Tri-Directional Type Checking

Frank Pfenning
(Joint work with Joshua Dunfield)
Carnegie Mellon University

Invited Talk

Workshop on Intersection Types
and Related Systems (ITRS'02)

Copenhagen, Denmark, July 26, 2002

Warning: Work in progress
Acknowledgments: Rowan Davies

Outline

e Introduction

e Guiding Principles

e Atomic Subtyping

e Intersection Types
e Union Types

e [Dependent Types]

e Conclusion

Why Aren’'t Most Programs Verified?

e Difficulty of expressing a precise specification
e Difficulty of proving correctness
e Difficulty of co-evolving program, specification, and proof

e Problems exacerbated by poorly designed languages

Why Are Most Programs Type-Checked?

e Ease of expressing types
e Ease of checking types
e Ease of co-evolving programs and types

e Most useful in properly designed languages

A Continuum?

e Types as a minimal requirement for meaningful programs

e Specifications as a maximal requirement for correct
programs

e Suprisingly few intermediate points have been investigated
e Many errors are caught by simple type-checking

e But many errors also escape simple type-checking

A Research Program

e Designing systems for statically verifying program properties
e Evaluation along the following dimensions:

— Elegance, generality, brevity (ease of expression)

— Practicality of verification (ease of checking)

— Explicitness (ease of understanding and evolution)

— Support for modularity

e Some of these involve trade-offs

Influences

e [raditional static program analysis
emphasis there on automation and efficiency improvements

e [raditional type systems
emphasis there on inference and generality

T he Basic Idea

e ML (cbv, funs, datatypes, effects) as a host language
e Data structures via datatypes
e Invariants on data structures via subtypes of datatypes

e Extend to full language via type constructors
intersection, universal, union, empty,
[universal dependent, existential dependent]
(modal, linear, temporal, ...— future work)

Outline

e Introduction

e Guiding Principles
e Atomic Subtyping

e Intersection Types
e Union Types

e [Dependent Types]

e Conclusion

Key Foundational Issue

e Question: What are the guiding principles in the design of
type (refinement) systems to express and verify program
properties?

e My Answer: Martin-Lof’'s method of judgments and
derivations

e Proof-theoretic rather than model-theoretic

The meaning of a proposition is determined by |[...]
what counts as a verification of it. — Per Martin-LOf,
1983

10

Central Technical Issues

e Design questions

— Rules for typing expressions
— Rules for subtyping

— Mechanism for type-checking
e Meta-theorems
— Adequacy for data representation
— Preservation of types under evaluation
— Progress from any well-typed configuration

— Decidability of type-checking

11

Static Judgments

o A type A is a type (elided in this talk)

o M : A M has type A

e Hypotheses x1:A1,...,xn:An, x; distinct (write IN)
o [~ M val M is a value (write V)

e Defining properties for hypothetical judgments

— Hypothesis rules

F ATz A Mz AT Fzval

— Substitution principle (theorem)

IfrFr-V:Aand IMz:A '+ N:C then
'+ [V/z]N:C

12

Computation Judgments

o M —pg M M beta-reduces to M’
o F ctx E is an evaluation context, hole []
[] ctx

e F[M] replaces hole in E by M
o M — M’ M reduces to M’

e Closure rule
M —sg M’
E[M] — E[M']

Principles of Computation

e Progress principle (theorem)

If - M : A then either - M val or M — M.
e Preservation principle (theorem)

If WM :Aand M — M’ then - M': A

e Note restriction to closed terms

14

Outline

Introduction
Guiding Principles
Atomic Subtyping
Intersection Types
Union Types
[Dependent Types]

Conclusion

15

Function Types A — B

e Introduction and elimination rules

oA+~ M:B N, Fr-M:A— B TEN:A
Fr-Xe.M:A— B r-MN:B
e \Values
- \z. M val

e Computation (introduction followed by elimination)
(Az. M)V —g [V/z]M

E ctx V val E ctx
E M ctx V FE ctx

16

Mechanisms for Type-Checking

e Type synthesis (Church)

— Given [, M, synthesize unique [principal] A with
=M : A or fail

— Requires type labels \xz:A. M

— Does not generalize well to intersection and related types
e Type assignment (Curry)

— Given I', M, A succeed if T = M : A, otherwise fail
— Very general (traditional for intersection types)
— Often undecidable

17

Bi-Directional Type-Checking

e Based on two judgments, combining synthesis with analysis
o[FMT A Given I, M, synthesize A with ' - M : A
o[FM|A Given I, M, A, analyze ifT VM : A

e Hypothesis rule

Fz: ATz 1 A

e New expression (M : A)

e Mutual dependencies (revisit later)

TEMtA, r-M] A

r-M | A I‘I—(M:A)TA“

e Several substitution principles (elided)

18

Bi-Directional Type-Checking of Functions

e Introduction forms are analyzed

MeAEMB
rEXxe.M|A—>B

e Elimination forms are synthesized

r-M1+A—B FrEFN|A
r-MNTB

—F

e Read '’ and ‘|’ as '’ to obtain type assignment rules

e NO type annotations in normal forms. E.g., for any A,

FAf Az f(fz) L (A= A) = (A — A)

e Annotate redexes, e.g.,

= (Az. z : bits — bits) (e110) 1 bits

19

Definitions

e Internalize substitution principle

Fr-M71T A Lz AFN|]C
[Flete =M inNend]|(C

e Computation

E ctx
letz =V in N end —g [V/z]N let x = F in N end ctx

e In practice, use definitions instead of redices

= let f = (Ax.x : bits — bits) in f (¢110) end | bits
or klet f:bits— bits=Xz.zin f (¢110) end | bits

20

Remarks on Judgmental Method

e Specification is open-ended
e Constructs are defined orthogonally

e Proofs of meta-theoretic properties (e.g., progress,
preservation) decomposes along the same lines

e Logical connections

— I+ M | A without |1 coercions characterizes normal
natural deductions of A with the subformula property

— This is in fact the origin of the rules

— Judgment is analytic in I', M, and A: any derivation
mentions only constituent terms and types of ', M, A

21

Adding Data Types

e Proceed by example: bit strings and natural numbers
e For general case, see [Dunfield’'02] [Davies'02]

e Introduction forms

I+ M | bits I+ M | bits
FFelbits TFMOJbits [IFM1J]bits

e ¢ represents empty string, O and 1 are postfix operators.
o For example: "T0'=¢€, "6'=¢€110.

e Elimination form

FT-M71Tbits THNe]JC T,z:bits-NglC TI,ybitsk-N;|C
[FcaseM ofe= Ne | 20= Ng|yl= N1] C

22

Computation on Data Types

e Rules for computation, values, evaluation contexts
straightforward

e Need recursion for interesting functions

rwAFM|A
Hfixu. M| A fix u. M — g [fix u. M /u] M

e NO new values or evaluation contexts
e Orthogonal to other constructs in this form
e [echnical complication: uw stands for a term, not a value

e [reat explicitly or restrict syntax to fix u. Aoe. M

23

Data Structure Invariants and Subtyping

e Example: natural numbers as bit strings without leading
Zeroes.

e Intuition: need positive numbers, at least internally

Natural Numbers nat 1= €| pos

Positive Numbers pos = posO|natl

e Capture systematically and orthogonally to everything
before via

— typing rules

— subtyping rules

24

Typing Natural Numbers

e New rules (ignore redundancy):

el nat (no €] pos)
=M | pos =M | pos
MO | nat (MO | pos
= M | nat = M | nat
M1] nat (M1]| pos

(M Tnat TTENelC T@,x:poskNglC T,ynatk-Nq]C
[FcaseM ofe= Ne | 20= Ng|yl= N1] C

=M1 pos (no NelJC) T@,z:poskNglC T,ynat-Ny|C
FcaseM ofe= Ne | 20= Ng|yl= N1] C

25

Subtyping Judgment

New judgment A< B A is a subtype of B
A < B if every value of type A also has type B

Reflexivity rule (~ hypothesis rule)

A<A

Transitivity principle (theorem, ~ substitution principle)

If A< B and B<(C then A<C(C.

Subsumption rule, replaces 1|

Fr-EM1A rFA<C
r-M|C

26

Subtyping of Data Types

e From the typing rules:

pos < nat nat < bits pos < bits

e In general, a lattice

e Example of need for subsumption rule

x.:pOosSF x | nat
since x:post x 1 pos

and pos < nat

e Subtyping of functions

B1 < A A> < Bp
A1—>A2§Bl—>BQ

27

Summary of Atomic Subtyping

e Type assignmentl M : A

e Bi-directional system I'-M | A, T FMTA

e Values V, evaluation contexts E[], reduction M — M’
e Subtyping A< B

e All judgments are analytic and therefore decidable

e Can express data structure invariants recognizable by
finite-state tree automata (regular tree languages)

e Cannot express, e.d., lengths of lists or depths of trees

28

Outline

Introduction
Guiding Principles
Atomic Subtyping
Intersection Types
Union Types
[Dependent Types]

Conclusion

29

Limitations of Atomic Subtyping

e Problem: consider shiftl = Ax.z 0.

FAx.z0 | bits— bits
FAx.x0 | nat— bits
FAx.x0 | pos— pos

e [hese may all be needed, but cannot be expressed
simultaneously

e Especially troublesome for recursive functions

¥ fiXx inc. A\n. case n
of e=>e€l
| 20 =21
| 1 = (incx)0 % incx : poOS?
4 nat — nat

30

Intersection Types AA B

e Introduction and elimination forms

r-V,A r-vV.,B
r-V,AAB

T-MtAAB . THEMTAAB

NE
r-MtA "7t TEMtB 7

e Subject of judgment identical in premises and conclusion
e AN B a property type (refinement type)

e bits, A — B, A x B, 1 are constructor types

e Elimination rules are not redundant with bi-directionality

e \Value restriction is necessary for type preservation with
effects [Davies & Pf, ICFP'00]

31

Subtyping Intersection Types

Right and left rules (~ sequent calculus)
A<B A<ZC

A<Bnrc NE
AsC AL+1 BsC ALo>
ANB<C ANB<C

Easily justified by our meaning explanation
Transitivity remains admissible

Distributivity

(A—-B)AN(A—=C)<A—(BANCO)

would disturb orthogonality and is unsound with effects

[Davies & Pf, ICFP'00]

32

Example: External vs Internal Invariants

e Reconsider example

me = fiX mec. \n. case n
of e=> €l
| 0= 2z1
| x1 = (incx)0 % inc x : pos(!)
e [hen

- inc | (bits — bits) A (nat — pos)
(bits — bits) A (nat — pos) < nat — nat
(bits — bits) A (nat — pos) < pos — pos

e But

¥ inc | nat — nat
cannot be checked directly

33

Summary of Intersection Types

e Property types without term constructors

e L Ogically motivated subtyping

e Value restriction for soundness with effects

e No distributivity law for soundness with effects

e In practice may need to ascribe more explicit types

e Intersection orthogonal to all other types and constructor

34

Refinement Restriction

e System is cleanest with refinement restriction

e Segregate system explicitly into types (constructor types)
and sorts (property types)

e Only sorts of similar structure may be compared or
intersected

e Conservative over ML, including effects

e No further consideration in this talk
(see [Freeman & Pf'91] [Freeman'94] [Davies'97])

35

Universal Type T

e Introduction and elimination rules

I‘I—V¢TTI (no TE rule)

e Subtyping rules

AT TR (no TL rule)

e \Value restriction necessary for progress theorem, otherwise,
e.d.

[F(ee) | T]
e Confirms value restriction
e Useful for unreachable code, e.q.
casenato (nat—+C — (pos—C) — (nat— C))

A (pos— T — (pos—C)—(nat—C))

36

Outline

Introduction
Guiding Principles
Atomic Subtyping
Intersection Types
Union Types
[Dependent Types]

Conclusion

37

Union Types AV B

e Another property type, not constructor type

e Introduction rules
rEMLA r-M|B
r-MJAvB 1 r-MJ,AVB

Vo

e Problem: how do we write the elimination rule?

e A fundamental problem in natural deduction! [Prawitz'65]
[Girard]

e Subtyping is straightforward (~ sequent calculus!)
A<B A<C
A<Bvc 1 A< BVC

VRo

A<C B<C
AVB<C

VL

38

The Substitution Approach

e Due to [MacQueen, Plotkin, Sethi'86] and
[Barbanera, Dezani-Ciancaglini, De'Liguoro’'95]

e Union elimination

r-M:AVB T,z:AFN:C T,z:BFN:C
- [M/z]N : C

e Note uniformity of NV in the two branches

e Does not satisfy type preservation:
Different copies of M can reduce differently in [M/z]N

e [00 general, even for pure calculus

e Undecidable

39

Towards a Solution

e First idea: require exactly one occurrence of x in N
e Second idea: account for bi-directionality

e Union elimination: for N linear in x,
r-M1TAvB T, AF-FN|C T, 2. BFN]C

M+ [M/z]N | C

e Still not sound with effects(?)

40

Further Towards a Solution

e [hird idea: require N to be an evaluation context.

r-M1+AVB T2 A-E[z]lC T,2:BFE[z]|C
r-E[M]]C v

E

e Restores progress and preservation
e Much more restrictive than Barbanera et al.

e Setting and goals are different

41

Example

o Use
o = f:(B1—C1)A(By— C2),
g:A—(By1V By),
x . A

e Show gk f(gxz) | C1VCs

e Using evaluation context f []
Mo, y:Bik fylCh Mo, y:Ba = fyl Co

[oFgxtBi1VvVBy ToyuBikfylCivCy To,yBakfylCoVCOo

o f(gz)d C1VvCH

42

Empty Type L

e Zero-ary case of disjunction

e Introduction and elimination rules
Fr=M1 L
(no LI rule) = E[M]]C

1FE

e Restriction to evaluation contexts critical

e Counterexample: for abort : nat — L,

((e€) (aborte)) L C

for any C', but violates progress.
e Note: (ee) [] is not an evaluation context!

e Subtyping

(no LR rule) 1. <C 1L

Another Problem

e System is not yet general enough

e Example: use

1 = f:nat— (B1 —Cq1) A (By—C5),
h : nat — nat
gIA—)(Bl\/BQ),
xz . A

e Show M1+ f(he) (gz) L C1VCr7

e Problem f (he) [] is not an evaluation context!

44

Solution

e Add “unary disjunction” rule
Fr-EM1T A Mz AF Elx] | C
= E[M]]C

e Realizes a substitution principle that is normally admissible

e Also form of analytic cut

e Now
Mi,n:nat- fntD Ti,nnat,k:DHk(gzx)] C1VCs
1 Fhetnat M1,n:natk- fn(gz)] C1VCo
Mk f(he)(gz)] C1VCo
for
M = f:nat— (B1—C1)A(By— C»),
h : nat — nat,
g:A—>(B]_\/B2),
. A
D = (B1—Ci)AN(By— C»)

45

Summary of Tri-Directional Rules

e Binary case (union elimination)

r-M1AVB T,2:AFE[z]lC T,z:BFE[z]|C
r-E[M]]C

VE

e Unary case (substitution)

r-M1+ A M zAF E[z] | C
r-E[M]]C

e Zeroary case (contradiction)

r-M+ 1
- E[M]|C

1F

e Note: unary case is not general cut, but analytic!

46

Some Theorems

Progress T heorem

If - M : A then either - M val or M — M.
Preservation Theorem

If WM :Aand M — M’ then - M': A

Tri-directional type-checking is decidable.

Critical lemmas are substitution and various inversion
properties

Example: Determinacy
If -V :AvBthen FV:Aor FV:B

Hold with and without mutable references

47

Tri-Directional Checking and Let-Normal Form

e Iri-directionality allows us to check the term in evaluation
order

e Appears related to bi-directional checking after translation
to let-normal form (2/3-continuation passing style,
A-normal form)

e For example,

f(he)(gx) — letn=~hein

let k = fnin
let y =g x in
let z =k y in

z end end end end

48

Left Rules for Type-Checking

e Also considered by Barbanera et al. (there: admissible)

e [he following left rules are sound, but not admissible

rzATFM|C rz:B,I'-M|]C
r o ANB,I'FM|C r o AANB,I'-M | C

ANLq ALo

rzAT-M|C I‘,:I;:B,I"I—MLC\/L
e AVB,I'-M]C

1L
el M"-M]C

e Conjecture: The correspondence between tri-directional
checking and bi-directional checking of let-normal form is
exact if we add the left rules to the typing judgment.

49

Related Work on This Correspondence

e [Sabry & Felleisen’'94]
Is Continuation-Passing Useful for Data Flow Analysis?

e [Damian & Danvy'00]
Syntactic Accidents in Program Analysis

e [Palsberg & Wand'02]
CPS Transformation of Flow Information

50

Connections to Commuting Conversions

e Under the coercion interpretation,
— A — X (product type)
— T — 1 (unit type)
— V — 4+ (disjoint sum type)
— 1 — 0 (void type)

e Different ways to apply contextual rules corresponds to
certain commuting conversions on disjoint sum and void

types

e [hese different versions are identified by CPS
transformation [deGroote99,deGroote01]

51

Alternative Methods for Type Checking for Unions

e [Pierce'91]

case M of x = N for [M/z]N

determines where VL rule can be applied. No effects. Note
difference in operational semantics between two sides.

e [Wells, Dimock, Muller, Turbak'99]
Virtual terms copied to establish bijection between valid
terms and typing derivations. Designed as intermediate
language only, for expressing flow information.

e [Palsberg & Paviopoulou’'00]
Disjunction only in subtyping (not typing), designed for flow
information.

52

Summary of Tri-Directional Checking

e Iri-directional type-checking combines

— Synthesis (F'= M 1 A, given I, M, generates all A)
— Analysis (T M | A, given ', M, A, verify)

— Contextual rules (visit subterm in evaluation order)

e [T heorem: Preservation and progress hold for call-by-value
(even in the presence of effects)

e T heorem: Type checking is decidable
(Judgments are analytic on terms and types)

e T heorem: Conservative extension of various fragments
(orthogonal definition of constructor types (—, x, 1, 4+, 0)
and property types (A, T, V, 1))

53

Practicality for Intersection Types

e Bi-directional checking is practical for A, T in SML
[Davies'97]

e Good tradeoff between verbosity, expressive power, and
efficiency of type-checking

e Implements refinement restriction (conservative over ML)
e Property complexity determines efficiency
e Infeasible examples exist [Reynolds'96]

e Use of unions only for data types and pattern matching

54

Adding Union Types in Implementation

e Conjecture practicality with some efficiency improvements

— Focusing strategy for subtyping [Davies & Pf’'00]
— Focusing strategy for typing

— Lazy splitting of AV B

— Memoization during multiple traversals

— Algorithmic conservativity?

e Infeasible examples exist

e Anticipate sparing use of unions outside data types

55

Outline

Introduction

Guiding Principles
Atomic Subtyping
Intersection Types
Union Types
[Dependent Types]

Conclusion

56

Universal and EXistential Dependent Types

Many important data structure invariants cannot be
expressed, for example

— Lists of length n
— Closed terms in de Bruijn form

— Height invariant on balanced trees

Extend simple types to integrate indexed types (list(7)),

universal dependent types (IMa. A), and existential
dependent types (Xa.A) [Xi'98, Xi & Pf'98,99]

Prior work suffered from a lack of intersections

Ad hoc treatment of existential dependent types

57

Index Domain

New hypotheses a:v for index variables a
New hypotheses : = 5 for index terms 1, j.
New judgment I' =14 : ~ for index domain
Generalize subtyping ' F A< B

New subtyping for indexed data types 6, ¢’

FrE6=8 Thi=j
M Ea@) <&@)

58

Example: Lists

e Introduction
=M | bits HLJlist(n)
[nil | list(0) r+~cons(M,L) |list(n+1)

e Elimination

I+ L1 list(n)

['n=0FN;|C

[, z:bits,a:nat,n =a + 1,l:list(a) F N1 | C
[+ case L of nil = N7 | cons(x,l) = N> | C

59

Example Types

e Definite

append . TMn:nat. Nk:nat.list(n) — list(k) — list(n 4+ k)

e Indefinite

hd : (list(0) — L) A (Mn:nat.list(n + 1) — list(n))
tl : Mn:nat.list(n) — (list(n — 1) V list(0))
filter0 : TMn:nat.list(n) — Xk:nat. list(k)

e EXxistential types are not “optional” like unions!

60

Universal Dependent Types

e Universal dependent type as property type

e Universal introduction
L,avy-MJ| A
=M | lMNa~vy. A

M7

e Universal elimination
=M Tlay A [TH1:xy
= M7T[i/a]A

MNE

e Subtyping

I_,b:qll—ASBVR FE[i/a]A< B T kFi:y
-A<Vb~.B [-Vav.A<B

VL

61

EXxistential Dependent Types

e EXistential dependent types as property type

e EXistential introduction
=M [i/a]A T Fi:a
r-MJ| >av. A

e Existential elimination (requires contextual form)

M1t Xa~ry. A T arvy,z:AF Elx] iCZ

- E[M]|C E

e Subtyping

Fr=A<|i/b|lB [F4: L avyHFA<B
< [i/b] LY e , iy <

- A<>bn. B r->a~y.ArC

Summary: Dependent Types

e Definition orthogonal to other constructs
e Meta-theoretic analysis carries over

e For type-checking, collect equational constraints in index
domain

e For decidability, constraint domain must be decidable in the
presence of universal and existential variables

e Example: Presburger arithmetic
e Existential types are critical (e.qg., filter)

e Clean formulation only with contextual rules

63

Outline

Introduction
Guiding Principles
Atomic Subtyping
Intersection Types
Union Types
[Dependent Types]

Conclusion

64

Other Related Work

Intersection types (many)
Forsythe [Reynolds’'88] [Reynolds'96]

Intersections and explicit polymorphism [Pierce’91]
[Pierce’97]

Soft types (many)

Shape analysis and software model checking (many)

65

Future Work: Parametric Polymorphism

e ML-style polymorphism via refinement restriction

e Bi-directionality for full parametric polymorphism requires
subtyping

e Value restriction on YI for soundness with effects
[Davies & Pf'00]

e Subtyping undecidable [Wells'95 |[Tiuryn & Urzyczyn'96]
even without distributivity [Chrzaszcz'98]

e Conjecture predicative part with universes decidable

e Combine with local inference? [Pierce & Turner’'97]

66

Other Future Work

e General case of data types (mostly done)
e Precise relationship to logic, CPS, commuting conversions
e Version for call-by-name, lazy evaluation

e [ranslation to monadic meta-language to encapsulate
effects

e Sequential pattern matching with union and existential

e Apply where types express effects or resources(!)

67

Summary

e Refinement types to statically verify program invariants

e System constructed orthogonally based on judgments

e Conservativity with respect to fragments

e Bi-directional checking for intersection and universal types
e Iri-directional checking for union and existential types

e [ype-checking in evaluation order

e Sound with effects through value and evaluation context
restrictions

e Preliminary examples indicate it may be practical

63

Intersections are Unsound with Effects

e Counterexample

let x =ref(el) : natrefAposref

in
T = €] % use x : nat ref
| % use x : pos ref

end : pos
evaluates to € which does not have type pos.

e Analogous counterexample with parametric polymorphism:

let z=ref(\y.y) :Va. (a— a)ref
in
x = (\y.€); % use x : (nat — nat) ref
('z) (e1) % use x : (pos — pos) ref
end : pos

69

Distributivity is Unsound with Effects

e Recall distributivity

(A—-B)AN(A—=C)<A—(BANCO)

e Counterexample:

= Au.ref(el) . (unit — nat ref) A (unit — pos ref)
by distributivity and subsumption:

= Au.ref(el) . unit — (nat ref A pos ref)

= (Au.ref(el)) () : natref A posref

e In a program:

let = (Au.ref(el)) () :natrefAposref

in ... end % as on previous slide

70

