` : C (∀` ∈ L)

⊕`∈L{` : A`} ` caseL (`⇒ Q`)`∈L : C
⊕L

Computation rules (apply anywhere in a configuration)

(R.k ; P) | caseL (`⇒ Q`)`∈L −→ P | Qk

12 / 37

Summary of Process Reduction

P : ⊕`∈L{` : A`} sends k ∈ L, continues as Ak

P : 1 sends closeR and terminates

Computation rules (apply anywhere in a configuration)

(P | Q) −→ P | Q
(↔) −→ ·
(R.k ; P) | caseL (`⇒ Q`)`∈L −→ P | Qk

(closeR) | (waitL ; Q) −→ Q

Configurations are ordered: no explicit channels needed
for communication

13 / 37

Towards Automata: Representing Strings

Symbols a ∈ Σ as labels a ∈ Σ

Strings as sequences of messages

Finish with endmarker $ and close

pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$; closeR

How do we type this?

Need inductive type! For Σ = {a, b, . . .} we define

stringΣ = ⊕{a : ?, b : ?, . . . , $: ?}

= ⊕a∈Σ{a : stringΣ, $: 1}

Sometimes omit the subscript Σ

14 / 37

Towards Automata: Representing Strings

Symbols a ∈ Σ as labels a ∈ Σ

Strings as sequences of messages

Finish with endmarker $ and close

pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$; closeR

How do we type this?

Need inductive type! For Σ = {a, b, . . .} we define

stringΣ = ⊕{a : ?, b : ?, . . . , $: ?}

= ⊕a∈Σ{a : stringΣ, $: 1}

Sometimes omit the subscript Σ

14 / 37

Towards Automata: Representing Strings

Symbols a ∈ Σ as labels a ∈ Σ

Strings as sequences of messages

Finish with endmarker $ and close

pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$; closeR

How do we type this?

Need inductive type! For Σ = {a, b, . . .} we define

stringΣ = ⊕{a : stringΣ, b : stringΣ, . . . , $: ?}

= ⊕a∈Σ{a : stringΣ, $: 1}

Sometimes omit the subscript Σ

14 / 37

Towards Automata: Representing Strings

Symbols a ∈ Σ as labels a ∈ Σ

Strings as sequences of messages

Finish with endmarker $ and close

pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$; closeR

How do we type this?

Need inductive type! For Σ = {a, b, . . .} we define

stringΣ = ⊕{a : stringΣ, b : stringΣ, . . . , $: 1}

= ⊕a∈Σ{a : stringΣ, $: 1}

Sometimes omit the subscript Σ

14 / 37

Towards Automata: Representing Strings

Symbols a ∈ Σ as labels a ∈ Σ

Strings as sequences of messages

Finish with endmarker $ and close

pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$; closeR

How do we type this?

Need inductive type! For Σ = {a, b, . . .} we define

stringΣ = ⊕{a : stringΣ, b : stringΣ, . . . , $: 1}
= ⊕a∈Σ{a : stringΣ, $: 1}

Sometimes omit the subscript Σ

14 / 37

Towards Automata: Representing Strings

Symbols a ∈ Σ as labels a ∈ Σ

Strings as sequences of messages

Finish with endmarker $ and close

pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$; closeR

How do we type this?

Need inductive type! For Σ = {a, b, . . .} we define

stringΣ = ⊕{a : stringΣ, b : stringΣ, . . . , $: 1}
= ⊕a∈Σ{a : stringΣ, $: 1}

Sometimes omit the subscript Σ

14 / 37

A First Bijection

Representing strings

stringΣ = ⊕a∈Σ{a : stringΣ, $: 1}
pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$; closeR

For a string w over alphabet Σ we have

· ` pwq : stringΣ

For any cut-free proof P , if

· ` P : stringΣ

then P = pwq for some string w over Σ

There is a compositional bijection between strings and
cut-free processes P : string

15 / 37

Subsequential Finite State Transducers

A subseqential finite state transducer (STM) starts in
some initial state q0 and

1 reads one symbol from an input string
2 writes zero or more symbols to an output string
3 transitions to the next state

Example: compressing each run of b’s into one b

q0 q1

qf

a	|	a b	|	b

$ |	$

b	|	.

a	|	a

$	|	$

input︷ ︸︸ ︷
$ cn . . . c1 q

output︷ ︸︸ ︷
dk . . . d1

As mixed string rewriting

a q0 −→ q0 a
b q0 −→ q1 b
$ q0 −→ $

a q1 −→ q0 a
b q1 −→ q1

$ q1 −→ $
16 / 37

SFTs as Processes

Q0 = caseL (a⇒ R.a ; Q0

| b ⇒ R.b ; Q1

| $⇒ R.$; waitL ; closeR)
Q1 = caseL (a⇒ R.a ; Q0

| b ⇒ Q1

| $⇒ R.$; waitL ; closeR)

q0 q1

qf

a	|	a b	|	b

$ |	$

b	|	.

a	|	a

$	|	$

As mixed string rewriting

a q0 −→ q0 a
b q0 −→ q1 b
$ q0 −→ $

a q1 −→ q0 a
b q1 −→ q1

$ q1 −→ $
17 / 37

Circular Proofs

Requires circular (coinductive) proofs
[Santocanale 2001] [Fortier & Santocanale 2013]
[Baelde, Doumane, & Saurin 2016]

For fixed cut proofs (no cycle contains a cut), cut
elimination yields cut-free circular proofs

With arbitrary cuts, elimination may yield infinite proofs

Here: circular proofs as mutually recursive process defns

Computation (∼ cut elimination) will terminate if all
process definitions are cut-free

18 / 37

SFTs Example 2: Incrementing a Bit String

Example: Incrementing a bit string
Least significant bit arrives first
q0 increments, q1 copies

q0 q1

qf

1	|	0

$ |	$1

0	|	0

0 |	1

$	|	$

1 |	1

As mixed string rewriting

0 q0 −→ q1 1
1 q0 −→ q0 0
$ q0 −→ $ 1

0 q1 −→ q1 0
1 q1 −→ q1 1
$ q1 −→ $

19 / 37

SFTs Example 2: Incrementing a Bit String

Q0 = caseL (0⇒ R.1 ; Q1

| 1⇒ R.0 ; Q0

| $⇒ R.1 ; R.$; waitL ; closeR)
Q1 = caseL (0⇒ R.0 ; Q1

| 1⇒ R.1 ; Q1

| $⇒ R.$; waitL ; closeR)

q0 q1

qf

1	|	0

$ |	$1

0	|	0

0 |	1

$	|	$

1 |	1

As mixed string rewriting

0 q0 −→ q1 1
1 q0 −→ q0 0
$ q0 −→ $ 1

0 q1 −→ q1 0
1 q1 −→ q1 1
$ q1 −→ $

20 / 37

A Second Bijection

Theorem (Representation of SFTs)

There is a bijection between SFTs T from Σ to Γ and
cut-free, identity-free, circular processes P with

stringΣ ` P : stringΓ

such that

$wR qo −→∗ $vR iff pwq | P −→∗ pvq

with corresponding steps.

Technical condition on the operational semantics
Either use asynchronous message passing
or reduce under output prefixes (see paper)
or use an observer process to force computation

21 / 37

A Second Bijection

Theorem (Representation of SFTs)

There is a bijection between SFTs T from Σ to Γ and
cut-free, identity-free, circular processes P with

stringΣ ` P : stringΓ

such that

$wR qo −→∗ $vR iff pwq | P −→∗ pvq

with corresponding steps.

Technical condition on the operational semantics
Either use asynchronous message passing
or reduce under output prefixes (see paper)
or use an observer process to force computation

21 / 37

Processes as String Transducers

Recall stringΣ = ⊕a∈Σ{a : stringΣ, $: 1}
What can a cut-free, identity-free process P with
stringΣ ` P : stringΓ do?

Branch on a label received from the left

If it receives a ∈ Σ, it recurses as stringΣ ` P ′ : stringΓ

If it receives $, it continues as 1 ` P ′ : stringΓ

Send a label to the right

If it sends a ∈ Γ, it recurses as stringΣ ` P ′ : stringΓ

If it sends $, it continus as stringΣ ` P ′ : 1

1 ` P : stringΓ can send finalizing output, then terminates

stringΣ ` P : 1 can finish reading input, then terminates

22 / 37

Asynchronous Output

Typed asynchronous output is already representable

Asynchronous Synchronous

R.k ; P P | (R.k ;↔)

. . . |∆ (R.k ; P) |⊕A`
. |∆ P |Ak

(R.k ;↔) |⊕A`
. . .

At the cost of one cut and one identity

Then R.k ;↔ represents a message

So paq = R.a ;↔ is possible
Works also for full session types [DeYoung et al. 2012]

From synchronous to asynchronous by one commuting
conversion and a cut/identity reduction

P | (R.k ;↔) −→ R.k ; (P | ↔) −→ R.k ; P

23 / 37

Composition of Transducers

Theorem (Cut Elimination [Fortier & Santocanale 2013])

If ∆ ` P : A and P is a fixed-cut circular proof then there is a
cut-free circular proof Q with ∆ ` Q : A.

Theorem (Closure of SFTs under Composition)

If T and T ′ are two SFTs with appropriately matching
alphabets, there there is an SFT T ; T ′ which applies T ′ to
the output of T .

Proof.

Let P and P ′ be the corresponding fixed-cut proofs with
stringΣ ` P : stringΓ and stringΓ ` P ′ : stringΘ. Then
stringΣ ` (P | P ′) : stringΘ and, by cut elimination, there is
cut-free proof Q with stringΣ ` Q : stringΘ. Construct T ; T ′

from Q.
24 / 37

Encoding DFAs

For composition of SFTs, we can run their programs
concurrently, passing messages between them from left to
right

We can establish a bijection between DFAs and processes

stringΣ ` P : ⊕{acc : 1, rej : 1}

By allowing multiple endmarkers instead of just $, one
theorem suffices (see paper)

25 / 37

Regular Languages as Types

For type-checking, can assume for inputs and guarantee
for outputs that they adhere to regular language
specifications

Example: no runs of b’s

s0 = ⊕{a : s0, b : s1, $: 1}
s1 = ⊕{a : s0, $: 1}

Example: standard bit strings, without leading 0’s

std = ⊕{0 : pos, 1 : std, $: 1}
pos = ⊕{0 : pos, 1 : std }

26 / 37

Completing Subsingleton Logic

Adding rules for A N B

∆ ` A ∆ ` B

∆ ` A N B
NR

A ` C

A N B ` C
NL1

B ` C

A N B ` C
NL2

Now NLi send, NR receives

Labeled versions

∆ ` A` (∀` ∈ L)

∆ ` N`∈L{` : A`}
NR

Ak ` C (k ∈ L)

N`∈L{` : A`} ` C
NLk

27 / 37

Completing the Process Language

New (symmetric) process expressions

∆ ` P` : A` (∀` ∈ L)

∆ ` caseR (`⇒ P`)`∈L : N`∈L{` : A`}
NR

Ak ` Q : C (k ∈ L)

N`∈L{` : A`} ` L.k ; Q : C
NLk

New computation rule

caseR (`⇒ P`)`∈L | (L.k ; Q) −→ Pk | Q
Process expressions now:

P ,Q ::= (P | Q) cut
| ↔ id
| R.k ; P | caseL (`⇒ Q`)`∈L ⊕
| closeR | waitL ; Q 1
| caseR (`⇒ P`)`∈L | L.k ; Q N
| waitR ; P | closeL ⊥ (see paper)

28 / 37

Turing Machines

First: in mixed string rewriting form

Transition function δ(q, a) = (q′, b, left) or (q′, b, right)

For each state q, we have two versions

qL, looking left
qR , looking right

Transition rules

a qL −→ q′L b if δ(q, a) = (q′, b, left)
a qL −→ b q′R if δ(q, a) = (q′, b, right)
$ qL −→ $ qL for endmarker $, blank symbol

qR a −→ q′L b if δ(q, a) = (q′, b, left)
qR a −→ b q′R if δ(q, a) = (q′, b, right)
qR $ −→ qR $ for endmarker $, blank symbol

29 / 37

Turing Machines in Subsingleton Logic

Typing: we must be able to read symbols to the left and
right of the read/write head

tapeΣ = ⊕a∈Σ{a : tape, $: 1}
epatΣ = Na∈Σ{a : epat, $: ⊥}

Program encodes transition

qL = caseL (a⇒ q′L | (L.b ;↔) if δ(q, a) = (q′, b, left)
| a′ ⇒ (R.b′ ;↔) | q′R if δ(q, a′) = (q′, b′, right)
| $⇒ (R.$;↔) | (R. ;↔) | qL)

qR = caseR(a⇒ q′L | (L.b ;↔) if δ(q, a) = (q′, b, left)
| a′ ⇒ (R.b′ ;↔) | q′R if δ(q, a′) = (q′, b′, right)
| $⇒ (qR | (L. ;↔) | (L.$;↔))

For halting state, see paper

30 / 37

Turing Machines

Proofs require embedded cuts, identity

No longer satisfy circularity condition

Proofs are recursive, not coinductive

Still, steps are simulated faithfully

No isomorphism: many processes of the right type do not
correspond to Turing machines

Generalize Turing machine model!

31 / 37

A Concurrent Model: LCA

Linear Communicating Automata

Similar to Turing machines

Multiple read/write heads
Can spawn or terminate heads

Mixed string rewriting of configuration with arbitrary
interleaving of alphabet symbols and state symbols

Distinguish 6 sets of states q
{r ,w}
{L,R}, qS , qH

a q −→ q′ read left caseL (. . . | a⇒ Q ′ | . . .)
q a −→ q′ read right caseR (. . . | a⇒ Q ′ | . . .)
q −→ a q′ write left L.a ; Q ′

q −→ q′ a write right R.a ; Q ′

q −→ q1 q2 spawn (Q1 | Q2)
q −→ · halt ↔ or closeR or closeL

32 / 37

Well-Typed LCAs Don’t Go Wrong

LCAs can exhibit deadlock and race conditions

Potential deadlock qr
L a q

r
R

Potential race qr
R a qr

L

Use asynchronous representation of configuration

paq = L.a ;↔ or
paq = R.a ;↔

Type LCAs like we would type their process expressions

Concurrent, but no race conditions or deadlock

33 / 37

Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction
Proofs as concurrent automata
Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination

34 / 37

Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction
Proofs as concurrent automata
Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination

34 / 37

Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction

Proofs as concurrent automata
Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination

34 / 37

Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction
Proofs as concurrent automata

Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination

34 / 37

Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction
Proofs as concurrent automata
Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination

34 / 37

Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction
Proofs as concurrent automata
Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination

34 / 37

Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction
Proofs as concurrent automata
Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination

34 / 37

Further Related Work

Multiparty session types and communicating automata
[Deniélou & Yoshida 2012]

Undecidability of asynchronous session subtyping
[Lange & Yoshida] [Bravetti, Carbone, & Zavattaro]

Many other papers on session types [Honda 1993] [. . .]

Logical foundations of session types [Caires & Pf 2010]

35 / 37

Future Work

Develop and apply subsingleton type theory to reason
about automata

Deterministic pushdown automata (DPDAs) and type
constructors [DeYoung 2016]

Parallel cost semantics [Silva & Pf 2016] and analysis

Other constructions on automata via cut elimination

Nondeterministic automata via redundant proofs

Inductive/coinductive/recursive types

Inductive/coinductive/recursive proofs

36 / 37

Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines ? ?

[Turing 1937]

Subsingleton Logic?

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

37 / 37

Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines Some Restriction of ?

[Turing 1937] Subsingleton Logic?

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]

37 / 37

