On the Role of Proof Theory in Automated Deduction

Frank Pfenning

Department of Computer Science Carnegie Mellon University

25th International Conference on Automated Deduction (CADE-25) Special Session on the Past, Present and Future of Automated Deduction Berlin, Germany August 3, 2015

- Theorem proving by refutation of negation
- Can be understood as attempt to construct a model
 - Highly successful for classical logic (Herbrand models)
 - Applied also to nonclassical logics (Kripke models)
- Requires deep understanding of model theory
- Proof extraction may be difficult

Theorem proving by direct proof construction
 Immediately applicable to nonclassical logics
 Requires deep understanding of proof theory
 Proof is primary artifact

Applications of Nonclassical Logics in CS

- A personal and biased sampling
- Propositions as types, proofs as programs
 - Intuitionistic logic and type theory [Martin-Löf'80]
 - Staged computation, run-time code generation (JS4) [Davies & Pf'96]
 - Monadic encapsulation (lax logic) [Fairtlough & Mendler'97]
 - Partial evaluation (temporal logic) [Davies'96]
 - Message-passing concurrency (linear logic) [Caires & Pf'10] [Toninho'15]
- Reasoning about programs
 - Dynamic logic [Pratt'74]
 - Temporal logics [Pnueli'77] [Clarke & Emerson'80]
 - Separation logic [O'Hearn & Pym'99] [Reynolds'02]
- Security
 - Authorization logics [Garg et al.'06]
 - Protocol logics [Datta et al.'03]

- **1** Present a logic as a deductive system amenable to search
- 2 Iterate
 - Devise an equivalent system with less nondeterminism
 - Don't-know nondeterminism: reduce backtracking
 - Don't-care nondeterminism: reduce redundancy
- **3** Exploit techniques for efficient implementation

Past: How to define a logic

- Sequent calculus [Gentzen'35]
- Harmony [Dummett'76] [Martin-Löf'83]
- Present: How to reduce nondeterminism in search
 - Focusing and polarization [Andreoli'92] [Laurent'99]
- **Future**: How to combine logics
 - Adjunctions [Benton'94] [Reed'09]

Running Example: Linear Logic

- Logical hypotheses as resources [Girard'87]
- Exemplify techniques in a deceptively simple setting
- Model-theoretic techniques not easily available
- Many applications in computer science
 - Planning as (linear) theorem proving [Bibel'85]
 - Close cousin to separation logic [Reynolds'02]
 - Quantum computation [van Tonder'03]
 - Message-passing concurrency [Caires & Pf'10] [Toninho'15]

Logic Definition: Proof-Theoretic Semantics

Gerhard Gentzen [1935]

The introduction [rules of natural deduction] represent, as it were, the 'definitions' of the symbols concerned, and the eliminations are no more, in the final analysis, than the consequences of these definitions.

In a slight departure, we use his sequent calculus

• Antecedents $\Delta ::= \bullet \mid \Delta, A$ (modulo exchange)

Linear hypothetical judgment

$\Delta \vdash A$

Using antecedents in Δ exactly once, we can prove that A is true

- Use justifies truth (id)
- Truth justifies use (cut)

$$\frac{}{A \vdash A} \operatorname{id}_A \qquad \frac{\Delta_1 \vdash A \quad \Delta_2, A \vdash C}{\Delta_1, \Delta_2 \vdash C} \operatorname{cut}_A$$

- Cut elimination: Any deduction can be transformed into one not using the rule of cut
- Identity elimination: Any deduction can be transformed into one using identity id_a only for atomic propositions a

Right rules for connectives define how to prove them
Left rules for connectives define how to use them
Example: linear implication A -- B

$$\frac{\Delta, A \vdash B}{\Delta \vdash A \multimap B} \multimap R \qquad \frac{\Delta_1 \vdash A \quad \Delta_2, B \vdash C}{\Delta_1, \Delta_2, A \multimap B \vdash C} \multimap L$$

- They must be in local harmony
 - Truth justifies use (cut reduction)
 - Use justifies truth (identity expansion)

Cut Reduction

$$\frac{\Delta, A \vdash B}{\Delta \vdash A \multimap B} \multimap R \quad \frac{\Delta_1 \vdash A \quad \Delta_2, B \vdash C}{\Delta_1, \Delta_2, A \multimap B \vdash C} \underset{\mathsf{Cut}_{A \multimap B}}{\multimap L}$$

$$\implies_{R} \frac{\begin{array}{c} \Delta_{1} \vdash A \quad \Delta, A \vdash B \\ \hline \Delta, \Delta_{1} \vdash B \end{array} \operatorname{cut}_{A} \quad \Delta_{2}, B \vdash C \\ \hline \Delta, \Delta_{1}, \Delta_{2} \vdash C \end{array} \operatorname{cut}_{B}$$

Identity Expansion

$$\frac{\overline{A \vdash A} \quad id_A \quad \overline{B \vdash B} \quad id_B}{A \multimap B \vdash A \multimap B} \implies_E \quad \frac{\overline{A \vdash A} \quad id_A \quad \overline{B \vdash B} \quad \multimap L}{A \multimap B \vdash A \multimap B} \stackrel{\multimap L}{\multimap R}$$

Second sample linear connective: external choice $A \otimes B$

$$\frac{\Delta \vdash A \quad \Delta \vdash B}{\Delta \vdash A \otimes B} \otimes R$$

$$\frac{\Delta, A \vdash C}{\Delta, A \otimes B \vdash C} \otimes L_1 \qquad \frac{\Delta, B \vdash C}{\Delta, A \otimes B \vdash C} \otimes L_2$$

Locally, satisfies cut reduction and identity expansionGlobally, satisfies cut and identity elimination

Cut-Free System

- Compositional meaning explanation of $A \multimap B$, $A \otimes B$
- Subformula property; independence of connectives
- Basis for simple proof construction algorithm
- Complete by cut and identity elimination

$$\frac{1}{a \vdash a} \operatorname{id}_a$$

 $\frac{\Delta, A \vdash B}{\Delta \vdash A \multimap B} \multimap R \qquad \frac{\Delta_1 \vdash A \quad \Delta_2, B \vdash C}{\Delta_1, \Delta_2, A \multimap B \vdash C} \multimap L$

$$\frac{\Delta \vdash A \quad \Delta \vdash B}{\Delta \vdash A \otimes B} \otimes R$$

 $\frac{\Delta, A \vdash C}{\Delta, A \otimes B \vdash C} \otimes L_1 \qquad \frac{\Delta, B \vdash C}{\Delta, A \otimes B \vdash C} \otimes L_2$

$$\frac{}{a \multimap (b \otimes c), b \multimap c \vdash a \multimap c} ?$$

$$\frac{\overline{a, a \multimap (b \otimes c), b \multimap c \vdash c}}{a \multimap (b \otimes c), b \multimap c \vdash a \multimap c} \stackrel{?}{\multimap} R$$

$$\frac{\overline{a \vdash a} ? \qquad \overline{b \otimes c, b \multimap c \vdash c}}{a, a \multimap (b \otimes c), b \multimap c \vdash c} \stackrel{?}{\multimap} L$$

$$\frac{a \vdash a}{a \multimap (b \otimes c), b \multimap c \vdash c} \stackrel{\frown}{\multimap} R$$

$$\frac{\overline{a \vdash a} \operatorname{id}_{a} \overline{b \otimes c, b \multimap c \vdash c}}{a, a \multimap (b \otimes c), b \multimap c \vdash c} \stackrel{?}{\multimap} L$$

$$\frac{a \vdash a}{a \multimap (b \otimes c), b \multimap c \vdash c} \stackrel{\frown}{\multimap} L$$

$$\frac{\overline{a \vdash a} \operatorname{id}_{a} \frac{\overline{b, b \multimap c \vdash c}}{b \otimes c, b \multimap c \vdash c}}{a, a \multimap (b \otimes c), b \multimap c \vdash c} \xrightarrow{?} {\otimes L_{1}} {\circ L_{1}} {\circ L_{2}}$$

$$\frac{\overline{b \vdash b}}{a \vdash a}, \frac{\overline{b \vdash b}}{b, b \multimap c \vdash c}, \frac{\overline{c \vdash c}}{c \vdash c}, \frac{1}{c \vdash c},$$

$$\frac{\overline{b \vdash b} \operatorname{id}_{b} \overline{c \vdash c}}{a \vdash a} \stackrel{?}{\underset{b, b \multimap c \vdash c}{ \to c \vdash c}}{\stackrel{a \vdash a}{\xrightarrow{b \land b}} \stackrel{a \vdash a \lor c \vdash c}{\stackrel{b \land b \multimap c \vdash c}{\xrightarrow{b \land c \vdash c}}} \stackrel{- \circ L}{\underset{a \land a \multimap (b \And c), b \multimap c \vdash c}{ \to c \vdash c}} \stackrel{- \circ L}{\underset{a \multimap (b \And c), b \multimap c \vdash a \multimap c}{ \to c \vdash a \multimap c}}$$

$$\frac{\overline{b \vdash b} \quad id_b \quad \overline{c \vdash c}}{a \vdash a} \quad id_a \quad \frac{\overline{b \vdash b} \quad id_b \quad \overline{c \vdash c}}{b \land b \multimap c \vdash c} \quad \stackrel{\circ L}{\otimes L_1}$$

$$\frac{\overline{a \vdash a} \quad id_a \quad \overline{b \land c \land b \multimap c \vdash c}}{a \land a \multimap (b \land c), b \multimap c \vdash c} \quad \stackrel{\circ L}{\longrightarrow}$$

Forward Proof Construction

Inverse method [Gentzen'35] [Maslov'64] [Mints'81]
Step 1: specialize rules to subformulas of end sequent

$$a \multimap (b \otimes c), b \multimap c \vdash a \multimap c$$

$$\overline{a \vdash a} \operatorname{id}_{a} \qquad \overline{b \vdash b} \operatorname{id}_{b} \qquad \overline{c \vdash c} \operatorname{id}_{c}$$

$$\frac{\Delta, b \vdash \gamma}{\Delta, b \otimes c \vdash \gamma} \otimes L_{1} \qquad \frac{\Delta, c \vdash \gamma}{\Delta, b \otimes c \vdash \gamma} \otimes L_{2}$$

$$\frac{\Delta_{1} \vdash a \quad \Delta_{2}, b \otimes c \vdash \gamma}{\Delta_{1}, \Delta_{2}, a \multimap b \otimes c \vdash \gamma} \multimap L$$

$$\frac{\Delta_{1} \vdash b \quad \Delta_{2}, c \vdash \gamma}{\Delta_{1}, \Delta_{2}, b \multimap c \vdash \gamma} \multimap L \qquad \frac{\Delta, a \vdash c}{\Delta \vdash a \multimap c} \multimap R$$

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

а	\vdash	а	$1 = id_{a}$
b	\vdash	b	$2 = id_b$
С	\vdash	С	$3 = id_c$

-

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

а	\vdash	а	$1 = id_a$
Ь	\vdash	b	$2 = id_b$
С	\vdash	с	$3 = id_c$
b & c	\vdash	b	$4 = \& L_1(2)$

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

a ⊢ a	$1 = id_a$
$b \vdash b$	$2 = id_b$
$c \vdash c$	$3 = id_c$
$b \otimes c \vdash b$	$4 = \& L_1(2)$
$b \& c \vdash c$	$5 = \&L_2(3)$

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

а	\vdash	а	$1 = id_a$
Ь	\vdash	Ь	$2 = id_b$
С	\vdash	с	$3 = id_c$
b & c	\vdash	b	$4 = \&L_1(2)$
b & c	\vdash	С	$5 = \&L_2(3)$
b, b —∘ c	\vdash	С	$6 = - \circ L(2,3)$

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

а	\vdash	а	$1 = id_a$
Ь	\vdash	b	$2 = id_b$
С	\vdash	с	$3 = id_c$
b & c	\vdash	b	$4 = \& L_1(2)$
b & c	\vdash	С	$5 = \&L_2(3)$
b, b —∘ c	\vdash	С	$6=-\circ L(2,3)$
a, a → (b & c)	F	b	$7 = -\circ L(1, 4)$

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

а	\vdash	а	$1 = id_a$
b	\vdash	b	$2 = \mathrm{id}_b$
С	\vdash	С	$3 = id_c$
<i>b</i> & <i>c</i>	\vdash	b	$4 = \& L_1(2)$
b & c	\vdash	С	$5 = \&L_2(3)$
$b, b \multimap c$	\vdash	С	$6=\multimap L(2,3)$
$a, a \multimap (b \otimes c)$	\vdash	b	$7 = - \circ L(1, 4)$
$a, a \multimap (b \otimes c)$	\vdash	С	$8 = -\circ L(1,5)$

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

- Step 2: Apply just these rule instances, arbitrarily
- Subformulas, left: $b \otimes c$, $a \multimap (b \otimes c)$, $b \multimap c$
- Subformulas, right: *a* → *c*

Summary: Past

- Sequent calculus [Gentzen'35]
- Define connectives by right rules (how to prove) and left rules (how to use)
- Should satisfy harmony [Dummett'76]
 - Global harmony: cut and identity elimination
 - Local harmony: cut reduction and identity expansion
- Per Martin-Löf [1983]

The meaning of a proposition is determined by what it is to verify it, or what counts as a verification of it.

- Cut-free sequent calculus as basis for proof search
 - Backwards, with backtracking proof search
 - Forwards, based on specialized inference rules

■ Past: How to define a logic

- Sequent calculus [Gentzen'35]
- Harmony [Dummett'76] [Martin-Löf'83]
- Present: How to reduce nondeterminism in search
 - Focusing and polarization [Andreoli'92] [Laurent'99]
- **Future**: How to combine logics
 - Adjunctions [Benton'94] [Reed'09]

- Much nondeterminism remains
- Backward search (don't-know)
 - At each step: which rule do we try?
 - Backtrack upon failure
- Forward search (don't-care)
 - At each step: which (specialized) rule do we apply?
 - Generate useless and redundant sequents

Observations: Inversion and Focusing

 We can always decompose some connectives without losing provability (inversion)

$$\frac{\Delta, A \vdash B}{\Delta \vdash A \multimap B} \multimap R \qquad \left[\begin{array}{ccc} & & & \text{id}_A & & \text{id}_B \\ & & & A \vdash A & & B \vdash B \\ & & & & A \multimap B \vdash B \\ & & & & A, A \multimap B \vdash B \\ & & & & & A, A \vdash B \end{array} \right] \circ L$$

 Other connectives require a choice, but we can combine successive choices on the same formula (focusing)

$$\frac{\Delta, A \vdash D}{\overline{\Delta}, A \otimes (B \otimes C) \vdash D} \otimes L_{1}$$

$$\frac{\Delta, B \vdash D}{\overline{\Delta}, A \otimes (B \otimes C) \vdash D} \otimes L_{21} \quad \frac{\Delta, C \vdash D}{\overline{\Delta}, A \otimes (B \otimes C) \vdash D} \otimes L_{22}$$
Negative and Positive Connectives

Negative connectives have invertible right rule

- Involve some choice on the left
- Positive connectives have invertible left rule
 - Involve some choice on the right

Segregate in syntax to exploit inversion and focusing

$$\begin{array}{rrrr} \text{Negative} & A^- & ::= & A_1^+ \multimap A_2^- \mid A_1^- \otimes A_2^- \mid \top \mid a^- & \mid \uparrow A^+ \\ \text{Positive} & A^+ & ::= & A_1^+ \otimes A_2^+ \mid \mathbf{1} \mid A_1^+ \oplus A_2^+ \mid \mathbf{0} \mid a^+ \mid \downarrow A^- \end{array}$$

- Glimpse at other linear connectives $(\top, \otimes, \mathbf{1}, \oplus, \mathbf{0})$
- Shifts ↑A⁺ and ↓A⁻ ensure every formula can be polarized
 - Minimal polarization exists
 - Assign atoms arbitrary consistent polarity

Re-engineering Deduction, Inversion Phase

- $\Delta \vdash A$ for polarized focused deduction
- Inversion phase: break down negatives on right and positives on left (confluent)

$$\frac{\Delta, A^{+} \Vdash B^{-}}{\Delta \Vdash A^{+} \multimap B^{-}} \multimap R \qquad \frac{\Delta \Vdash A^{-} \quad \Delta \Vdash B^{-}}{\Delta \Vdash A^{-} \otimes B^{-}} \otimes R$$
$$\frac{\Delta \twoheadleftarrow A^{+}}{\Delta \Vdash \uparrow A^{+}} \uparrow R \qquad \frac{\Delta, A^{-} \Vdash C}{\Delta, \downarrow A^{-} \Vdash C} \downarrow L$$

Suspend atoms during inversion

$$\frac{\Delta \Vdash \langle a^{-} \rangle}{\Delta \Vdash a^{-}} \langle \rangle^{-} \qquad \frac{\Delta, \langle a^{+} \rangle \Vdash C}{\Delta, a^{+} \Vdash C} \langle \rangle^{+}$$

Stable antecedents \$\Delta^- ::= • | \Delta^-, \mathcal{A}^- | \Delta^-, \langle a^+ \rangle\$
Stable succedents \$\gamma^+ ::= \mathcal{A}^+ | \langle a^- \rangle\$

Re-engineering Deduction, Inversion Phase

- $\blacksquare \Delta \Vdash A$ for polarized focused deduction
- Inversion phase: break down negatives on right and positives on left (confluent)

$$\frac{\Delta, A^{+} \Vdash B^{-}}{\Delta \Vdash A^{+} \multimap B^{-}} \multimap R \qquad \frac{\Delta \Vdash A^{-} \quad \Delta \Vdash B^{-}}{\Delta \Vdash A^{-} \otimes B^{-}} \otimes R$$
$$\Delta \Vdash A^{+} \Rightarrow P \qquad \Delta, A^{-} \Vdash \gamma$$

 $\Delta, \downarrow A^- \Vdash \gamma^{\downarrow L}$ Suspend atoms during inversion

 $\Delta \Vdash \uparrow A^+$

$$\frac{\Delta \Vdash \langle a^{-} \rangle}{\Delta \Vdash a^{-}} \langle \rangle^{-} \qquad \frac{\Delta, \langle a^{+} \rangle \Vdash \gamma}{\Delta, a^{+} \Vdash \gamma} \langle \rangle^{+}$$

Stable antecedents $\Delta^- ::= \bullet \mid \Delta^-, A^- \mid \Delta^-, \langle a^+ \rangle$ Stable succedents $\gamma^+ ::= A^+ \mid \langle a^- \rangle$

Focus on positive on right or negative on leftOnly one formula may be in focus in a sequent

$$\frac{\Delta^{-} \Vdash [A^{+}]}{\Delta^{-} \Vdash A^{+}} []^{+} \qquad \frac{\Delta^{-}, [A^{-}] \Vdash \gamma^{+}}{\Delta^{-}, A^{-} \Vdash \gamma^{+}} []^{-}$$

Re-engineering Deduction, Focusing Phase

Combine successive choices in focus

$$\frac{\Delta_{1}^{-} \Vdash [A^{+}] \quad \Delta_{2}^{-}, [B^{-}] \Vdash \gamma^{+}}{\Delta_{1}^{-}, \Delta_{2}^{-}, [A^{+} \multimap B^{-}] \Vdash \gamma^{+}} \multimap L$$

$$\frac{\Delta^{-}, [A^{-}] \nvDash \gamma^{+}}{\Delta^{-}, [A^{-} \otimes B^{-}] \nvDash \gamma^{+}} \otimes L_{1} \qquad \frac{\Delta^{-}, [B^{-}] \nvDash \gamma^{+}}{\Delta^{-}, [A^{-} \otimes B^{-}] \nvDash \gamma^{+}} \otimes L_{2}$$

$$\frac{\Delta^{-}, A^{+} \nvDash \gamma^{+}}{\Delta^{-}, [\uparrow A^{+}] \nvDash \gamma^{+}} \uparrow L \qquad \frac{\Delta^{-} \nvDash A^{-}}{\Delta^{-} \Vdash [\downarrow A^{-}]} \downarrow R$$

$$\frac{[a^{-}] \vDash \langle a^{-} \rangle}{[a^{-}] \vDash \langle a^{-} \rangle} \operatorname{id}_{a}^{-} \qquad \frac{\langle a^{+} \rangle \Vdash [a^{+}]}{\langle a^{+} \rangle \Vdash [a^{+}]} \operatorname{id}_{a}^{+}$$

Soundness and Completeness

- Judgments now A true, [A] in focus, $\langle A \rangle$ suspended
- Collectively, the system is called focusing
- Focusing is sound
 - Restricts inferences
 - Depolarize and induct over derivation
- Focusing is complete. Key properties [Simmons'13]
 - Cuts on A are admissible by nested induction, first on A
 - Identities on A are admissible by induction on A
- Use as basis to improve both backward and forward search [Andreoli'01] [Chaudhuri et al.'06] [McLaughlin & Pf'09]

• Choose all atoms to be negative (a^-, b^-, c^-)

$$\downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \downarrow a \multimap c$$

Step 1: Invert to stable sequents

$$a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle$$

Step 2: Construct derived rules between stable sequents $\Delta^- \Vdash \gamma^+$

- Correspondence between formulas and rules of inference [Andreoli'01]
- Example: Antecedent $\downarrow a \multimap (b \otimes c)$

$$\frac{1}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \gamma^{+}} []^{-}$$

- Correspondence between formulas and rules of inference [Andreoli'01]
- Example: Antecedent $\downarrow a \multimap (b \otimes c)$

$$\frac{\Delta^{-}, [\downarrow a \multimap (b \& c)] \Vdash \gamma^{+}}{\Delta^{-}, \downarrow a \multimap (b \& c) \Vdash \gamma^{+}} []^{-}$$

- Correspondence between formulas and rules of inference [Andreoli'01]
- Example: Antecedent $\downarrow a \multimap (b \otimes c)$

$$\frac{\Delta^{-} = (\Delta_{1}^{-}, \Delta_{2}^{-}) \quad \Delta_{1}^{-} \Vdash [\downarrow a] \qquad \Delta_{2}^{-}, [b \otimes c] \Vdash \gamma^{+}}{\frac{\Delta^{-}, [\downarrow a \multimap (b \otimes c)] \Vdash \gamma^{+}}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \gamma^{+}}} []^{-}$$

- Correspondence between formulas and rules of inference [Andreoli'01]
- Example: Antecedent $\downarrow a \multimap (b \otimes c)$

$$\frac{\Delta_{1}^{-} \Vdash \langle a \rangle}{\Delta_{1}^{-} \Vdash a} \langle \rangle^{-} \frac{\Delta_{1}^{-} \Vdash a}{\Delta_{1}^{-} \Vdash [\downarrow a]} \downarrow R \quad \overline{\Delta_{2}^{-}, [b \otimes c] \Vdash \gamma^{+}}}{\frac{\Delta^{-}, [\downarrow a \multimap (b \otimes c)] \Vdash \gamma^{+}}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \gamma^{+}}} []^{-}$$

- Correspondence between formulas and rules of inference [Andreoli'01]
- Example: Antecedent $\downarrow a \multimap (b \otimes c)$

- Correspondence between formulas and rules of inference [Andreoli'01]
- Example: Antecedent $\downarrow a \multimap (b \otimes c)$

$$\frac{\Delta_{1}^{-} \Vdash \langle a \rangle}{\Delta_{1}^{-} \Vdash a} \langle \rangle^{-} \quad \frac{\Delta_{2}^{-} = \bullet \quad \gamma^{+} = \langle b \rangle}{\Delta_{2}^{-}, [b] \Vdash \gamma^{+}} \operatorname{id}_{b}^{-} \\ \frac{\Delta_{1}^{-} \Vdash a}{\Delta_{1}^{-} \Vdash [\downarrow a]} \downarrow R \quad \frac{\Delta_{2}^{-}, [b] \Vdash \gamma^{+}}{\Delta_{2}^{-}, [b \otimes c] \Vdash \gamma^{+}} \otimes L_{1} \\ \frac{\Delta^{-}, [\downarrow a \multimap (b \otimes c)] \Vdash \gamma^{+}}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \gamma^{+}} []^{-}$$

- Correspondence between formulas and rules of inference [Andreoli'01]
- Example: Antecedent $\downarrow a \multimap (b \otimes c)$

$$\frac{\Delta_{1}^{-} \Vdash \langle a \rangle}{\Delta_{1}^{-} \Vdash a} \langle \rangle^{-} \quad \frac{\Delta_{2}^{-} = \bullet \quad \gamma^{+} = \langle b \rangle}{\Delta_{2}^{-}, [b] \Vdash \gamma^{+}} \operatorname{id}_{b}^{-} \\ \frac{\Delta_{1}^{-} \Vdash a}{\Delta_{1}^{-} \Vdash [\downarrow a]} \downarrow R \quad \frac{\Delta_{2}^{-}, [b] \Vdash \gamma^{+}}{\Delta_{2}^{-}, [b \otimes c] \Vdash \gamma^{+}} \otimes L_{1} \\ \frac{\Delta^{-}, [\downarrow a \multimap (b \otimes c)] \Vdash \gamma^{+}}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \gamma^{+}} []^{-}$$

Yields derived rule

$$rac{\Delta^{-} dash \langle a
angle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) dash \langle b
angle} \, [3]$$

Derived rules

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

Derived rules

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

$$\frac{}{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle} ?$$

Derived rules

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

$$\frac{a, \downarrow b \multimap c \Vdash \langle a \rangle}{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle} \quad [4] \quad \frac{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle}{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle} \quad [2]$$

Derived rules

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

Step 3a: Backward search using only derived rules

failure: no rule applies

$$\frac{a, \downarrow b \multimap c \Vdash \langle a \rangle}{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle} \quad [4] \quad \frac{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle}{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle} \quad [2]$$

Derived rules

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

$$\begin{array}{c} \text{failure: no rule applies} \\ \hline a, \downarrow b \multimap c \Vdash \langle a \rangle \\ \hline a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle \end{array} \begin{bmatrix} 4 \end{bmatrix} \quad \begin{array}{c} \hline a, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle \\ \hline a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle \end{array} \begin{bmatrix} 2 \end{bmatrix} \end{array}$$

Derived rules

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

$$\begin{array}{c} \text{failure: no rule applies} \\ \hline a, \downarrow b \multimap c \Vdash \langle a \rangle \\ \hline a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle \end{array} \begin{bmatrix} 4 \end{bmatrix} \quad \begin{array}{c} \hline a \Vdash \langle a \rangle \\ \hline a, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle \end{array} \begin{bmatrix} 3 \end{bmatrix} \\ \hline a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle \end{array} \begin{bmatrix} 2 \end{bmatrix}$$

Derived rules

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \quad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

Step 3a: Backward search using only derived rules
 Only two possible attempts!

failure: no rule applies

$$\frac{a, \downarrow b \multimap c \Vdash \langle a \rangle}{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle} [4] \quad \frac{\overline{a \Vdash \langle a \rangle}}{a, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} [3] \\
\frac{a \dashv \langle a \rangle}{a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \Vdash \langle c \rangle} [2]$$

[1]

Recall derived rules: use only these!

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

Recall derived rules: use only these!

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

$$a \hspace{0.1in} \Vdash \hspace{0.1in} \langle a
angle \hspace{0.1in} 1 = [1]$$

Recall derived rules: use only these!

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

Recall derived rules: use only these!

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

Recall derived rules: use only these!

$$\frac{\Delta^{-} \Vdash \langle b \rangle}{a \Vdash \langle a \rangle} \begin{bmatrix} 1 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle b \rangle}{\Delta^{-}, \downarrow b \multimap c \Vdash \langle c \rangle} \begin{bmatrix} 2 \end{bmatrix}$$
$$\frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle} \begin{bmatrix} 3 \end{bmatrix} \qquad \frac{\Delta^{-} \Vdash \langle a \rangle}{\Delta^{-}, \downarrow a \multimap (b \otimes c) \Vdash \langle c \rangle} \begin{bmatrix} 4 \end{bmatrix}$$

Step 3b: Focused inverse method [McLaughlin & Pf'09]
 Only one unused sequent!

$$a \Vdash \langle a \rangle \quad 1 = [1]$$

$$a, \downarrow a \multimap (b \otimes c) \Vdash \langle b \rangle \quad 2 = [3](1)$$

$$a, \downarrow a \multimap (b \otimes c) \vdash \langle c \rangle \quad 3 = [4](1)$$

$$a, \downarrow a \multimap (b \otimes c), \downarrow b \multimap c \vdash \langle c \rangle \quad 4 = 2$$

Summary: Present

Polarize the logic into negative and positive propositions

- Negatives are invertible on the right
- Positives are invertible on the left
- Focused deduction
 - Decompose all invertible connectives
 - Focus on one noninvertible one
 - Continue to focus until invertibles are uncovered
- Sound and complete, key is cut elimination for polarized focused logic [Simmons'13]
- Use for big-step inferences (backwards and forwards)
- Drastically reduces search space
- So far, focusing applies for many interesting logics (linear, intuitionistic, classical) [Liang & Miller'09]

■ Past: How to define a logic

- Sequent calculus [Gentzen'35]
- Harmony [Dummett'76] [Martin-Löf'83]
- Present: How to reduce nondeterminism in search
 - Focusing and polarization [Andreoli'92] [Laurent'99]
- Future: How to combine logics
 - Adjunctions [Benton'94] [Reed'09]

Example: Recovering Intuitionistic Logic

• $A \rightarrow B \simeq !A \multimap B$ [Girard'87]

- |A| internalizes categorical judgment $\vdash A$
- !A satisfies weakening and contraction
- Alternative: combine intuitionistic and linear logic via an adjunction [Benton'94]
 - Two functors F and G, F left adjoint to G
 - Syntax as modal operators G A and F X
 - Decompose $!A \simeq F(GA)$
- Generalized to multi-modal logics [Reed'09]

Two-level system [Benton'94]

Unrestricted $A_{U} ::= A_{U} \rightarrow A_{U} \mid A_{U} \wedge B_{U} \mid a_{U} \mid G A_{L}$ Linear $A_{L} ::= A_{L} \multimap A_{L} \mid A_{L} \otimes B_{L} \mid a_{L} \mid F A_{U}$

Represent $!A_L \simeq F G A_L$

Two-level system [Benton'94]

Represent
$$!A_L \simeq F G A_L$$

■ Observation: ↑A⁺ and ↓A⁻ of polarized linear logic also combine two separate language levels!

Two-level system [Benton'94]

• Represent
$$!A_{L} \simeq F G A_{L}$$

- Observation: ↑A⁺ and ↓A⁻ of polarized linear logic also combine two separate language levels!
- Observation: They follow the same rule structure!

Polarized Adjoint Logic

- Unify the two concepts [Pf & Griffith'15]
- Every proposition has a polarity (⁺, ⁻) and mode (U, L)

Modes $m, k ::= U \mid L$ where $U \ge L$ Neg. $A_m^- ::= A_m^+ \multimap B_m^- \mid A_m^- \otimes B_m^- \mid a_m^- \mid \uparrow_k^m A_k^+ \quad (m \ge k)$ Pos. $A_k^+ ::= A_k^+ \otimes B_k^+ \mid A_k^+ \oplus B_k^+ \mid a_k^+ \mid \downarrow_k^m A_m^- \quad (m \ge k)$

- Define $F A_U = \downarrow_L^U A_U$, $G A_L = \uparrow_L^U A_L$ ■ So $!A \simeq F (G A) \simeq \downarrow_L^U \uparrow_L^U A_L$
- Define $A^+ \to B^+ \simeq A^+_U \multimap B^-_U$
- Define $A^+ \wedge B^+ \simeq A^+_U \otimes B^+_U$
- Define $A^- \wedge B^- \simeq A^-_U \otimes B^-_U$
- Earlier modalities $\uparrow A = \uparrow_{L}^{L} A_{L}, \downarrow A = \downarrow_{L}^{L} A_{L}$

- Mixed antecedents $\Psi ::= \bullet \mid \Psi, A_m$
- Mixed-level judgment $\Psi \vdash A_k$
- Independence and inclusion
 - $\Psi \ge k$ means $m \ge k$ for every A_m in Ψ
 - $\Psi \vdash A_k$ presupposes $\Psi \ge k$

Polarized Adjoint Logic, Inversion Phase

$$\frac{\Psi, A_m^+ \Vdash B_m^-}{\Psi \Vdash A_m^+ \multimap B_m^-} \multimap R$$
$$\frac{\Psi \Vdash A_k^+}{\Psi \Vdash \uparrow_k^m A_k^+} \uparrow R$$
$$\frac{\Psi \Vdash \langle a_m^- \rangle}{\Psi \Vdash \langle a_m^- \rangle} \langle \rangle^-$$

$$\frac{\Psi \Vdash A_m^- \quad \Psi \Vdash B_m^-}{\Psi \Vdash A_m^- \otimes B_m^-} \otimes R$$

$$\frac{\Psi, A_m^- \Vdash \gamma_r}{\Psi, \downarrow_k^m A_m^- \Vdash \gamma_r} \downarrow L$$

$$\frac{\Psi, \langle a_m^+ \rangle \Vdash \gamma_r}{\Psi, a_m^+ \Vdash \gamma_r} \langle \rangle^+$$

Polarized Adjoint Logic, Transition

$$\frac{\Psi^{-} \Vdash [A_{m}^{+}]}{\Psi^{-} \Vdash A_{m}^{+}} \left[\right]^{+}$$

$$\frac{\Psi^{-}, [A_{L}^{-}] \Vdash \gamma^{+}}{\Psi^{-}, A_{L}^{-} \Vdash \gamma^{+}} \left[\right]_{L}^{-} \frac{\Psi^{-}, A_{U}^{-}, [A_{U}^{-}] \Vdash \gamma^{+}}{\Psi^{-}, A_{U}^{-} \Vdash \gamma^{+}} \left[\right]_{U}^{-}$$
Polarized Adjoint Logic, Focusing Phase

•
$$\Psi, \Psi'$$
 admits contraction for A_{U} in Ψ and Ψ'

$$\frac{\Psi_{1}^{-} \ge m \quad \Psi_{1}^{-} \Vdash [A_{m}^{+}] \quad \Psi_{2}^{-}, [B_{m}^{-}] \Vdash \gamma^{+}}{\Psi_{1}^{-}, \Psi_{2}^{-}, [A_{m}^{+} \multimap B_{m}^{-}] \Vdash \gamma^{+}} \multimap L$$

$$\frac{\Psi^{-}, [A_{m}^{-}] \Vdash \gamma^{+}}{\Psi^{-}, [A_{m}^{-} \otimes B_{m}^{-}] \Vdash \gamma^{+}} \otimes L_{1} \qquad \frac{\Psi^{-}, [B_{m}^{-}] \Vdash \gamma^{+}}{\Psi^{-}, [A_{m}^{-} \otimes B_{m}^{-}] \Vdash \gamma^{+}} \otimes L_{2}$$

$$\frac{k \ge r \quad \Psi^{-}, A_{k}^{+} \Vdash \gamma_{r}^{+}}{\Psi^{-}, [\uparrow_{k}^{m} A_{k}^{+}] \vDash \gamma_{r}^{+}} \uparrow L \qquad \frac{\Psi^{-} \ge m \quad \Psi^{-} \Vdash A_{m}^{-}}{\Psi^{-} \Vdash [\downarrow_{k}^{m} A_{m}^{-}]} \downarrow R$$

$$\frac{\Psi \ge U}{\Psi, [a_{m}^{-}] \vDash \langle a_{m}^{-} \rangle} \operatorname{id}_{a}^{-} \qquad \frac{\Psi \ge U}{\Psi, \langle a_{m}^{+} \rangle \vDash [a_{m}^{+}]} \operatorname{id}_{a}^{+}$$

- Different from Andreoli's system
- Polarized (unfocused) adjoint logic satisfies structural cut and identity elimination [Pf & Griffith'15]
- Conjectures:
 - Polarized focused adjoint logic satisfies structural cut and identity elimination
 - Polarized focused adjoint logic is sound and complete
 - Polarized focused adjoint logic is conservative over focused intuitionistic and focused intuitionistic linear logic for proof construction

Further Conjectures

Adjunction and polarization are generally compatible

- Adjunctions provide a flexible way to combine logics
 - Conservative over both levels
 - Preserves both search spaces under focusing
 - Affine logics are compatible [Pf & Griffith'15]
 - Extends to preorders of logics, under some conditions [Nigam & Miller'09] [Reed'09]
- Combining logics conservatively is important
 - Embeddings lose structure
 - Nonconservative combinations are difficult

- Study adjunctions as a flexible way to combine logics conservatively
- Examples: intuitionistic, affine, linear, modal logics
- Compatibility with focusing
- Preserving search spaces

Conclusion

Proof theory is a critical tool in automated deduction

- Especially in nonclassical logics
- Which have many applications in computer science
- Complements model-theoretic techniques
- Past: How to define a logic
 - Sequent calculus and harmony
- Present: How to reduce nondeterminism in search

Focusing and polarization

- Future: How to combine logics
 - Adjunctions (?)