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Church and Turing

Computation

Logic Synthesis

λ-Calculus

Intuitionistic Logic Proofs as Programs

[Church 1936]

[Heyting 1930] [Howard 1969]

Turing Machines

? ?

[Turing 1937]

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]
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Curry-Howard Correspondence

For a constructive logic, relate:

Logic Computation

Proposition Type

Proof Program

Proof Reduction Computation

Design of a language and logic for reasoning about its
programs go hand in hand

Full synthesis takes place in type theory

Considerable ingenuity may be required

Best case: an isomorphism
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Examples of Isomorphisms

Logic Computation
Intuitionistic axiomatic proofs Combinatory reduction

[Curry 1935]

Intuitionistic natural deduction Functional computation
[Howard 1969]

Temporal logic Partial evaluation
[Davies 1996]

S4 modal logic Staged computation
[Davies & Pf 1996]

Linear sequent calculus Concurrent computation
[Caires & Pf 2010] [Wadler 2012]

Fixed cut Finite state transduction
subsingleton logic [this paper]
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Overview

1 Subsingleton logic

2 Proof reduction semantics

3 Representing strings

4 From transducers to proofs

5 From proofs to transducers

6 Two applications

7 Full subsingleton logic

8 Encoding Turing machines

9 Linear communicating automata
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Subsingleton Logic

Fragment of linear logic with 0 or 1 antecedents

A,B ,C ::= A⊕ B | 1 | A N B | ⊥
∆ ::= · | A

Rules for the ⊕, 1-fragment

A ` A
idA

∆ ` B B ` C

∆ ` C
cutB

∆ ` A

∆ ` A⊕ B
⊕R1

∆ ` B

∆ ` A⊕ B
⊕R2

A ` C B ` C

A⊕ B ` C
⊕L

· ` 1
1R

· ` C

1 ` C
1L
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A Computational Interpretation

Judgment ∆ ` P : A

∆ and A are the left and right interface for process P

Cut as (non-commutative!) parallel composition

∆ ` P : A A ` Q : C

∆ ` (P | Q) : C
cutA

Identity as forwarding

A ` ↔ : A
idA
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Process Configurations

A process configuration Ω is an ordered parallel
composition of processes with matching interface types

∆ ` P1 | P2 | . . . | Pn : An

Computation for cut and identity

cut : ΩL |

∆

(P |

A

Q) |

C

ΩR −→ ΩL |

∆

P |

A

Q |

C

ΩR

id : ΩL |

A

(↔) |

A

ΩR −→ ΩL |

A

ΩR
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Cut Reduction as the Engine of Computation

Consider when ⊕Ri meets ⊕L
⊕L is prepared for either A or B to be true

⊕R1 selects A, ⊕R2 selects B

Reduce principal cut to smaller cuts

∆ ` A

∆ ` A⊕ B
⊕R1

A ` C B ` C

A⊕ B ` C
⊕L

∆ ` C
cutA⊕B

−→
∆ ` A A ` C

∆ ` C
cutA

Plus symmetric version
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Process Assignment and Reduction for A⊕ B

⊕Ri send, ⊕L receives

∆ ` P : A

∆ ` R.π1 ; P : A⊕ B
⊕R1

∆ ` P : B

∆ ` R.π2 ; P : A⊕ B
⊕R2

A ` Q1 : C B ` Q2 : C

A⊕ B ` caseL (π1 ⇒ Q1 | π2 ⇒ Q2) : C
⊕L

Computation rules (apply anywhere in a configuration)

(R.π1 ; P) |

A⊕B

caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |

A

Q1

(R.π2 ; P) |

A⊕B

caseL (π1 ⇒ Q1 | π2 ⇒ Q2) −→ P |

B

Q2
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Process Assignment and Reduction for 1

1R sends, 1L receives

· ` closeR : 1
1R

· ` Q : C

1 ` waitL ; Q : C
1L

Computation rule

(closeR) |1 (waitL ; Q) −→ Q
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Generalize to Labeled Sum

In programming, need more than two branches

A ::= ⊕`∈L{` : A`} | 1 | N`∈L{` : A`} | ⊥

Generalize rules straightforwardly

∆ ` P : Ak (k ∈ L)

∆ ` R.k ; P : ⊕`∈L{` : A`}
⊕Rk

A` ` Q` : C (∀` ∈ L)

⊕`∈L{` : A`} ` caseL (`⇒ Q`)`∈L : C
⊕L

Computation rules (apply anywhere in a configuration)

(R.k ; P) | caseL (`⇒ Q`)`∈L −→ P | Qk

12 / 37



Summary of Process Reduction

P : ⊕`∈L{` : A`} sends k ∈ L, continues as Ak

P : 1 sends closeR and terminates

Computation rules (apply anywhere in a configuration)

(P | Q) −→ P | Q
(↔) −→ ·
(R.k ; P) | caseL (`⇒ Q`)`∈L −→ P | Qk

(closeR) | (waitL ; Q) −→ Q

Configurations are ordered: no explicit channels needed
for communication
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Towards Automata: Representing Strings

Symbols a ∈ Σ as labels a ∈ Σ

Strings as sequences of messages

Finish with endmarker $ and close

pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$ ; closeR

How do we type this?

Need inductive type! For Σ = {a, b, . . .} we define

stringΣ = ⊕{a : ?, b : ?, . . . , $ : ?}

= ⊕a∈Σ{a : stringΣ, $ : 1}

Sometimes omit the subscript Σ
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A First Bijection

Representing strings

stringΣ = ⊕a∈Σ{a : stringΣ, $ : 1}
pa1 a2 . . . anq = R.a1 ; R.a2 ; . . . ; R.an ; R.$ ; closeR

For a string w over alphabet Σ we have

· ` pwq : stringΣ

For any cut-free proof P , if

· ` P : stringΣ

then P = pwq for some string w over Σ

There is a compositional bijection between strings and
cut-free processes P : string
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Subsequential Finite State Transducers

A subseqential finite state transducer (STM) starts in
some initial state q0 and

1 reads one symbol from an input string
2 writes zero or more symbols to an output string
3 transitions to the next state

Example: compressing each run of b’s into one b

q0 q1

qf

a	|	a b	|	b

$ |	$

b	|	.

a	|	a

$	|	$

input︷ ︸︸ ︷
$ cn . . . c1 q

output︷ ︸︸ ︷
dk . . . d1

As mixed string rewriting

a q0 −→ q0 a
b q0 −→ q1 b
$ q0 −→ $

a q1 −→ q0 a
b q1 −→ q1

$ q1 −→ $
16 / 37



SFTs as Processes

Q0 = caseL ( a⇒ R.a ; Q0

| b ⇒ R.b ; Q1

| $⇒ R.$ ; waitL ; closeR)
Q1 = caseL ( a⇒ R.a ; Q0

| b ⇒ Q1

| $⇒ R.$ ; waitL ; closeR)

q0 q1

qf

a	|	a b	|	b

$ |	$

b	|	.

a	|	a

$	|	$

As mixed string rewriting

a q0 −→ q0 a
b q0 −→ q1 b
$ q0 −→ $

a q1 −→ q0 a
b q1 −→ q1

$ q1 −→ $
17 / 37



Circular Proofs

Requires circular (coinductive) proofs
[Santocanale 2001] [Fortier & Santocanale 2013]
[Baelde, Doumane, & Saurin 2016]

For fixed cut proofs (no cycle contains a cut), cut
elimination yields cut-free circular proofs

With arbitrary cuts, elimination may yield infinite proofs

Here: circular proofs as mutually recursive process defns

Computation (∼ cut elimination) will terminate if all
process definitions are cut-free
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SFTs Example 2: Incrementing a Bit String

Example: Incrementing a bit string
Least significant bit arrives first
q0 increments, q1 copies

q0 q1

qf

1	|	0

$ |	$1

0	|	0

0 |	1

$	|	$

1 |	1

As mixed string rewriting

0 q0 −→ q1 1
1 q0 −→ q0 0
$ q0 −→ $ 1

0 q1 −→ q1 0
1 q1 −→ q1 1
$ q1 −→ $
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SFTs Example 2: Incrementing a Bit String

Q0 = caseL ( 0⇒ R.1 ; Q1

| 1⇒ R.0 ; Q0

| $⇒ R.1 ; R.$ ; waitL ; closeR)
Q1 = caseL ( 0⇒ R.0 ; Q1

| 1⇒ R.1 ; Q1

| $⇒ R.$ ; waitL ; closeR)

q0 q1

qf

1	|	0

$ |	$1

0	|	0

0 |	1

$	|	$

1 |	1

As mixed string rewriting

0 q0 −→ q1 1
1 q0 −→ q0 0
$ q0 −→ $ 1

0 q1 −→ q1 0
1 q1 −→ q1 1
$ q1 −→ $
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A Second Bijection

Theorem (Representation of SFTs)

There is a bijection between SFTs T from Σ to Γ and
cut-free, identity-free, circular processes P with

stringΣ ` P : stringΓ

such that

$wR qo −→∗ $vR iff pwq | P −→∗ pvq

with corresponding steps.

Technical condition on the operational semantics
Either use asynchronous message passing
or reduce under output prefixes (see paper)
or use an observer process to force computation
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Processes as String Transducers

Recall stringΣ = ⊕a∈Σ{a : stringΣ, $ : 1}
What can a cut-free, identity-free process P with
stringΣ ` P : stringΓ do?

Branch on a label received from the left

If it receives a ∈ Σ, it recurses as stringΣ ` P ′ : stringΓ

If it receives $, it continues as 1 ` P ′ : stringΓ

Send a label to the right

If it sends a ∈ Γ, it recurses as stringΣ ` P ′ : stringΓ

If it sends $, it continus as stringΣ ` P ′ : 1

1 ` P : stringΓ can send finalizing output, then terminates

stringΣ ` P : 1 can finish reading input, then terminates

22 / 37



Asynchronous Output

Typed asynchronous output is already representable

Asynchronous Synchronous

R.k ; P P | (R.k ;↔)

. . . |∆ (R.k ; P) |⊕A`
. . . . . . |∆ P |Ak

(R.k ;↔) |⊕A`
. . .

At the cost of one cut and one identity

Then R.k ;↔ represents a message

So paq = R.a ;↔ is possible
Works also for full session types [DeYoung et al. 2012]

From synchronous to asynchronous by one commuting
conversion and a cut/identity reduction

P | (R.k ;↔) −→ R.k ; (P | ↔) −→ R.k ; P
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Composition of Transducers

Theorem (Cut Elimination [Fortier & Santocanale 2013])

If ∆ ` P : A and P is a fixed-cut circular proof then there is a
cut-free circular proof Q with ∆ ` Q : A.

Theorem (Closure of SFTs under Composition)

If T and T ′ are two SFTs with appropriately matching
alphabets, there there is an SFT T ; T ′ which applies T ′ to
the output of T .

Proof.

Let P and P ′ be the corresponding fixed-cut proofs with
stringΣ ` P : stringΓ and stringΓ ` P ′ : stringΘ. Then
stringΣ ` (P | P ′) : stringΘ and, by cut elimination, there is
cut-free proof Q with stringΣ ` Q : stringΘ. Construct T ; T ′

from Q.
24 / 37



Encoding DFAs

For composition of SFTs, we can run their programs
concurrently, passing messages between them from left to
right

We can establish a bijection between DFAs and processes

stringΣ ` P : ⊕{acc : 1, rej : 1}

By allowing multiple endmarkers instead of just $, one
theorem suffices (see paper)
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Regular Languages as Types

For type-checking, can assume for inputs and guarantee
for outputs that they adhere to regular language
specifications

Example: no runs of b’s

s0 = ⊕{a : s0, b : s1, $ : 1}
s1 = ⊕{a : s0, $ : 1}

Example: standard bit strings, without leading 0’s

std = ⊕{0 : pos, 1 : std, $ : 1}
pos = ⊕{0 : pos, 1 : std }
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Completing Subsingleton Logic

Adding rules for A N B

∆ ` A ∆ ` B

∆ ` A N B
NR

A ` C

A N B ` C
NL1

B ` C

A N B ` C
NL2

Now NLi send, NR receives

Labeled versions

∆ ` A` (∀` ∈ L)

∆ ` N`∈L{` : A`}
NR

Ak ` C (k ∈ L)

N`∈L{` : A`} ` C
NLk

27 / 37



Completing the Process Language

New (symmetric) process expressions

∆ ` P` : A` (∀` ∈ L)

∆ ` caseR (`⇒ P`)`∈L : N`∈L{` : A`}
NR

Ak ` Q : C (k ∈ L)

N`∈L{` : A`} ` L.k ; Q : C
NLk

New computation rule

caseR (`⇒ P`)`∈L | (L.k ; Q) −→ Pk | Q
Process expressions now:

P ,Q ::= (P | Q) cut
| ↔ id
| R.k ; P | caseL (`⇒ Q`)`∈L ⊕
| closeR | waitL ; Q 1
| caseR (`⇒ P`)`∈L | L.k ; Q N
| waitR ; P | closeL ⊥ (see paper)
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Turing Machines

First: in mixed string rewriting form

Transition function δ(q, a) = (q′, b, left) or (q′, b, right)

For each state q, we have two versions

qL, looking left
qR , looking right

Transition rules

a qL −→ q′L b if δ(q, a) = (q′, b, left)
a qL −→ b q′R if δ(q, a) = (q′, b, right)
$ qL −→ $ qL for endmarker $, blank symbol

qR a −→ q′L b if δ(q, a) = (q′, b, left)
qR a −→ b q′R if δ(q, a) = (q′, b, right)
qR $ −→ qR $ for endmarker $, blank symbol

29 / 37



Turing Machines in Subsingleton Logic

Typing: we must be able to read symbols to the left and
right of the read/write head

tapeΣ = ⊕a∈Σ{a : tape, $ : 1}
epatΣ = Na∈Σ{a : epat, $ : ⊥}

Program encodes transition

qL = caseL ( a⇒ q′L | (L.b ;↔) if δ(q, a) = (q′, b, left)
| a′ ⇒ (R.b′ ;↔) | q′R if δ(q, a′) = (q′, b′, right)
| $⇒ (R.$ ;↔) | (R. ;↔) | qL)

qR = caseR( a⇒ q′L | (L.b ;↔) if δ(q, a) = (q′, b, left)
| a′ ⇒ (R.b′ ;↔) | q′R if δ(q, a′) = (q′, b′, right)
| $⇒ (qR | (L. ;↔) | (L.$ ;↔))

For halting state, see paper
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Turing Machines

Proofs require embedded cuts, identity

No longer satisfy circularity condition

Proofs are recursive, not coinductive

Still, steps are simulated faithfully

No isomorphism: many processes of the right type do not
correspond to Turing machines

Generalize Turing machine model!

31 / 37



A Concurrent Model: LCA

Linear Communicating Automata

Similar to Turing machines

Multiple read/write heads
Can spawn or terminate heads

Mixed string rewriting of configuration with arbitrary
interleaving of alphabet symbols and state symbols

Distinguish 6 sets of states q
{r ,w}
{L,R}, qS , qH

a q −→ q′ read left caseL (. . . | a⇒ Q ′ | . . .)
q a −→ q′ read right caseR (. . . | a⇒ Q ′ | . . .)
q −→ a q′ write left L.a ; Q ′

q −→ q′ a write right R.a ; Q ′

q −→ q1 q2 spawn (Q1 | Q2)
q −→ · halt ↔ or closeR or closeL

32 / 37



Well-Typed LCAs Don’t Go Wrong

LCAs can exhibit deadlock and race conditions

Potential deadlock qr
L a q

r
R

Potential race qr
R a qr

L

Use asynchronous representation of configuration

paq = L.a ;↔ or
paq = R.a ;↔

Type LCAs like we would type their process expressions

Concurrent, but no race conditions or deadlock
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Summary, in Reverse

Linear communicating automata (LCAs) as concurrent
Turing machines

Subsingleton logic types LCAs, just as intuitionistic logic
types λ-calculus

Types as regular languages and direction
Proofs as concurrent automata
Proof reduction as communication

Isomorphism for subseq. finite-state transducers (SFTs)

Use fixed-cut proofs only
Encompasses deterministic finite state automata (DFAs)
Closure properties via cut elimination
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Further Related Work

Multiparty session types and communicating automata
[Deniélou & Yoshida 2012]

Undecidability of asynchronous session subtyping
[Lange & Yoshida] [Bravetti, Carbone, & Zavattaro]

Many other papers on session types [Honda 1993] [. . . ]

Logical foundations of session types [Caires & Pf 2010]
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Future Work

Develop and apply subsingleton type theory to reason
about automata

Deterministic pushdown automata (DPDAs) and type
constructors [DeYoung 2016]

Parallel cost semantics [Silva & Pf 2016] and analysis

Other constructions on automata via cut elimination

Nondeterministic automata via redundant proofs

Inductive/coinductive/recursive types

Inductive/coinductive/recursive proofs
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Church and Turing

Computation Logic Synthesis

λ-Calculus Intuitionistic Logic Proofs as Programs

[Church 1936] [Heyting 1930] [Howard 1969]

Turing Machines ? ?

[Turing 1937]

Subsingleton Logic?

Linear Communicating Subsingleton Logic Substructural Proofs
Automata as Automata

[Santocanale 2001] [this paper]

Subsequential Finite Fixed Cut
State Transducers Subsingleton Logic [this paper]
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