
On the Role of Proof Theory in

Automated Deduction

Frank Pfenning

Department of Computer Science
Carnegie Mellon University

25th International Conference on Automated Deduction
(CADE-25)

Special Session on the Past, Present and
Future of Automated Deduction

Berlin, Germany
August 3, 2015

1 / 43

Model-Theoretic Semantics

Theorem proving by refutation of negation

Can be understood as attempt to construct a model

Highly successful for classical logic (Herbrand models)
Applied also to nonclassical logics (Kripke models)

Requires deep understanding of model theory

Proof extraction may be difficult

2 / 43

Proof-Theoretic Semantics

Theorem proving by direct proof construction

Immediately applicable to nonclassical logics

Requires deep understanding of proof theory

Proof is primary artifact

3 / 43

Applications of Nonclassical Logics in CS

A personal and biased sampling
Propositions as types, proofs as programs

Intuitionistic logic and type theory [Martin-Löf’80]
Staged computation, run-time code generation (JS4)
[Davies & Pf’96]
Monadic encapsulation (lax logic)
[Fairtlough & Mendler’97]
Partial evaluation (temporal logic) [Davies’96]
Message-passing concurrency (linear logic)
[Caires & Pf’10] [Toninho’15]

Reasoning about programs
Dynamic logic [Pratt’74]
Temporal logics [Pnueli’77] [Clarke & Emerson’80]
Separation logic [O’Hearn & Pym’99] [Reynolds’02]

Security
Authorization logics [Garg et al.’06]
Protocol logics [Datta et al.’03] 4 / 43

Constructing a Theorem Prover

1 Present a logic as a deductive system amenable to search

2 Iterate
Devise an equivalent system with less nondeterminism

Don’t-know nondeterminism: reduce backtracking
Don’t-care nondeterminism: reduce redundancy

3 Exploit techniques for efficient implementation

5 / 43

Outline

Past: How to define a logic

Sequent calculus [Gentzen’35]
Harmony [Dummett’76] [Martin-Löf’83]

Present: How to reduce nondeterminism in search

Focusing and polarization [Andreoli’92] [Laurent’99]

Future: How to combine logics

Adjunctions [Benton’94] [Reed’09]

6 / 43

Running Example: Linear Logic

Logical hypotheses as resources [Girard’87]

Exemplify techniques in a deceptively simple setting

Model-theoretic techniques not easily available

Many applications in computer science

Planning as (linear) theorem proving [Bibel’85]
Close cousin to separation logic [Reynolds’02]
Quantum computation [van Tonder’03]
Message-passing concurrency [Caires & Pf’10]
[Toninho’15]

7 / 43

Logic Definition: Proof-Theoretic Semantics

Gerhard Gentzen [1935]

The introduction [rules of natural deduction]
represent, as it were, the ‘definitions’ of the
symbols concerned, and the eliminations are no
more, in the final analysis, than the
consequences of these definitions.

In a slight departure, we use his sequent calculus

Antecedents ∆ ::= • | ∆,A (modulo exchange)

Linear hypothetical judgment

∆ ` A

Using antecedents in ∆ exactly once,
we can prove that A is true

8 / 43

Global Harmony Requirement

Use justifies truth (id)

Truth justifies use (cut)

A ` A
idA

∆1 ` A ∆2,A ` C

∆1,∆2 ` C
cutA

Cut elimination: Any deduction can be transformed into
one not using the rule of cut

Identity elimination: Any deduction can be transformed
into one using identity ida only for atomic propositions a

9 / 43

Local Harmony Requirement

Right rules for connectives define how to prove them

Left rules for connectives define how to use them

Example: linear implication A(B

∆,A ` B

∆ ` A(B
(R

∆1 ` A ∆2,B ` C

∆1,∆2,A(B ` C
(L

They must be in local harmony

Truth justifies use (cut reduction)
Use justifies truth (identity expansion)

10 / 43

Cut Reduction

∆,A ` B

∆ ` A(B
(R

∆1 ` A ∆2,B ` C

∆1,∆2,A(B ` C
(L

∆,∆1,∆2 ` C
cutA(B

=⇒R

∆1 ` A ∆,A ` B

∆,∆1 ` B
cutA

∆2,B ` C

∆,∆1,∆2 ` C
cutB

11 / 43

Identity Expansion

A(B ` A(B
idA(B

=⇒E

A ` A
idA

B ` B
idB

A(B ,A ` B
(L

A(B ` A(B
(R

12 / 43

External Choice

Second sample linear connective: external choice A N B

∆ ` A ∆ ` B

∆ ` A N B
NR

∆,A ` C

∆,A N B ` C
NL1

∆,B ` C

∆,A N B ` C
NL2

Locally, satisfies cut reduction and identity expansion

Globally, satisfies cut and identity elimination

13 / 43

Cut-Free System

Compositional meaning explanation of A(B , A N B

Subformula property; independence of connectives

Basis for simple proof construction algorithm

Complete by cut and identity elimination

a ` a
ida

∆,A ` B

∆ ` A(B
(R

∆1 ` A ∆2,B ` C

∆1,∆2,A(B ` C
(L

∆ ` A ∆ ` B

∆ ` A N B
NR

∆,A ` C

∆,A N B ` C
NL1

∆,B ` C

∆,A N B ` C
NL2

14 / 43

Backward Proof Construction

a ` a

ida

b ` b

idb

c ` c

idc

b, b (c ` c

(L

b N c , b (c ` c

NL1

a, a((b N c), b (c ` c

(L

a((b N c), b (c ` a(c
?

(R

15 / 43

Backward Proof Construction

a ` a

ida

b ` b

idb

c ` c

idc

b, b (c ` c

(L

b N c , b (c ` c

NL1

a, a((b N c), b (c ` c
?

(L

a((b N c), b (c ` a(c
(R

15 / 43

Backward Proof Construction

a ` a
?

ida

b ` b

idb

c ` c

idc

b, b (c ` c

(L

b N c , b (c ` c
?

NL1

a, a((b N c), b (c ` c
(L

a((b N c), b (c ` a(c
(R

15 / 43

Backward Proof Construction

a ` a
ida

b ` b

idb

c ` c

idc

b, b (c ` c

(L

b N c , b (c ` c
?

NL1

a, a((b N c), b (c ` c
(L

a((b N c), b (c ` a(c
(R

15 / 43

Backward Proof Construction

a ` a
ida

b ` b

idb

c ` c

idc

b, b (c ` c
?

(L

b N c , b (c ` c
NL1

a, a((b N c), b (c ` c
(L

a((b N c), b (c ` a(c
(R

15 / 43

Backward Proof Construction

a ` a
ida

b ` b
?

idb

c ` c
?

idc

b, b (c ` c
(L

b N c , b (c ` c
NL1

a, a((b N c), b (c ` c
(L

a((b N c), b (c ` a(c
(R

15 / 43

Backward Proof Construction

a ` a
ida

b ` b
idb

c ` c
?

idc

b, b (c ` c
(L

b N c , b (c ` c
NL1

a, a((b N c), b (c ` c
(L

a((b N c), b (c ` a(c
(R

15 / 43

Backward Proof Construction

a ` a
ida

b ` b
idb

c ` c
idc

b, b (c ` c
(L

b N c , b (c ` c
NL1

a, a((b N c), b (c ` c
(L

a((b N c), b (c ` a(c
(R

15 / 43

Forward Proof Construction

Inverse method [Gentzen’35] [Maslov’64] [Mints’81]

Step 1: specialize rules to subformulas of end sequent

a((b N c), b (c ` a(c

a ` a
ida

b ` b
idb

c ` c
idc

∆, b ` γ
∆, b N c ` γ

NL1
∆, c ` γ

∆, b N c ` γ
NL2

∆1 ` a ∆2, b N c ` γ
∆1,∆2, a(b N c ` γ (L

∆1 ` b ∆2, c ` γ
∆1,∆2, b (c ` γ (L

∆, a ` c

∆ ` a(c
(R

16 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)

b N c ` c 5 = NL2(3)
b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)

a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)

a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Forward Deduction

Step 2: Apply just these rule instances, arbitrarily

Subformulas, left: b N c , a((b N c), b (c

Subformulas, right: a(c

a ` a 1 = ida

b ` b 2 = idb

c ` c 3 = idc

b N c ` b 4 = NL1(2)
b N c ` c 5 = NL2(3)

b, b (c ` c 6 = (L(2, 3)

a, a((b N c) ` b 7 = (L(1, 4)
a, a((b N c) ` c 8 = (L(1, 5)

a((b N c) ` a(c 9 = (R(7)
a, a((b N c), b (c ` c 10 = (L(7, 3)

a((b N c), b (c ` a(c 11 = (R(10)

17 / 43

Summary: Past

Sequent calculus [Gentzen’35]

Define connectives by right rules (how to prove) and left
rules (how to use)

Should satisfy harmony [Dummett’76]

Global harmony: cut and identity elimination
Local harmony: cut reduction and identity expansion

Per Martin-Löf [1983]

The meaning of a proposition is determined by
what it is to verify it, or what counts as a
verification of it.

Cut-free sequent calculus as basis for proof search

Backwards, with backtracking proof search
Forwards, based on specialized inference rules

18 / 43

Outline

Past: How to define a logic

Sequent calculus [Gentzen’35]
Harmony [Dummett’76] [Martin-Löf’83]

Present: How to reduce nondeterminism in search

Focusing and polarization [Andreoli’92] [Laurent’99]

Future: How to combine logics

Adjunctions [Benton’94] [Reed’09]

19 / 43

Nondeterminism

Much nondeterminism remains

Backward search (don’t-know)

At each step: which rule do we try?
Backtrack upon failure

Forward search (don’t-care)

At each step: which (specialized) rule do we apply?
Generate useless and redundant sequents

20 / 43

Observations: Inversion and Focusing

We can always decompose some connectives without
losing provability (inversion)

∆,A ` B

∆ ` A(B
(R

 ∆ ` A(B

A ` A
idA

B ` B
idB

A,A(B ` B
(L

∆,A ` B
cutA

Other connectives require a choice, but we can combine
successive choices on the same formula (focusing)

∆,A ` D

∆,A N (B N C) ` D
NL1

∆,B ` D

∆,A N (B N C) ` D
NL21

∆,C ` D

∆,A N (B N C) ` D
NL22

21 / 43

Negative and Positive Connectives

Negative connectives have invertible right rule

Involve some choice on the left

Positive connectives have invertible left rule

Involve some choice on the right

Segregate in syntax to exploit inversion and focusing

Negative A− ::= A+
1 (A−2 | A−1 N A−2 | > | a− | ↑A+

Positive A+ ::= A+
1 ⊗ A+

2 | 1 | A+
1 ⊕ A+

2 | 0 | a+ | ↓A−

Glimpse at other linear connectives (>,⊗, 1,⊕, 0)

Shifts ↑A+ and ↓A− ensure every formula can be
polarized

Minimal polarization exists
Assign atoms arbitrary consistent polarity

22 / 43

Re-engineering Deduction, Inversion Phase

∆ `̀ A for polarized focused deduction
Inversion phase: break down negatives on right and
positives on left (confluent)

∆,A+ `̀ B−

∆ `̀ A+ (B−
(R

∆ `̀ A− ∆ `̀ B−

∆ `̀ A− N B−
NR

∆ `̀ A+

∆ `̀ ↑A+
↑R

∆,A− `̀ C

γ

∆, ↓A− `̀ C

γ

↓L

Suspend atoms during inversion

∆ `̀ 〈a−〉

∆ `̀ a−
〈 〉−

∆, 〈a+〉 `̀ C

γ

∆, a+ `̀ C

γ

〈 〉+

Stable antecedents ∆− ::= • | ∆−,A− | ∆−, 〈a+〉
Stable succedents γ+ ::= A+ | 〈a−〉

23 / 43

Re-engineering Deduction, Inversion Phase

∆ `̀ A for polarized focused deduction
Inversion phase: break down negatives on right and
positives on left (confluent)

∆,A+ `̀ B−

∆ `̀ A+ (B−
(R

∆ `̀ A− ∆ `̀ B−

∆ `̀ A− N B−
NR

∆ `̀ A+

∆ `̀ ↑A+
↑R

∆,A− `̀ γ

∆, ↓A− `̀ γ
↓L

Suspend atoms during inversion

∆ `̀ 〈a−〉

∆ `̀ a−
〈 〉−

∆, 〈a+〉 `̀ γ

∆, a+ `̀ γ
〈 〉+

Stable antecedents ∆− ::= • | ∆−,A− | ∆−, 〈a+〉
Stable succedents γ+ ::= A+ | 〈a−〉

23 / 43

Re-engineering Deduction, Transition

Focus on positive on right or negative on left

Only one formula may be in focus in a sequent

∆− `̀ [A+]

∆− `̀ A+
[]+

∆−, [A−] `̀ γ+

∆−,A− `̀ γ+
[]−

24 / 43

Re-engineering Deduction, Focusing Phase

Combine successive choices in focus

∆−1 `̀ [A+] ∆−2 , [B
−] `̀ γ+

∆−1 ,∆
−
2 , [A

+ (B−] `̀ γ+
(L

∆−, [A−] `̀ γ+

∆−, [A− N B−] `̀ γ+
NL1

∆−, [B−] `̀ γ+

∆−, [A− N B−] `̀ γ+
NL2

∆−,A+ `̀ γ+

∆−, [↑A+] `̀ γ+
↑L ∆− `̀ A−

∆− `̀ [↓A−]
↓R

[a−] `̀ 〈a−〉
id−a 〈a+〉 `̀ [a+]

id+
a

25 / 43

Soundness and Completeness

Judgments now A true, [A] in focus, 〈A〉 suspended

Collectively, the system is called focusing

Focusing is sound

Restricts inferences
Depolarize and induct over derivation

Focusing is complete. Key properties [Simmons’13]

Cuts on A are admissible by nested induction, first on A
Identities on A are admissible by induction on A

Use as basis to improve both backward and forward search
[Andreoli’01] [Chaudhuri et al.’06] [McLaughlin & Pf’09]

26 / 43

Example Revisited

Choose all atoms to be negative (a−, b−, c−)

↓a((b N c), ↓b (c `̀ ↓a(c

Step 1: Invert to stable sequents

a, ↓a((b N c), ↓b (c `̀ 〈c〉

Step 2: Construct derived rules between stable sequents
∆− `̀ γ+

27 / 43

Constructing Derived Rules

Correspondence between formulas and rules of inference
[Andreoli’01]
Example: Antecedent ↓a((b N c)

∆− = (∆−1 ,∆
−
2)

∆−1 `̀ 〈a〉

∆−1 `̀ a
〈 〉−

∆−1 `̀ [↓a]

↓R

∆−2 = • γ+ = 〈b〉

∆−2 , [b] `̀ γ+

id−b

∆−2 , [b N c] `̀ γ+

NL1

∆−, [↓a((b N c)] `̀ γ+

(L

∆−, ↓a((b N c) `̀ γ+
[]−

Yields derived rule

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

28 / 43

Constructing Derived Rules

Correspondence between formulas and rules of inference
[Andreoli’01]
Example: Antecedent ↓a((b N c)

∆− = (∆−1 ,∆
−
2)

∆−1 `̀ 〈a〉

∆−1 `̀ a
〈 〉−

∆−1 `̀ [↓a]

↓R

∆−2 = • γ+ = 〈b〉

∆−2 , [b] `̀ γ+

id−b

∆−2 , [b N c] `̀ γ+

NL1

∆−, [↓a((b N c)] `̀ γ+

(L

∆−, ↓a((b N c) `̀ γ+
[]−

Yields derived rule

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

28 / 43

Constructing Derived Rules

Correspondence between formulas and rules of inference
[Andreoli’01]
Example: Antecedent ↓a((b N c)

∆− = (∆−1 ,∆
−
2)

∆−1 `̀ 〈a〉

∆−1 `̀ a
〈 〉−

∆−1 `̀ [↓a]

↓R

∆−2 = • γ+ = 〈b〉

∆−2 , [b] `̀ γ+

id−b

∆−2 , [b N c] `̀ γ+

NL1

∆−, [↓a((b N c)] `̀ γ+
(L

∆−, ↓a((b N c) `̀ γ+
[]−

Yields derived rule

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

28 / 43

Constructing Derived Rules

Correspondence between formulas and rules of inference
[Andreoli’01]
Example: Antecedent ↓a((b N c)

∆− = (∆−1 ,∆
−
2)

∆−1 `̀ 〈a〉

∆−1 `̀ a
〈 〉−

∆−1 `̀ [↓a]
↓R

∆−2 = • γ+ = 〈b〉

∆−2 , [b] `̀ γ+

id−b

∆−2 , [b N c] `̀ γ+

NL1

∆−, [↓a((b N c)] `̀ γ+
(L

∆−, ↓a((b N c) `̀ γ+
[]−

Yields derived rule

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

28 / 43

Constructing Derived Rules

Correspondence between formulas and rules of inference
[Andreoli’01]
Example: Antecedent ↓a((b N c)

∆− = (∆−1 ,∆
−
2)

∆−1 `̀ 〈a〉

∆−1 `̀ a
〈 〉−

∆−1 `̀ [↓a]
↓R

∆−2 = • γ+ = 〈b〉

∆−2 , [b] `̀ γ+

id−b

∆−2 , [b N c] `̀ γ+
NL1

∆−, [↓a((b N c)] `̀ γ+
(L

∆−, ↓a((b N c) `̀ γ+
[]−

Yields derived rule

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

28 / 43

Constructing Derived Rules

Correspondence between formulas and rules of inference
[Andreoli’01]
Example: Antecedent ↓a((b N c)

∆− = (∆−1 ,∆
−
2)

∆−1 `̀ 〈a〉

∆−1 `̀ a
〈 〉−

∆−1 `̀ [↓a]
↓R

∆−2 = • γ+ = 〈b〉

∆−2 , [b] `̀ γ+
id−b

∆−2 , [b N c] `̀ γ+
NL1

∆−, [↓a((b N c)] `̀ γ+
(L

∆−, ↓a((b N c) `̀ γ+
[]−

Yields derived rule

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

28 / 43

Constructing Derived Rules

Correspondence between formulas and rules of inference
[Andreoli’01]
Example: Antecedent ↓a((b N c)

∆− = (∆−1 ,∆
−
2)

∆−1 `̀ 〈a〉

∆−1 `̀ a
〈 〉−

∆−1 `̀ [↓a]
↓R

∆−2 = • γ+ = 〈b〉

∆−2 , [b] `̀ γ+
id−b

∆−2 , [b N c] `̀ γ+
NL1

∆−, [↓a((b N c)] `̀ γ+
(L

∆−, ↓a((b N c) `̀ γ+
[]−

Yields derived rule

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

28 / 43

Backward Search

Derived rules

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3a: Backward search using only derived rules

Only two possible attempts!

failure: no rule applies

a, ↓b (c `̀ 〈a〉

a, ↓a((b N c), ↓b (c `̀ 〈c〉

[4]

a `̀ 〈a〉

[1]

a, ↓a((b N c) `̀ 〈b〉

[3]

a, ↓a((b N c), ↓b (c `̀ 〈c〉

[2]

29 / 43

Backward Search

Derived rules

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3a: Backward search using only derived rules

Only two possible attempts!

failure: no rule applies

a, ↓b (c `̀ 〈a〉

a, ↓a((b N c), ↓b (c `̀ 〈c〉
?

[4]

a `̀ 〈a〉

[1]

a, ↓a((b N c) `̀ 〈b〉

[3]

a, ↓a((b N c), ↓b (c `̀ 〈c〉

[2]

29 / 43

Backward Search

Derived rules

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3a: Backward search using only derived rules

Only two possible attempts!

failure: no rule applies

a, ↓b (c `̀ 〈a〉

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[4]

a `̀ 〈a〉

[1]

a, ↓a((b N c) `̀ 〈b〉

[3]

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[2]

29 / 43

Backward Search

Derived rules

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3a: Backward search using only derived rules

Only two possible attempts!

failure: no rule applies

a, ↓b (c `̀ 〈a〉

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[4]

a `̀ 〈a〉

[1]

a, ↓a((b N c) `̀ 〈b〉

[3]

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[2]

29 / 43

Backward Search

Derived rules

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3a: Backward search using only derived rules

Only two possible attempts!

failure: no rule applies

a, ↓b (c `̀ 〈a〉

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[4]

a `̀ 〈a〉

[1]

a, ↓a((b N c) `̀ 〈b〉
?

[3]

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[2]

29 / 43

Backward Search

Derived rules

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3a: Backward search using only derived rules

Only two possible attempts!

failure: no rule applies

a, ↓b (c `̀ 〈a〉

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[4]

a `̀ 〈a〉
?

[1]

a, ↓a((b N c) `̀ 〈b〉
[3]

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[2]

29 / 43

Backward Search

Derived rules

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3a: Backward search using only derived rules

Only two possible attempts!

failure: no rule applies

a, ↓b (c `̀ 〈a〉

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[4]

a `̀ 〈a〉
[1]

a, ↓a((b N c) `̀ 〈b〉
[3]

a, ↓a((b N c), ↓b (c `̀ 〈c〉
[2]

29 / 43

Forward Search

Recall derived rules: use only these!

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3b: Focused inverse method [McLaughlin & Pf’09]

Only one unused sequent!

a `̀ 〈a〉 1 = [1]
a, ↓a((b N c) `̀ 〈b〉 2 = [3](1)
a, ↓a((b N c) `̀ 〈c〉 3 = [4](1)

a, ↓a((b N c), ↓b (c `̀ 〈c〉 4 = 2

30 / 43

Forward Search

Recall derived rules: use only these!

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3b: Focused inverse method [McLaughlin & Pf’09]

Only one unused sequent!

a `̀ 〈a〉 1 = [1]

a, ↓a((b N c) `̀ 〈b〉 2 = [3](1)
a, ↓a((b N c) `̀ 〈c〉 3 = [4](1)

a, ↓a((b N c), ↓b (c `̀ 〈c〉 4 = 2

30 / 43

Forward Search

Recall derived rules: use only these!

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3b: Focused inverse method [McLaughlin & Pf’09]

Only one unused sequent!

a `̀ 〈a〉 1 = [1]
a, ↓a((b N c) `̀ 〈b〉 2 = [3](1)

a, ↓a((b N c) `̀ 〈c〉 3 = [4](1)
a, ↓a((b N c), ↓b (c `̀ 〈c〉 4 = 2

30 / 43

Forward Search

Recall derived rules: use only these!

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3b: Focused inverse method [McLaughlin & Pf’09]

Only one unused sequent!

a `̀ 〈a〉 1 = [1]
a, ↓a((b N c) `̀ 〈b〉 2 = [3](1)
a, ↓a((b N c) `̀ 〈c〉 3 = [4](1)

a, ↓a((b N c), ↓b (c `̀ 〈c〉 4 = 2

30 / 43

Forward Search

Recall derived rules: use only these!

a `̀ 〈a〉
[1]

∆− `̀ 〈b〉

∆−, ↓b (c `̀ 〈c〉
[2]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈b〉
[3]

∆− `̀ 〈a〉

∆−, ↓a((b N c) `̀ 〈c〉
[4]

Step 3b: Focused inverse method [McLaughlin & Pf’09]

Only one unused sequent!

a `̀ 〈a〉 1 = [1]
a, ↓a((b N c) `̀ 〈b〉 2 = [3](1)
a, ↓a((b N c) `̀ 〈c〉 3 = [4](1)

a, ↓a((b N c), ↓b (c `̀ 〈c〉 4 = 2

30 / 43

Summary: Present

Polarize the logic into negative and positive propositions

Negatives are invertible on the right
Positives are invertible on the left

Focused deduction

Decompose all invertible connectives
Focus on one noninvertible one
Continue to focus until invertibles are uncovered

Sound and complete, key is cut elimination for polarized
focused logic [Simmons’13]

Use for big-step inferences (backwards and forwards)

Drastically reduces search space

So far, focusing applies for many interesting logics (linear,
intuitionistic, classical) [Liang & Miller’09]

31 / 43

Outline

Past: How to define a logic

Sequent calculus [Gentzen’35]
Harmony [Dummett’76] [Martin-Löf’83]

Present: How to reduce nondeterminism in search

Focusing and polarization [Andreoli’92] [Laurent’99]

Future: How to combine logics

Adjunctions [Benton’94] [Reed’09]

32 / 43

Example: Recovering Intuitionistic Logic

A→ B ' !A(B [Girard’87]

!A internalizes categorical judgment • ` A
!A satisfies weakening and contraction

Alternative: combine intuitionistic and linear logic via an
adjunction [Benton’94]

Two functors F and G , F left adjoint to G
Syntax as modal operators G A and F X
Decompose !A ' F (G A)

Generalized to multi-modal logics [Reed’09]

33 / 43

Adjoint Logic

Two-level system [Benton’94]

Unrestricted AU ::= AU → AU | AU ∧ BU | aU | G AL

Linear AL ::= AL (AL | AL N BL | aL | F AU

Represent !AL ' F G AL

Observation: ↑A+ and ↓A− of polarized linear logic also
combine two separate language levels!

Observation: They follow the same rule structure!

34 / 43

Adjoint Logic

Two-level system [Benton’94]

Unrestricted AU ::= AU → AU | AU ∧ BU | aU | G AL

Linear AL ::= AL (AL | AL N BL | aL | F AU

Represent !AL ' F G AL

Observation: ↑A+ and ↓A− of polarized linear logic also
combine two separate language levels!

Observation: They follow the same rule structure!

34 / 43

Adjoint Logic

Two-level system [Benton’94]

Unrestricted AU ::= AU → AU | AU ∧ BU | aU | G AL

Linear AL ::= AL (AL | AL N BL | aL | F AU

Represent !AL ' F G AL

Observation: ↑A+ and ↓A− of polarized linear logic also
combine two separate language levels!

Observation: They follow the same rule structure!

34 / 43

Polarized Adjoint Logic

Unify the two concepts [Pf & Griffith’15]

Every proposition has a polarity (+, −) and mode (U, L)

Modes m, k ::= U | L where U ≥ L
Neg. A−m ::= A+

m (B−m | A−m N B−m | a−m | ↑mk A+
k (m ≥ k)

Pos. A+
k ::= A+

k ⊗ B+
k | A

+
k ⊕ B+

k | a
+
k | ↓

m
k A
−
m (m ≥ k)

Define F AU = ↓ULAU, G AL = ↑ULAL

So !A ' F (G A) ' ↓UL ↑ULAL

Define A+ → B+ ' A+
U (B−U

Define A+ ∧ B+ ' A+
U ⊗ B+

U

Define A− ∧ B− ' A−U N B−U
Earlier modalities ↑A = ↑LLAL, ↓A = ↓LLAL

35 / 43

Polarized Adjoint Sequent Calculus

Mixed antecedents Ψ ::= • | Ψ,Am

Mixed-level judgment Ψ ` Ak

Independence and inclusion

Ψ ≥ k means m ≥ k for every Am in Ψ
Ψ ` Ak presupposes Ψ ≥ k

36 / 43

Polarized Adjoint Logic, Inversion Phase

Ψ,A+
m `̀ B−m

Ψ `̀ A+
m (B−m

(R
Ψ `̀ A−m Ψ `̀ B−m

Ψ `̀ A−m N B−m
NR

Ψ `̀ A+
k

Ψ `̀ ↑mk A+
k

↑R
Ψ,A−m `̀ γr

Ψ, ↓mk A−m `̀ γr
↓L

Ψ `̀ 〈a−m〉

Ψ `̀ a−m
〈 〉−

Ψ, 〈a+m〉 `̀ γr

Ψ, a+m `̀ γr
〈 〉+

37 / 43

Polarized Adjoint Logic, Transition

Ψ− `̀ [A+
m]

Ψ− `̀ A+
m

[]+

Ψ−, [A−L] `̀ γ+

Ψ−,A−L `̀ γ+
[]−L

Ψ−,A−U , [A
−
U] `̀ γ+

Ψ−,A−U `̀ γ+
[]−U

38 / 43

Polarized Adjoint Logic, Focusing Phase

Ψ,Ψ′ admits contraction for AU in Ψ and Ψ′

Ψ−1 ≥ m Ψ−1 `̀ [A+
m] Ψ−2 , [B

−
m] `̀ γ+

Ψ−1 ,Ψ
−
2 , [A

+
m (B−m] `̀ γ+

(L

Ψ−, [A−m] `̀ γ+

Ψ−, [A−m N B−m] `̀ γ+
NL1

Ψ−, [B−m] `̀ γ+

Ψ−, [A−m N B−m] `̀ γ+
NL2

k ≥ r Ψ−,A+
k `̀ γ+r

Ψ−, [↑mk A+
k] `̀ γ+r

↑L
Ψ− ≥ m Ψ− `̀ A−m

Ψ− `̀ [↓mk A−m]
↓R

Ψ ≥ U

Ψ, [a−m] `̀ 〈a−m〉
id−a

Ψ ≥ U

Ψ, 〈a+m〉 `̀ [a+m]
id+

a

39 / 43

Polarized Adjoint Logic

Different from Andreoli’s system

Polarized (unfocused) adjoint logic satisfies structural cut
and identity elimination [Pf & Griffith’15]

Conjectures:

Polarized focused adjoint logic satisfies structural cut
and identity elimination
Polarized focused adjoint logic is sound and complete
Polarized focused adjoint logic is conservative over
focused intuitionistic and focused intuitionistic linear
logic for proof construction

40 / 43

Further Conjectures

Adjunction and polarization are generally compatible

Adjunctions provide a flexible way to combine logics

Conservative over both levels
Preserves both search spaces under focusing
Affine logics are compatible [Pf & Griffith’15]
Extends to preorders of logics, under some conditions
[Nigam & Miller’09] [Reed’09]

Combining logics conservatively is important

Embeddings lose structure
Nonconservative combinations are difficult

41 / 43

Summary: Future

Study adjunctions as a flexible way to combine logics
conservatively

Examples: intuitionistic, affine, linear, modal logics

Compatibility with focusing

Preserving search spaces

42 / 43

Conclusion

Proof theory is a critical tool in automated deduction

Especially in nonclassical logics
Which have many applications in computer science

Complements model-theoretic techniques

Past: How to define a logic

Sequent calculus and harmony

Present: How to reduce nondeterminism in search

Focusing and polarization

Future: How to combine logics

Adjunctions (?)

43 / 43

