
Invited Talk

Subtyping and Intersection Types Revisited

Frank Pfenning
Department of Computer Science

Carnegie Mellon University
fp@cs.cmu.edu

Abstract
Church’s system of simple types has proven to be remarkably ro-
bust: call-by-name, call-by-need, and call-by-value languages, with
or without effects, and even logical frameworks can be based on
the same typing rules. When type systems become more expres-
sive, this unity fractures. An early example is the value restriction
for parametric polymorphism which is necessary for ML but not
Haskell; a later manifestation is the lack of distributivity of function
types over intersections in call-by-value languages with effects.

In this talk we reexamine the logical justification for systems of
subtyping and intersection types and then explore the consequences
in two different settings: logical frameworks and functional pro-
gramming.

In logical frameworks functions are pure and their definitions
observable, but complications could arise from the presence of
dependent types. We show that this is not the case, and that we
can obtain soundness and completeness theorems for a certain
axiomatization of subtyping. We also sketch a connection to the
type-theoretic notion of proof irrelevance.

In functional programming we investigate how the encapsula-
tion of effects in monads interacts with subtyping and intersection
types, providing an updated analysis of the value restriction and
related phenomena (Davies and Pfenning 2000). While at present
this study is far from complete, we believe that its origin in purely
logical notions will give rise to a uniform theory that can easily be
adapted to specific languages and their operational interpretations.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure;
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic

General Terms Languages, Theory, Verification

Acknowledgments
The material in this invited talk is based on joint work with Rowan
Davies (Pfenning and Davies 2001), William Lovas (Lovas and
Pfenning 2007), and Noam Zeilberger (Zeilberger 2007).

Copyright is held by the author/owner(s).
ICFP’07, October 1–3, 2007, Freiburg, Germany.
ACM 978-1-59593-815-2/07/0010.

Bio
Frank Pfenning received his Ph.D. in Mathematics in 1987 from
Carnegie Mellon University and subsequently joined the Depart-
ment of Computer Science at CMU as research faculty where he
became Professor in 2002 and Director of Graduate Programs in
2004. He has spent time as visiting scientist at the Max-Planck-
Institute for Computer Science in Saarbrücken, as Alexander-von-
Humboldt Fellow at the Technical University Darmstadt, and as
Visiting Professor at École Polytechnique and INRIA-Futurs. He
has advised 19 completed Ph.D. theses and won the Herbert A. Si-
mon Award for Teaching Excellence in the School of Computer
Science in 2002. He has written extensive lecture notes on a va-
riety of topics, including computation and deduction, constructive
logic, linear logic, automated theorem proving, and logic program-
ming. He served as trustee, vice president, and president of CADE,
Inc., the governing body of the International Conference on Au-
tomated Deduction and on advisory boards for INRIA, the Max-
Planck-Institute for Computer Science, and the School of Computer
Science at Seoul National University. He has chaired the PPDP
and CADE conferences and several program committees, includ-
ing GPCE, RTA, CADE, and LICS.

His research interests include programming languages, logic
and type theory, logical frameworks, automated deduction, and,
most recently, logical methods in security. He has contributed to
the development of refinement types and dependent types, the oper-
ational interpretation of modal λ-calculi for staged and distributed
computation, and the theory and practice of higher-order logic pro-
gramming. He has been a codeveloper of the Twelf meta-logical
framework, which has been used for a number of formalization and
verification efforts in programming languages, and participated in
the design of its linear (LLF) and concurrent (CLF) extensions.

References
Rowan Davies and Frank Pfenning. Intersection types and computational

effects. In P. Wadler, editor, Proceedings of the Fifth International
Conference on Functional Programming (ICFP’00), pages 198–208,
Montreal, Canada, September 2000. ACM Press.

William Lovas and Frank Pfenning. A bidirectional refinement type sys-
tem for LF. In B. Pientka and C. Schürmann, editors, Proceedings of
the Second International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, pages 11–25, Bremen, Germany, July
2007.

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11:511–540, 2001.

Noam Zeilberger. On the unity of duality. Annals of Pure and Applied
Logic, 2007. To appear in a special issue on Classical Logic and
Computation.


