
Subtyping and Intersection Types
Revisited

Frank Pfenning

Carnegie Mellon University

International Conference on Functional Programming (ICFP’07)

Freiburg, Germany, October 1-3, 2007

Joint work with Rowan Davies, Joshua Dunfield, William Lovas, and Noam Zeilberger

Work in progress!

ICFP, Freiburg, Oct 07 – p.1

Outline

• Verificationist and pragmatist meaning theory
• Canonical proofs and atomic subtyping
• Identity and substitution
• Defining higher-order subtyping
• Sound and complete rules for higher-order subtyping
• Intersections
• Higher-order subtyping extended
• Monads: the bridge to functional programming
• The value restriction and distributivity

ICFP, Freiburg, Oct 07 – p.2

What is Logic About?

• Not truth, but consequence
• Not particular propositions, but arbitrary propositions

socrates is a man
all men are mortal

socrates is mortal

P (c) true

∀x. P (x) ⊃ Q(x) true

Q(c) true

• Proofs are parametric in atomic propositions
• If A true then [B/P]A true for any B

ICFP, Freiburg, Oct 07 – p.3

The Meaning of Propositions

• Atomic propositions are parameters
• Meaning of compound propositions should be determined

by their constituents
• Verificationist: meaning of a proposition is determined by its

verifications
A true B true

A & B true
&I

• Introduction rules define: read bottom-up
• Elimination rules are justified from introduction rules

ICFP, Freiburg, Oct 07 – p.4

The Meaning of Propositions

• Pragmatist: meaning of a proposition is determined by its
uses

A & B true

A true
&E1

A & B true

B true
&E2

• Elimination rules define: read top-down
• Introduction rules are justified from elimination rules

ICFP, Freiburg, Oct 07 – p.5

An Aside

• Verificationist = ML programmer (= call-by-value)
• Pragmatist = Haskell programmer (= call-by-name)
• See [Zeilberger POPL’08]
• Origins in [Dummett’76] [Martin-Löf’83]

ICFP, Freiburg, Oct 07 – p.6

Hypothetical Reasoning

• Hypothetical reasoning from a notion of consequence

A & B true

B true
&E1

A & B true

A true
&E2

B & A true
&I

• Written as hypothetical judgment

A & B true ⊢ B & A true

ICFP, Freiburg, Oct 07 – p.7

Canonical Proofs

• Verificationist to establish conclusion
• Pragmatist to use hypotheses
• Meet at an atomic proposition P

A verif B verif

A & B verif
&I

P use P = Q

Q verif

A & B use

A use
&E1

A & B use

B use
&E2

• Bidirectional subformula property

ICFP, Freiburg, Oct 07 – p.8

Implication

• Implication requires hypothetical reasoning

A use
x

...
B verif

A ⊃ B verif
⊃Ix

A ⊃ B use A verif

B use

• Maintains bidirectional subformula property

ICFP, Freiburg, Oct 07 – p.9

Harmony

• Identity

A use ⊢ A verif for any proposition A

• Assume for atomic propositions (= parameters)
• Ensure for compound propositions

• (Hereditary) Proof Substitution

If Γ, A use ⊢ C verif

and Γ ⊢ A verif

then Γ ⊢ C verif

• Hereditary substitution to obtain canonical proofs

ICFP, Freiburg, Oct 07 – p.10

Relating Atomic Propositions

• Relate (otherwise parametric) atomic propositions
• Based on entailment

man ≤ mortal

P ≤ Q (P ⊢ Q)

• P ≤ Q is an assumption on parameters P and Q

• Use when logical connectives have been eliminated

P use P = Q

Q verif −→

P use P ≤ Q

Q verif

ICFP, Freiburg, Oct 07 – p.11

Rules of Atomic Subtyping

• Reflexivity, by identity P use ⊢ P verif

P ≤ P

• Transitiviy, by substitution from P use ⊢ Q verif and
Q use ⊢ R verif

P ≤ Q Q ≤ R

P ≤ R

ICFP, Freiburg, Oct 07 – p.12

Curry-Howard-DeBruijn

• Propositions as types; proofs as terms
• Annotate judgments with proof terms

• A verif becomes M ⇐ A (check M against A)
• A use becomes R⇒ A (R synthesizes A)

• Canonical proofs as canonical terms (β-normal, η-long)

Γ, x⇒ A ⊢M ⇐ B

Γ ⊢ λx.M ⇐ A→ B
→I

Γ ⊢ R⇒ P P ≤ Q

Γ ⊢ R⇐ Q

Γ, x⇒ A ⊢ x⇒ A

Γ ⊢ R⇒ A→ B Γ ⊢M ⇐ A

Γ ⊢ R M ⇒ B
→E

ICFP, Freiburg, Oct 07 – p.13

Identity Revisited

• Canonical term grammar

Canonical terms M ::= λx.M | R

Atomic terms R ::= x | R M

• Identity with terms

x⇒ A ⊢ ηA(x)⇐ A for any proposition A

• ηA(R) defined by induction on A

ηP (R) = R

ηA→B(R) = λx. ηB(R ηA(x))

• Definition extends modularly to new connectives

ICFP, Freiburg, Oct 07 – p.14

Substitution Revisited

• Hereditary substitution with terms

If Γ ⊢M ⇐ A and Γ, x⇒ A ⊢ N ⇐ C

then Γ ⊢ [M/x]AN ⇐ C

• Define [M/x]AN by nested induction on A and N

[M/x]A(λy.N) = λy. [M/x]AN

[M/x]A(R) = [[M/x]]
A
R if hd(R) = x

[M/x]A(R) = [M/x]r
A
R if hd(R) 6= x

[M/x]r
A
(R N) = ([M/x]r

A
R) ([M/x]AN)

[M/x]r
A
(y) = y

ICFP, Freiburg, Oct 07 – p.15

Hereditary Substitution

• Call [[M/x]]
A
(R) when hd(R) = x

• Returns canonical term and its type M ′ : A′ with A′ a
constituent of A

[[M/x]]
A
(x) = M : A

[[M/x]]
A
(R N) = [N ′/y]BM ′ : C

where [M/x]AN = N ′

and [[M/x]]
A
R = λy.M ′ : B → C

• Refers back to ordinary substitution with smaller type

ICFP, Freiburg, Oct 07 – p.16

Application: Logical Frameworks

• LF Logical Framework
• Based on dependent types λΠ

• Higher-order abstract syntax
• Judgments as types

• Object language and rules are encoded as signatures with
constant declarations

• Theory of subtyping presented here extends to dependent
types [Lovas & Pf’07]

• Allow declarations a ≤ b for type families a and b.
• A little more later in this talk

ICFP, Freiburg, Oct 07 – p.17

Example: Encoding CBV

• Signature (with exp : type and val : type)
lam : (val→ exp)→ val

app : exp→ exp→ exp

val ≤ exp

• Sample derivation

lam⇒ (val→ exp)→ val

x⇒ val ⊢ x⇒ val val ≤ exp

x⇒ val ⊢ x⇐ exp

λx. x⇐ val→ exp

lam (λx. x)⇐ val

ICFP, Freiburg, Oct 07 – p.18

Example: Encoding Polytypes

• Predicative polymorphism
arrow : simp_tp→ simp_tp→ simp_tp

forall : (simp_tp→ poly_tp)→ poly_tp

simp_tp ≤ poly_tp

• Impredicative polymorphism
arrow : simp_tp→ simp_tp→ simp_tp

forall : (poly_tp→ poly_tp)→ poly_tp

simp_tp ≤ poly_tp

ICFP, Freiburg, Oct 07 – p.19

Summary So Far

• Meaning of connectives given by canonical proofs
• Analyze the structure of terms in two directions
• Bi-directional type-checking under CHdB isomorphism
• Identity and substitution principles
• Subtyping as entailment on atomic propositions
• Applicable to dependent types

ICFP, Freiburg, Oct 07 – p.20

Subtyping at Higher Types

• What about the usual co-/contra-variant rule of subtyping?

B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2

• No need for such a rule

• The logical meaning of→ is already given
• The logical meaning of ≤ is already given

• Canonical forms (specifically: η-long forms) are crucial

ICFP, Freiburg, Oct 07 – p.21

Defining Higher-Order Subtyping

• We can define a notion of subtyping several ways

(1) A ≤1 B if for all Γ ⊢M ⇐ A we have Γ ⊢M ⇐ B

(2) A ≤2 B if for all Γ, x⇒ B ⊢ N ⇐ C

we have Γ, x⇒ A ⊢ N ⇐ C

(3) A ≤3 B if x⇒ A ⊢ ηA(x)⇐ B

(4) A ≤4 B if for all Γ, x⇒ B ⊢ N ⇐ C and Γ ⊢M ⇐ A

we have Γ ⊢ [M/x]BN ⇐ C

• These are all equivalent!
• Only compare types of the same shape, since type shape

determines term shape (cf. “refinement restriction”)

ICFP, Freiburg, Oct 07 – p.22

Rules for Higher-Order Subtyping

• Rules so far for atomic types

P ≤ P

P ≤ Q Q ≤ R

P ≤ R

• Also equivalent to (1)–(4) is adding the following rule

B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2

• General reflexivity and transitivity principles hold
• Mirror identity and substitution for entailment

ICFP, Freiburg, Oct 07 – p.23

Subtyping Completeness

• The rules are complete in a strong sense:

A ≤ B iff for all Γ ⊢M ⇐ A we have Γ ⊢M ⇐ B!

• Possible due to the open-ended interpretation of subtyping

• Quantification over Γ

• Subtypings are stable under all extensions
• Consistent with open-ended nature of LF

• Contrast with functional programming

• Interested in closed terms for evaluation
• Datatypes are inductive or recursive, not open-ended
• Ironically, function spaces are open-ended
• Cannot expect completeness

ICFP, Freiburg, Oct 07 – p.24

Subtyping Alone is Insufficient

• . . . in practice
• Consider types even and odd

• What is the type of successor?
• Need intersection types

z : even

s : (even→ odd) ∧ (odd→ even)
• Expresses multiple properties of one term in a single type

ICFP, Freiburg, Oct 07 – p.25

Meaning Explanations

• Resume verificationist (∧I) and pragmatist (∧Ei) programs

Γ ⊢M ⇐ A Γ ⊢M ⇐ B

Γ ⊢M ⇐ A ∧ B
∧I

Γ ⊢ R⇒ A ∧B

Γ ⊢ R⇒ A
∧E1

Γ ⊢ R⇒ A ∧ B

Γ ⊢ R⇒ B
∧E2

• Type-theoretic, but not purely “logical”
• Again, no new subtyping rules, nothing else needed!
• Only rule concerned with subtyping remains the same

Γ ⊢ R⇒ P P ≤ Q

Γ ⊢ R⇐ Q
ICFP, Freiburg, Oct 07 – p.26

Example: 2 is even

• Recall
z : even

s : (even→ odd) ∧ (odd→ even)
• To check s (s z)⇐ even we use

• s⇒ odd→ even for the outer occurrence
• s⇒ even→ odd for the inner occurrence
• z⇒ even for the occurrence of z

ICFP, Freiburg, Oct 07 – p.27

Example: Open-Endedness

• Add type empty with no constructor
• We do not know that empty ≤ even:

• x⇒ empty ⊢ x⇐ empty but x⇒ empty 6⊢ x⇐ even unless
we specify empty ≤ even.

• We do not know that even ∧ odd ≤ empty for a similar reason
• Currently there is no way to specify this [future work]

ICFP, Freiburg, Oct 07 – p.28

Characterizing HO Subtyping

• The characterizations of subtyping from before are still
equivalent. For example

(1) A ≤1 B if for all Γ ⊢M ⇐ A we have Γ ⊢M ⇐ B

(3) A ≤3 B if x⇒ A ⊢ ηA(x)⇐ B

• Several sound and complete set of rules for subtyping

• Axiomatic
• Sequent calculus

ICFP, Freiburg, Oct 07 – p.29

Axiomatic Formulation I

• Reflexivity and transitivity

A ≤ A

A ≤ B B ≤ C

A ≤ C

• Functions
B1 ≤ A1 A2 ≤ B2

A1 → A2 ≤ B1 → B2

ICFP, Freiburg, Oct 07 – p.30

Axiomatic Formulation II

• Intersections

A ≤ B A ≤ C

A ≤ B ∧ C

A ≤ C

A ∧ B ≤ C

B ≤ C

A ∧ B ≤ C

• Distributivity

(A→ B) ∧ (A→ C) ≤ A→ (B ∧ C)

ICFP, Freiburg, Oct 07 – p.31

Sequent Calculus for Subtyping

• Use sequent calculus to show decidability
• Not necessary in an implementation!

• Only to understand subtyping
• Only atomic subtyping is required for type-checking

• Judgment ∆ ≤ C

∆ ≤ A ∆ ≤ B

∆ ≤ A ∧B
∧R

∆, A,B ≤ C

∆, A ∧ B ≤ C
∧L

P ≤ Q

∆, P ≤ Q

[A ≤ Ai]i [Bi]i ≤ B

∆, [Ai → Bi]i ≤ A→ B

ICFP, Freiburg, Oct 07 – p.32

Algorithmic Typing

• Typing rules are non-deterministic

Γ ⊢ R⇒ A ∧B

Γ ⊢ R⇒ A

Γ ⊢ R⇒ A ∧ B

Γ ⊢ R⇒ B

• A “more efficient” system

• Γ ⊢ R ⇛ ∆ (R has all types in ∆)
• Γ ⊢M ⇚ A (M checks against A)

• Rules should maximally break down intersection
• Elide this refinement

ICFP, Freiburg, Oct 07 – p.33

Algorithmic Typing Rules

Γ, x⇒ A ⊢M ⇚ B

Γ ⊢ λx.M ⇚ A→ B

Γ ⊢ R ⇛ ∆, P P ≤ Q

Γ ⊢ R ⇚ Q

Γ ⊢M ⇚ A Γ ⊢M ⇚ B

Γ ⊢M ⇚ A ∧ B

Γ, x⇒ A ⊢ x ⇛ A

Γ ⊢ R ⇛ ∆, [Ai → Bi]i [Γ ⊢M ⇚ Ai]i

Γ ⊢ R M ⇛ [Bi]i

Γ ⊢ R ⇛ ∆, A,B

Γ ⊢ R ⇛ ∆, A ∧ B

ICFP, Freiburg, Oct 07 – p.34

Summary

• Logical meaning explanations via canonical proofs
• Simple and uniform system of subtyping and intersections
• Subtyping defined on atomic types only
• Intersection defined for synthesis and checking only
• Clear derived notions of subtyping for higher-order types
• Sound and complete set of rules
• Compare and intersect only types with compatible shape

• Since type shape determines shape of canonical terms

• Applies to dependent types with morally identical rules

ICFP, Freiburg, Oct 07 – p.35

Other Encoding Examples

• Barendregt’s λ-cube

• Uniform presentation of typing at all levels
• Different corners of cube with different intersections

• Syntactic inclusions and properties

• Values, expressions, and evaluation in functional
languages

• Hereditary Harrop formulas and logic programming

• Dependent properties of proofs

• (Weak) (head) normal forms
• Cut-free sequent proofs
• Uniform sequent and natural deduction proofs

ICFP, Freiburg, Oct 07 – p.36

Functional Programming

• Can we use this approach to design type systems for
functional languages?

• Logical Framework (LF)

• Complete rules for subtyping and intersection
• Open interpretation of atomic types
• Closed interpretation of function spaces

• Functional programming

• Closed interpretation of atomic types
• Open interpretation of function spaces
• Canonical forms no longer fully characterize meaning
• Operational semantics, non-termination, effects

ICFP, Freiburg, Oct 07 – p.37

A Bridge

• Criterion (3) offers a bridge between logical frameworks and
functional programming

(3) A ≤3 B if x⇒ A ⊢ ηA(x)⇐ B

• Does not quantify over arbitrary terms or contexts
• η-expansions are available in functional language
• η-expansions are always canonical identity maps
• η-expansions depend only on type constructs in A and B
• Stability under language extensions

ICFP, Freiburg, Oct 07 – p.38

A Problem

• Some rules are unsound because they rely on the closed
interpretation of function spaces (canonical forms, pure)

• Intersection introduction requires a value restriction
• Drop distributivity of ∧ over→
• For counterexamples see [Davies & Pf. ICFP’00]

• Idea: use monads to isolate effects!
• Understand the effect of effects on subtyping and

intersections

ICFP, Freiburg, Oct 07 – p.39

Monads in Judgmental Form

• Maintain verificationist and pragmatist approach
• Meaning explanation by introduction and elimination forms
• Need new logical judgment

• Γ ⊢ A lax (logically: lax truth of A)

• Type-theoretic version (with proof terms)

• Γ ⊢ E ← A

E is a potentially effectful computation of type A

• Do not consider specific effects

ICFP, Freiburg, Oct 07 – p.40

Judgmental Rules

• Relating lax truth to truth
• A pure term M is a computation of type A

Γ ⊢M ⇐ A

Γ ⊢M ← A

• Substitution: we can compose computations F before E

If Γ ⊢ F ← A

and Γ, x⇒ A ⊢ E ← C

then Γ ⊢ 〈F/x〉AE ← C

ICFP, Freiburg, Oct 07 – p.41

The Monad Type Constructor

• Type {A} for pure terms denoting computations of type A

• Verificationist definition

Γ ⊢ E ← A

Γ ⊢ {E} ⇐ {A}
{ }I

• Pragmatist definition

Γ ⊢ R⇒ {A} Γ, x⇒ A ⊢ E ← C

Γ ⊢ let {x} = R in E ← C
{ }E

ICFP, Freiburg, Oct 07 – p.42

Identity and Substitution Revisited

• Leftist hereditary substitution 〈E/x〉AF

• Defined by nested induction on A, E, and F

〈let {y} = R in E/x〉AF = let {y} = R in〈E/x〉AF

〈M/x〉AE = [M/x]AE
• Identity principle via η-expansion

η{A}(R) = {let {x} = R in ηA(x)}

ICFP, Freiburg, Oct 07 – p.43

Subtyping and Intersections

• Rules for subtyping and intersection are not affected!

• They were concerned with truth
• Lax truth is a derived notion

• Orthogonality of language constructs pays off!
• It is not the case that

Γ ⊢ E ← A Γ ⊢ E ← B

Γ ⊢ E ← A ∧ B
wrong!

ICFP, Freiburg, Oct 07 – p.44

Higher-Order Subtyping

• Derived notions of subtyping remain unchanged
• New rule, axiomatically

A ≤ B

{A} ≤ {B}

ICFP, Freiburg, Oct 07 – p.45

No Distributivity

• No distributivity: {A} ∧ {B} 6≤ {A ∧ B}

• Quick check via η-expansion

x⇒ {P} ∧ {Q} ⊢ x⇒ {P} ∧ {Q}

x⇒ {P} ∧ {Q} ⊢ x⇒ {P}

fails
y ⇒ P ⊢ y ⇐ P ∧Q

y ⇒ P ⊢ y ← P ∧Q

x⇒ {P} ∧ {Q} ⊢ let {y} = x in y ← P ∧Q

x⇒ {P} ∧ {Q} ⊢ {let {y} = x in y} ⇐ {P ∧Q}

ICFP, Freiburg, Oct 07 – p.46

Subtyping in Sequent Form

• In sequent form: commit

A ≤ B

∆, {A} ≤ {B}

• Contrast with functions

[A ≤ Ai]i [Bi]i ≤ B

∆, [Ai → Bi]i ≤ A→ B

• Take all i such that A ≤ Ai

ICFP, Freiburg, Oct 07 – p.47

The Value Restriction

• Call-by-value with effects requires some modifications

• Value restriction on intersection introduction

Γ ⊢ v : σ Γ ⊢ v : τ

Γ ⊢ v : σ ∧ τ

• No distributivity

• Subtyping at higher order (terms are not η-long)

• Easy: we did all the work already!

• Typing annotations (terms are not β-normal)

• Not entirely easy [Dunfield & Pf’03] [Dunfield’07]

ICFP, Freiburg, Oct 07 – p.48

Deriving Restricted Rules

• Derive rules from standard encoding into monadic form
Types τ ::= b | τ1 → τ2

Computations e ::= e1 e2 | v

Values v ::= x | λx. e
• Type translation
|b| = b

|τ1 → τ2| = |τ1| → { |τ2| }

|τ1 ∧ τ2| = |τ1| ∧ |τ2|
• Form of term translation
|e| = E computations as monadic expressions
|v| = M values as (pure) terms

ICFP, Freiburg, Oct 07 – p.49

Value Restriction

• Properties of term translation (elided)

• If e : τ then |e| ← |τ |
• If v : τ then |v| ⇐ |τ |

• Value restriction since ∧ does not distribute over { }.

Γ ⊢ {E} ⇐ {A} Γ ⊢ {E} ⇐ {B}

Γ ⊢ {E} ⇐ {A} ∧ {B}

Γ ⊢ {E} ⇐ {A ∧ B}
wrong!

• Also recall: no rule to split E ← A ∧ B

ICFP, Freiburg, Oct 07 – p.50

Distributivity

• Distributivity cannot be derived because

(A→ {B}) ∧ (A→ {C}) ≤ A→ ({B} ∧ {C})

but

(A→ {B}) ∧ (A→ {C}) 6≤ A→ {B ∧ C}

• So

(τ → σ) ∧ (τ → ρ) 6≤ τ → (σ ∧ ρ)

ICFP, Freiburg, Oct 07 – p.51

Other Considerations

• System has empty conjunction ⊤ (elided for this talk)
• Interpretation into type theory with proof irrelevance

[mostly done]

• Roughly: M ⇐ A becomes 〈M,N〉 ⇐ Σx:Ǎ. Â(x) where
• Ǎ is a type representing the shape of A

• Â(x) is a type family on elements of type Ǎ

• N ⇐ Ǎ(M) is a proof that M has property Ǎ

• 〈M1, N1〉 = 〈M2, N2〉 iff M1 = M2 (by definition)

• Complexity due to definitional equality
• Coercion interpretation? [future work]

ICFP, Freiburg, Oct 07 – p.52

And More

• Union types are complex, but fit the story
[Zeilberger’07] [Dunfield’07] [Dunfield & Pf’03]

• Co-value restriction on union types

• Parametric polymorphism is harder [Davies’05] [Dunfield]
• Deeper analysis of call-by-name and call-by-value

• Judgmental method and focusing [Zeilberger POPL’08]
• Positive and negative intersections, unions

[Zeilberger’07]
• Addings products, sums, and negations

ICFP, Freiburg, Oct 07 – p.53

Summary: Origins

• Atomic propositions as parameters
• Atomic subtyping as assumptions
• Verificationist and pragmatist definitions of

• logical connectives
• canonical proofs
• intersections
• monads

ICFP, Freiburg, Oct 07 – p.54

Summary: Destinations

• Exceedingly simple rules with subtyping and intersections
• Derived notion of higher-order subtyping

• from substitution or η-expansion
• with sound and complete sets of structural rules

• Richly epxressive logical framework λΠ≤∧

• Explanation of value restriction on intersections in
call-by-value via monadic embedding

ICFP, Freiburg, Oct 07 – p.55

All (Non-Derived) Rules

Γ, x⇒ A ⊢M ⇐ B

Γ ⊢ λx.M ⇐ A→ B
→I

Γ ⊢ R⇒ P P ≤ Q

Γ ⊢ R⇐ Q

Γ ⊢M ⇐ A Γ ⊢M ⇐ B

Γ ⊢M ⇐ A ∧ B
∧I

Γ, x⇒ A ⊢ x⇒ A

Γ ⊢ R⇒ A→ B Γ ⊢M ⇐ A

Γ ⊢ R M ⇒ B
→E

Γ ⊢ R⇒ A ∧B

Γ ⊢ R⇒ A
∧E1

Γ ⊢ R⇒ A ∧ B

Γ ⊢ R⇒ B
∧E2

P ≤ P

P ≤ Q Q ≤ S

P ≤ S

ICFP, Freiburg, Oct 07 – p.56

	Outline
	What is Logic About?
	The Meaning of Propositions
	The Meaning of Propositions
	An Aside
	Hypothetical Reasoning
	Canonical Proofs
	Implication
	Harmony
	Relating Atomic Propositions
	Rules of Atomic Subtyping
	Curry-Howard-DeBruijn
	Identity Revisited
	Substitution Revisited
	Hereditary Substitution
	Application: Logical Frameworks
	Example: Encoding CBV
	Example: Encoding Polytypes
	Summary So Far
	Subtyping at Higher Types
	Defining Higher-Order Subtyping
	Rules for Higher-Order Subtyping
	Subtyping Completeness
	Subtyping Alone is Insufficient
	Meaning Explanations
	Example: 2 is even
	Example: Open-Endedness
	Characterizing HO Subtyping
	Axiomatic Formulation I
	Axiomatic Formulation II
	Sequent Calculus for Subtyping
	Algorithmic Typing
	Algorithmic Typing Rules
	Summary
	Other Encoding Examples
	Functional Programming
	A Bridge
	A Problem
	Monads in Judgmental Form
	Judgmental Rules
	The Monad Type Constructor
	Identity and Substitution Revisited
	Subtyping and Intersections
	Higher-Order Subtyping
	No Distributivity
	Subtyping in Sequent Form
	The Value Restriction
	Deriving Restricted Rules
	Value Restriction
	Distributivity
	Other Considerations
	And More
	Summary: Origins
	Summary: Destinations
	All (Non-Derived)
Rules

