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| Outline

* Verificationist and pragmatist meaning theory

e Canonical proofs and atomic subtyping

* |dentity and substitution

* Defining higher-order subtyping

* Sound and complete rules for higher-order subtyping
* |ntersections

* Higher-order subtyping extended

* Monads: the bridge to functional programming

* The value restriction and distributivity
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I What Is Logic About?

* Not truth, but consequence
* Not particular propositions, but arbitrary propositions

socrates is a man P(c) true
all men are mortal Va. P(z) D Q(x) true
socrates is mortal Q(c) true

* Proofs are parametric in atomic propositions
* If A true then |[B/P]A true for any B

|

ICFP, Freiburg, Oct 07 — p.3



I The Meaning of Propositions

* Atomic propositions are parameters

* Meaning of compound propositions should be determined
by their constituents

* \erificationist: meaning of a proposition is determined by its

verifications
A true B true

A & B true

&1

* [ntroduction rules define: read bottom-up
* Elimination rules are justified from introduction rules

|
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I The Meaning of Propositions

* Pragmatist: meaning of a proposition is determined by its

uses
A & B true CE A & B true “E,
A true B true

* Elimination rules define: read top-down
* |ntroduction rules are justified from elimination rules

|
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| An Aside

* Verificationist = ML programmer (= call-by-value)

* Pragmatist = Haskell programmer (= call-by-name)
* See [Zeilberger POPL08]

* Origins in [Dummett’76] [Martin-L6f'83]

|

ICFP, Freiburg, Oct 07 — p.6



| Hypothetical Reasoning

* Hypothetical reasoning from a notion of consequence

A & B true CE, A & B true “E,
B true A true
&1

B & A true

* Written as hypothetical judgment

A& Btrueb B & A true

|
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| Canonical Proofs

* Verificationist to establish conclusion
* Pragmatist to use hypotheses
* Meet at an atomic proposition P

A verif B venrif o Puse P=0(Q
A & B verif Q) verif
A&Buse&E]L A&Buse&E2

A use B use

* Bidirectional subformula property

|
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I Implication

* Implication requires hypothetical reasoning

x
A use
B verif ; A D B use A wverif
D X
A D B verif B use

* Maintains bidirectional subformula property

|
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I Harmony

e |dentity
A use = A verif for any proposition A

Assume for atomic propositions (= parameters)
Ensure for compound propositions

* (Hereditary) Proof Substitution

If I, A use = C verif
and I' = A verif
then I' = C' verif

Hereditary substitution to obtain canonical proofs I
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I Relating Atomic Propositions

Relate (otherwise parametric) atomic propositions

Based on entailment

man
P

<

<

mortal

Q

(P Q)

P < @ Is an assumption on parameters P and ()
Use when logical connectives have been eliminated

Puse P =0

Q) verif

Puse P <@

Q) verif

B
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Rules of Atomic Subtyping

* Reflexivity, by identity P use = P verif

PP

* Transitiviy, by substitution from P use = Q) verif and

Q) use - R verif
P<Q Q<R

P<R

B
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| Curry-Howard-DeBruijn

* Propositions as types; proofs as terms
* Annotate judgments with proof terms

A verif becomes M < A (check M against A)
A use becomes R = A (R synthesizes A)

e Canonical proofs as canonical terms (5-normal, n-long)

o= AFM<«B I'FR=PFP P<Q

—/
I'-X M <=A— B I'FR<=(Q

I'rR=A—-B IT'EFM«A
N
'N'e=AFxz= A I'-RM =B

|
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I ldentity Revisited

e Canonical term grammar

Canonicalterms M == Mx.M | R
Atomic terms R == z|RM

* |dentity with terms
r = AF na(x) < A for any proposition A

* n4(R) defined by induction on A
ne(R) = R
na—g(R) = Ax.ng(Rna(x))

* Definition extends modularly to new connectives I
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| Substitution Revisited

* Hereditary substitution with terms

fI'-M<<Aand o = AFN<C
thenT' - [M/z|4N < C

* Define [M /x| 4N by nested induction on A and N

M/z]a(Ay.N) = Ay. [M/z|aN

M/ga(R) = [M/a,R ihd(R) =2
M/x|A(R) = [M/z]} R If hd(R) # x
M/x[j(RN) = ([M/z[}R)([M/x]aN)
M]3 (y) =y
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I Hereditary Substitution

e Call [M/z] ,(R) when hd(R) =z
* Returns canonical term and its type M’ : A’ with A" a
constituent of A
[M/z] 4(x) = M:A
[M/a] ,(RN) = [N'/ylgM':C
where (M /z|4N = N’
and [M/x|,R=Xy.M': B —C
* Refers back to ordinary substitution with smaller type

|
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I Application: Logical Frameworks

* LF Logical Framework
e Based on dependent types \!

Higher-order abstract syntax
Judgments as types

* Object language and rules are encoded as signatures with
constant declarations
* Theory of subtyping presented here extends to dependent

types [Lovas & Pf'07]
Allow declarations a < b for type families a and b.

A little more later In this talk
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Example: Encoding CBV

* Signature (with exp : type and val : type)
lam : (val — exp) — val
app : exp — exp — exp
val < exp

e Sample derivation

xr = valx = val val <exp

x = val - x < exp

lam = (val — exp) — val Ax. x < val — exp

|
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I Example: Encoding Polytypes

* Predicative polymorphism
arrow . simp_tp — simp_tp — simp_tp

forall . (simp_tp — poly_tp) — poly_tp
simp_tp < poly tp

* Impredicative polymorphism
arrow . simp_tp — simp_tp — simp_tp
forall . (poly_tp — poly_tp) — poly_tp
simp_tp < poly tp

|
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| Summary So Far

* Meaning of connectives given by canonical proofs

* Analyze the structure of terms in two directions

* Bi-directional type-checking under CHdB isomorphism
* |dentity and substitution principles

* Subtyping as entailment on atomic propositions

* Applicable to dependent types

|
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Subtyping at Higher Types

* What about the usual co-/contra-variant rule of subtyping?

B1 <A Ay, < B
Al — Ay < By — By

e No need for such a rule

The logical meaning of — is already given
The logical meaning of < is already given

e Canonical forms (specifically: n-long forms) are crucial

|
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I Defining Higher-Order Subtyping

* We can define a notion of subtyping several ways

(1) A< BifforallT-M«< AwehaveI' F M < B
(2) A<, BifforallT'o2 = BFr N <
we havel',\x = AFN < (C
3) A<sBifx=AFna(x) < B
4) A<, Bifforalll,o = BFN<CandI'-M < A
we have I' - [M/x|gN < C

* These are all equivalent!
* Only compare types of the same shape, since type shape
determines term shape (cf. “refinement restriction”)

|
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I Rules for Higher-Order Subtyping

* Rules so far for atomic types

P<@Q Q<R
P<P P<R

* Also equivalent to (1)—(4) is adding the following rule

B <A Ay < DB
A — Ay < By — By

* General reflexivity and transitivity principles hold

* Mirror identity and substitution for entailment
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| Subtyping Completeness

* The rules are complete in a strong sense:
A< BiffforallT M <« Awe have I' - M « BI
* Possible due to the open-ended interpretation of subtyping

Quantification over I'
Subtypings are stable under all extensions
Consistent with open-ended nature of LF

* Contrast with functional programming

Interested in closed terms for evaluation
Datatypes are inductive or recursive, not open-ended

Ironically, function spaces are open-ended
Cannot expect completeness I
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| Subtyping Alone Is Insufficient

* ...In practice

e Consider types even and odd

* What is the type of successor?
* Need intersection types

Z . even

s : (even — odd) A (odd — even)
* Expresses multiple properties of one term in a single type

|
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I Meaning Explanations

* Resume verificationist (A7) and pragmatist (A FE;) programs

I'-M<«=A I'FM<«B
I'-M<=ANANB

i

FI—R:A/\B/\E FI—R:A/\B/\
'-R= A I'-R= B

Ly

* Type-theoretic, but not purely “logical”
* Again, no new subtyping rules, nothing else needed!
* Only rule concerned with subtyping remains the same

I'-FR=P P<(Q
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I Example: 2 Is even

* Recall
z : even
s : (even — odd) A (odd — even)

* To check s(sz) <= even we use

s = odd — even for the outer occurrence
s = even — odd for the inner occurrence
z = even for the occurrence of z

|
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Example: Open-Endedness

* Add type empty with no constructor
* We do not know that empty < even:

r = empty - x <= empty but x = empty I/ = < even unless
we specify empty < even.

* We do not know that even A odd < empty for a similar reason
* Currently there is no way to specify this [future work]

|
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| Characterizing HO Subtyping

* The characterizations of subtyping from before are still
equivalent. For example

(1) A<, BifforallT-M«< Awehavel' H M < B
3) A3 Bifx = AFna(x) < B

* Several sound and complete set of rules for subtyping

Axiomatic
Sequent calculus

B
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| Axiomatic Formulation |

* Reflexivity and transitivity

* Functions
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| Axiomatic Formulation ||

e |ntersections

A<B ALC ALZC B<C
A< BAC ANB<S(C ANB<Z<C

* Distributivity

(A= B)ANA—-C)<A— (BANC)

B
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| Sequent Calculus for Subtyping

* Use sequent calculus to show decidability
* Not necessary in an implementation!

Only to understand subtyping
Only atomic subtyping is required for type-checking

°* Judgment A <

A<A A<ZB AN A B<C
A<an ™M Aarp<o’t
P<Q A< A, [Bi £B
AP <@ AJA; — B <A— B

N
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I Algorithmic Typing

* Typing rules are non-deterministic

I'-R= AANB '-R= AANB
'FR= A I'FR= B

* A “more efficient” system

I'FR= A (R has all types in A)
I'FM&EA (M checks against A)

* Rules should maximally break down intersection

e Elide this refinement
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Algorithmic Typing Rules

le=A+-M&B TFR=2AP P<Q
T'Fle. M & A— B I'-R&Q

''-Mm&EA I'-M&EB
I'EM&AANB

FFR=A[A — Bl [TFMeEA)];
Ne=Atz= A I'-RM = [B;

I'R=AAB

r'-R=A,AAB I
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| Summary

* Logical meaning explanations via canonical proofs

* Simple and uniform system of subtyping and intersections
* Subtyping defined on atomic types only

* Intersection defined for synthesis and checking only

* Clear derived notions of subtyping for higher-order types
e Sound and complete set of rules

* Compare and intersect only types with compatible shape

Since type shape determines shape of canonical terms
* Applies to dependent types with morally identical rules

|
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| Other Encoding Examples

e Barendregt's A-cube

Uniform presentation of typing at all levels
Different corners of cube with different intersections

* Syntactic inclusions and properties

Values, expressions, and evaluation in functional
languages
Hereditary Harrop formulas and logic programming

* Dependent properties of proofs
(Weak) (head) normal forms

Cut-free sequent proofs
Uniform sequent and natural deduction proofs I

ICFP, Freiburg, Oct 07 — p.36



I Functional Programming

* Can we use this approach to design type systems for
functional languages?
* Logical Framework (LF)

Complete rules for subtyping and intersection
Open Interpretation of atomic types
Closed interpretation of function spaces

* Functional programming

Closed interpretation of atomic types
Open interpretation of function spaces
Canonical forms no longer fully characterize meaning

Operational semantics, non-termination, effects I
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I A Bridge

* Criterion (3) offers a bridge between logical frameworks and
functional programming

B) A<sBifxr=AFn4(x) < B
* Does not quantify over arbitrary terms or contexts
* p-expansions are available in functional language

* p-expansions are always canonical identity maps
* p-expansions depend only on type constructs in A and B

» Stability under language extensions
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| A Problem

* Some rules are unsound because they rely on the closed
Interpretation of function spaces (canonical forms, pure)

Intersection introduction requires a value restriction
Drop distributivity of A over —
For counterexamples see [Davies & Pf. ICFP’00]

e |dea: use monads to isolate effects!
* Understand the effect of effects on subtyping and
Intersections

|
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I Monads Iin Judgmental Form

* Maintain verificationist and pragmatist approach
* Meaning explanation by introduction and elimination forms
* Need new logical judgment

I' = A lax (logically: lax truth of A)
* Type-theoretic version (with proof terms)

I'-FE«— A
FE' i1s a potentially effectful computation of type A

Do not consider specific effects
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| Judgmental Rules

* Relating lax truth to truth
* A pure term M is a computation of type A

'FM<«= A
I'-EM«— A

e Substitution: we can compose computations F' before E

fI'-F «— A
andI''o = AF-FE «+—C
thenT' - (F/x) F «— C

|
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I The Monad Type Constructor

* Type {A} for pure terms denoting computations of type A
* Verificationist definition

I'-F — A
I'-{F} < {A}

1

* Pragmatist definition

'-R={A} Thoe=AFFEC
I'Hlet{z}=RinE —C

822

|
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I ldentity and Substitution Revisited

* Leftist hereditary substitution (£/x) 4 F
* Defined by nested induction on A, F, and F

(let{y} = Rin E/x),F = let{y} = RIin(E/x),F
(M/z)AE = [M/z]sE

* |dentity principle via n-expansion
nay(R) = {let{z} = Rinna(z)}



| Subtyping and Intersections

* Rules for subtyping and intersection are not affected!

They were concerned with truth
Lax truth is a derived notion

* Orthogonality of language constructs pays off!
* |t is not the case that

I''-rFE—A I'ME «— B
'-EFE— AANB

wrong!

B
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I Higher-Order Subtyping

* Derived notions of subtyping remain unchanged
* New rule, axiomatically

A<LB
A} <{B}




I No Distributivity

* No distributivity: {A} A{B} L {AA B}
* Quick check via n-expansion

fail
r={P} N {Q} -z = {P} AN {Q} yiPI—zIS;:P/\Q

r={P} N N{Q}F x= {P} y=PFy«— PAQ
r={P} N N{Q}Flet{y}=xziny— PAQ
z={P} A {Q}F{let{y} =ziny} < {PAQ}
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| Subtyping In Sequent Form

* |n sequent form: commit

A<LB
A, {A} < 1B}

e Contrast with functions
A< Al |Bili <B

Take all 7 such that A < A,

|
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| The Value Restriction

* Call-by-value with effects requires some modifications

Value restriction on intersection introduction

I'Fv:0 T'Hov:T
I'Fv:oANT

No distributivity
* Subtyping at higher order (terms are not n-long)
Easy: we did all the work already!

* Typing annotations (terms are not G-normal)

Not entirely easy [Dunfield & Pf’03] [Dunfield’07] I
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I Deriving Restricted Rules

* Derive rules from standard encoding into monadic form

Types T = bl — 1
Computations e = ejey|v
Values v o= x| Ar.e
* Type translation
b| = b
n— 7l = |n|—={|nl}
AT = |m| A
* Form of term translation
el = FE computations as monadic expressions

lv| = M values as (pure) terms I
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| Value Restriction

* Properties of term translation (elided)
If e : 7 then |e| «— |7
If v: 7 then |v| < |7
* Value restriction since A does not distribute over { }.
I'-{FE}<={A} TH{E} < {B}
I'F{F} < {A} AN{B}
I'-{F} < {AANB}

wrong!

|
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I Distributivity

 Distributivity cannot be derived because
(A= {B}) AN (A= {C}) < A— ({B} A {C})

but
(A—={BHANA—=-{C}) LA—-{BAC}

* So
(T—=0o)AN(T—p) LT — (0 Ap)
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| Other Considerations

e System has empty conjunction T (elided for this talk)
* |nterpretation into type theory with proof irrelevance
[mostly done]

Roughly: M < A becomes (M, N) < Ya:A. A(z) where
A is a type representing the shape of A

A(z) is a type family on elements of type A

N < A(M) is a proof that M has property A

(My, Ny) = (M, Ny) iff My = M, (by definition)

* Complexity due to definitional equality

* Coercion interpretation? [future work]



| And More

* Union types are complex, but fit the story
[Zeilberger'07] [Dunfield’07] [Dunfield & Pf’03]

Co-value restriction on union types

* Parametric polymorphism is harder [Davies’05] [Dunfield]
* Deeper analysis of call-by-name and call-by-value

Judgmental method and focusing [Zeilberger POPL08]
Positive and negative intersections, unions
[Zellberger'07]

Addings products, sums, and negations

B
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| Summary: Origins

e Atomic propositions as parameters
* Atomic subtyping as assumptions
* Verificationist and pragmatist definitions of

logical connectives
canonical proofs
Intersections
monads

B
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| Summary: Destinations

* Exceedingly simple rules with subtyping and intersections
* Derived notion of higher-order subtyping

from substitution or n-expansion
with sound and complete sets of structural rules

* Richly epxressive logical framework A\!<A
* Explanation of value restriction on intersections in
call-by-value via monadic embedding

|
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| All (Non-Derived) Rules

e=AFM-<DB 'FR=P P<Q

— 1
I'X. M < A— B I'FR<(Q

I'-mMm<=A I'FM<«<B
I'-M«<=AAB

i

'WR=A— B T'FM<«A

—

I'N'e=AFx= A I'-RM =B
FPR:>AAB/\E1 FPR:>A/\B/\E2
I'FR=A I'FR= B

P<@ Q=<5

P<P P<S I
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