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Abstract
Church’s system of simple types has proven to be remarkably ro-
bust: call-by-name, call-by-need, and call-by-value languages, with
or without effects, and even logical frameworks can be based on
the same typing rules. When type systems become more expres-
sive, this unity fractures. An early example is the value restriction
for parametric polymorphism which is necessary for ML but not
Haskell; a later manifestation is the lack of distributivity of function
types over intersections in call-by-value languages with effects.

In this talk we reexamine the logical justification for systems of
subtyping and intersection types and then explore the consequences
in two different settings: logical frameworks and functional pro-
gramming.

In logical frameworks functions are pure and their definitions
observable, but complications could arise from the presence of
dependent types. We show that this is not the case, and that we
can obtain soundness and completeness theorems for a certain
axiomatization of subtyping. We also sketch a connection to the
type-theoretic notion of proof irrelevance.

In functional programming we investigate how the encapsula-
tion of effects in monads interacts with subtyping and intersection
types, providing an updated analysis of the value restriction and
related phenomena (Davies and Pfenning 2000). While at present
this study is far from complete, we believe that its origin in purely
logical notions will give rise to a uniform theory that can easily be
adapted to specific languages and their operational interpretations.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure;
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic

General Terms Languages, Theory, Verification
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