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Logical Frameworks

Understanding laws governing systems of logical inference

Semantically (models)
Syntactically (proofs)
Pragmatically (applications)

Key concepts and techniques

Separating judgments from propositions
Hypothetical and general judgments
Linear hypothetical judgments
Categorical judgments
Structural cut elimination
Focusing and polarization

Frontier: Modalities

This talk: Analyzing the fine structure of necessity
Vivek Nigam (11am): Subexponentials!
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Defining Modalities

Expressing different modes of truth

Necessary, possible
At time t, as known by K , . . .

Understanding modalities

Axiomatically [Lewis’10]
Semantically [Kripke’59]
Proof-theoretically [Prawitz’65]

Intuitionistically [Simpson’94]
[Pf&Wong’95] [Bierman&dePaiva’96] [Davies&Pf’01]

Not every set of axioms or accessibility relations define
well-behaved logics
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Applications in Computer Science

A personal and biased sampling
Propositions as types, proofs as programs

Staged computation, run-time code generation (JS4)
[Davies & Pf’96]
Monadic encapsulation (lax logic)
[Fairtlough & Mendler’97]
Partial evaluation (temporal logic) [Davies’96]
Proof irrelevance (JK) [Pf’08]
Message-passing concurrency (linear logic)
[Caires & Pf’10] [Toninho’15]

Reasoning about programs
Dynamic logic [Pratt’74]
Temporal logics [Pnueli’77] [Clarke & Emerson’80]
Separation logic [O’Hearn & Pym’99] [Reynolds’02]

Security
Authorization logics [Garg et al.’06]
Protocol logics [Datta et al.’03] 4 / 48



Judging Modalities

Axiomatics: too flexible to be decisive
Semantics: too flexible to be decisive
Pragmatics: applications in computer science
Proof theory [Gentzen’35]

Harmony [Dummett’76]
Structural cut elimination [Pf’95]

Logical frameworks [de Bruijn’68]
Verifications as meaning explanations [Martin-Löf’80]
Separating judgments from propositions [Martin-Löf’83]
Hypothetical/general judgments [Harper et al.’87]
Categorical judgments [Pf & Davies’01]

Linear logic [Girard’87]
Essence of logical connectives
Decomposition A→ B ' !A( B
Focusing [Andreoli’92]
Judgmental explanation [Chang et al.’03]
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Aspects of Necessity

This talk: concentrate on necessity (�A, !A)

Internalizes a categorical judgment
Controls weakening and contraction in linear logic
Corresponds to reflexivity and transitivity of accessibility
relation

How interdependent are these aspects of necessity?

Do sensible subsystems have applications?

Is necessity indivisible?
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Outline

An axiomatic approach to linear logic

Judgmental sequent calculi for subsystems

Adjoint decomposition of necessity
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Implicational Linear Logic

Intuitionistic version

` (A( B)( (B( C )( (A( C ) (L)
` A( A (I )
` (A( B( C )( (B( A( C ) (X )

` A( B ` A

` B
MP
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Judging Axiomatic Systems

The internal criterion for axiomatic formulations of logics
is the deduction theorem for hypothetical proofs

The external criterion will be correspondence to a sequent
calculus with structural cut elimination and identity

Start with internal criterion

Introduce linear hypothetical judgment
Prove deduction theorem
Illustrate how proof suggests axioms
Motif repeats for modal extensions
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A Linear Hypothetical Hilbert System

∆ ::= • | ∆,A (modulo exchange)

∆ ` A is linear hypothetical judgment

A ` A
HYP

∆1 ` A( B ∆2 ` A

∆1,∆2 ` B
MP

• ` (A( B)( (B( C )( (A( C )
L

• ` A( A
I

• ` (A( B( C )( (B( A( C )
X
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Deduction Theorem

Theorem (Deduction)

∆,A ` B

∆ ` A( B
DED

Proof.

By induction on the deduction of ∆,A ` B .

Dashed line indicates an admissible rule

Corollary

A1, . . . ,An ` A iff ` A1( · · ·( An( A
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Proof of Deduction Theorem

Part 1.

By induction on the deduction of ∆,A ` B .

Cases: Axioms (L), (I ), or (X ). Impossible, since there
are no hypotheses. For example:

• ` (A( B)( (B( C )( (A( C )
L

Case:

A ` A
HYP

• ` A( A (I )
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Proof of Deduction Theorem

Part 2.

Case:
∆1,A ` B( C ∆2 ` B

∆1,∆2,A ` C
MP

∆1 ` A( B( C i.h.
• ` (A( B( C )( (B( A( C ) (X )
∆1 ` B( A( C MP
∆2 ` B second premise
∆1,∆2 ` A( C MP

13 / 48



Proof of Deduction Theorem

Part 2.

Case:
∆1,A ` B( C ∆2 ` B

∆1,∆2,A ` C
MP

∆1 ` A( B( C i.h.
• ` (A( B( C )( (B( A( C ) (X )
∆1 ` B( A( C MP
∆2 ` B second premise

∆1,∆2 ` A( C

MP

13 / 48



Proof of Deduction Theorem

Part 2.

Case:
∆1,A ` B( C ∆2 ` B

∆1,∆2,A ` C
MP

∆1 ` A( B( C i.h.

• ` (A( B( C )( (B( A( C ) (X )
∆1 ` B( A( C MP
∆2 ` B second premise

∆1,∆2 ` A( C

MP

13 / 48



Proof of Deduction Theorem

Part 2.

Case:
∆1,A ` B( C ∆2 ` B

∆1,∆2,A ` C
MP

∆1 ` A( B( C i.h.

• ` (A( B( C )( (B( A( C ) (X )
∆1 ` B( A( C MP

∆2 ` B second premise
∆1,∆2 ` A( C

MP

13 / 48



Proof of Deduction Theorem

Part 2.

Case:
∆1,A ` B( C ∆2 ` B

∆1,∆2,A ` C
MP

∆1 ` A( B( C i.h.
• ` (A( B( C )( (B( A( C ) (X )

∆1 ` B( A( C MP

∆2 ` B second premise
∆1,∆2 ` A( C

MP

13 / 48



Proof of Deduction Theorem

Part 2.

Case:
∆1,A ` B( C ∆2 ` B

∆1,∆2,A ` C
MP

∆1 ` A( B( C i.h.
• ` (A( B( C )( (B( A( C ) (X )
∆1 ` B( A( C MP
∆2 ` B second premise
∆1,∆2 ` A( C

MP

13 / 48



Proof of Deduction Theorem

Part 2.

Case:
∆1,A ` B( C ∆2 ` B

∆1,∆2,A ` C
MP

∆1 ` A( B( C i.h.
• ` (A( B( C )( (B( A( C ) (X )
∆1 ` B( A( C MP
∆2 ` B second premise
∆1,∆2 ` A( C MP

13 / 48



Proof of Deduction Theorem

Part 3.

Case:
∆1 ` B( C ∆2,A ` B

∆1,∆2,A ` C
MP

∆2 ` A( B i.h.
• ` (A( B)( (B( C )( (A( C ) (L)
∆2 ` (B( C )( (A( C ) MP
∆1 ` B( C first premise
∆1,∆2 ` A( C MP

14 / 48



Proof of Deduction Theorem

Part 3.

Case:
∆1 ` B( C ∆2,A ` B

∆1,∆2,A ` C
MP

∆2 ` A( B i.h.
• ` (A( B)( (B( C )( (A( C ) (L)
∆2 ` (B( C )( (A( C ) MP
∆1 ` B( C first premise

∆1,∆2 ` A( C

MP

14 / 48



Proof of Deduction Theorem

Part 3.

Case:
∆1 ` B( C ∆2,A ` B

∆1,∆2,A ` C
MP

∆2 ` A( B i.h.

• ` (A( B)( (B( C )( (A( C ) (L)
∆2 ` (B( C )( (A( C ) MP
∆1 ` B( C first premise

∆1,∆2 ` A( C

MP

14 / 48



Proof of Deduction Theorem

Part 3.

Case:
∆1 ` B( C ∆2,A ` B

∆1,∆2,A ` C
MP

∆2 ` A( B i.h.

• ` (A( B)( (B( C )( (A( C ) (L)
∆2 ` (B( C )( (A( C ) MP

∆1 ` B( C first premise
∆1,∆2 ` A( C

MP

14 / 48



Proof of Deduction Theorem

Part 3.

Case:
∆1 ` B( C ∆2,A ` B

∆1,∆2,A ` C
MP

∆2 ` A( B i.h.
• ` (A( B)( (B( C )( (A( C ) (L)

∆2 ` (B( C )( (A( C ) MP

∆1 ` B( C first premise
∆1,∆2 ` A( C

MP

14 / 48



Proof of Deduction Theorem

Part 3.

Case:
∆1 ` B( C ∆2,A ` B

∆1,∆2,A ` C
MP

∆2 ` A( B i.h.
• ` (A( B)( (B( C )( (A( C ) (L)
∆2 ` (B( C )( (A( C ) MP
∆1 ` B( C first premise
∆1,∆2 ` A( C

MP

14 / 48



Proof of Deduction Theorem

Part 3.

Case:
∆1 ` B( C ∆2,A ` B

∆1,∆2,A ` C
MP

∆2 ` A( B i.h.
• ` (A( B)( (B( C )( (A( C ) (L)
∆2 ` (B( C )( (A( C ) MP
∆1 ` B( C first premise
∆1,∆2 ` A( C MP

14 / 48



Linear Sequent Calculus

Construct a linear sequent calculus

Prove structural cut elimination and identity
Show correspondence with Hilbert system

∆ `̀ A is linear hypothetical judgment

Judgmental rules of identity and cut

A `̀ A
idA

∆1 `̀ A ∆2,A `̀ C

∆1,∆2 `̀ C
cutA

Propositional right and left rules for (

∆,A `̀ B

∆ `̀ A( B
(R

∆1 `̀ A ∆2,B `̀ C

∆1,∆2,A( B `̀ C
(L
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Admissibility of Cut and Identity

Fundamental criteria for sensible sequent calculus
Cut-free system provides meaning explanation
Entails harmony [Dummett’76]

Define ∆ `̀∗ A like ∆ `̀ A, without cut, and idA for
atomic A only

Theorem (Admissibility of Cut and Identity)

Cut and identity are admissible in `̀∗ .

∆1 `̀
∗
A ∆2,A `̀

∗
C

∆1,∆2 `̀
∗
C

cutA
A `̀∗ A

idA

Proof.

Cut by nested induction on A and deductions of premises.
Identity by induction on A. 16 / 48



Cut Elimination

Theorem (Cut and Identity Elimination)

If ∆ `̀ A then ∆ `̀∗ A

Proof.

By structural induction on deduction of ∆ `̀ A, using
admissibility of cut and identity.
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Correspondence: Axiomatic and Sequent Calculus

Theorem (Soundness of Sequent Calculus)

If ∆ `̀ A then ∆ ` A.

Proof.

By induction on the given deduction.

Theorem (Completeness of Sequent Calculus)

If ∆ ` A then ∆ `̀ A.

Proof.

By induction on the given deduction.
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The Exponential of Linear Logic

Tackling the modality !A where A→ B ' !A( B

Same blueprint

Axiomatic formulation
Hypothetical Hilbert system
Deduction theorem(s)
Sequent calculus
Cut and identity elimination
Correspondence

Constructing calculi for weaker modalities than !A.

Fragments are identified by subset of axioms
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Axiomatizing the Exponential

Rule of Necessitation

` A

` !A
NEC

Axioms of S4

Name Accessibility Linear

` !(A( B)( !A( !B (K ) [normal] [!,?]
` !A( A (T ) [reflexivity] [dereliction]
` !A( !!A (4) [transitivity] [digging]

Controlled weakening and contraction

` A( !B( A (W ) [weakening]
` (!B( !B( A)( (!B( A) (C ) [contraction]
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Linear K

Write �A for fragments of !A

Linear K: Axiom (K ) and necessitation

` �(A( B)(�A(�B (K )

` A

` �A NEC

Is there a corresponding sequent calculus?

Is there a version of the deduction theorem?

Start with sequent calculus
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Validity as a Linear Categorical Judgment

Judgment Γ valid ; ∆ true `̀ A true
Γ: assumed valid (= true in all reachable worlds)
∆: assumed true in current world
A: to prove true in current world

Judgment Γ valid `̀ A valid (conceptual)

All antecedents are linear!

Judgmental principles: inclusion and independence[
Γ true `̀ A true

Γ valid `̀ A valid

]
[

Γ1 valid `̀ A valid Γ2 valid,A valid ; ∆ true `̀ C true

Γ1, Γ2 valid ; ∆ true `̀ C true

]
Truth can depend on validity

Validity cannot depend on truth
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Internalizing Linear K-Validity as �A

Use only Γ ; ∆ `̀ A (eliding “valid” and “true”)

(Γ valid `̀ A valid) ' (• ; Γ true `̀ A true)

• ; A `̀ A
idA

Γ1 ; ∆1 `̀ A Γ2 ; ∆2,A `̀ C

Γ1, Γ2 ; ∆1,∆2 `̀ C
cutA

Γ ; ∆,A `̀ B

Γ ; ∆ `̀ A( B
(R

Γ1 ; ∆1 `̀ A Γ2 ; ∆2,B `̀ C

Γ1, Γ2 ; ∆1,∆2,A( B `̀ C
(L

• ; Γ `̀ A

Γ ; • `̀ �A �R
Γ,A ; ∆ `̀ C

Γ ; ∆,�A `̀ C
�L

• ; Γ1 `̀ A Γ2,A ; ∆ `̀ C

Γ1, Γ2 ; ∆ `̀ C
cut�A
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Cut on Validity

Recall definition [
Γ true `̀ A true

Γ valid `̀ A valid

]
Justifies second form of cut

• ; Γ1 `̀ A

[Γ1 valid `̀ A valid] Γ2,A valid ; ∆ `̀ C

Γ1, Γ2 valid ; ∆ `̀ C
cut�A
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Admissibility of Cut

Theorem (Admissibility of Cut)

Γ1 ; ∆1 `̀
∗
A Γ2 ; ∆2,A `̀

∗
C

Γ1, Γ2 ; ∆1,∆2 `̀
∗
C

cutA

• ; Γ1 `̀
∗
A Γ2,A ; ∆ `̀∗ C

Γ1, Γ2 ; ∆ `̀∗ C
cut�A

Proof.

By mutual nested induction on A and the deduction of the two
premises.
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Admissibility of Identity

Theorem (Admissibility of Identity)

· ; A `̀∗ A
idA

Proof.

By induction on the structure of A. Sample case:

Case: A = �A′.

• ; A′ `̀∗ A′
i .h.(A′)

A′ ; • `̀∗ �A′
�R

• ; �A′ `̀∗ �A′
�L
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Hypothetical Hilbert System

Construct in analogy with sequent calculus

• ; A ` A
HYP

Γ1 ; ∆1 ` A( B Γ2 ; ∆2 ` A

Γ1, Γ2 ; ∆1,∆2 ` B
MP

• ; • ` axiom

• ; Γ ` A

Γ ; • ` �A NEC

Axioms

` (A( B)( (B( C )( (A( C ) (L)
` A( A (I )
` (A( B( C )( (B( A( C ) (X )

` �(A( B)(�A(�B (K )
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Two Deduction Theorems

Theorem (Deduction)

Γ ; ∆,A ` B

Γ ; ∆ ` A( B
DED

Γ,A ; ∆ ` B

Γ ; ∆ ` �A( B
DED�

Proof.

By mutual induction on the given deductions. Sample:

Case:
• ; Γ,A ` B

Γ,A ; • ` �B NEC

• ; Γ ` A( B i.h.(DED)
Γ ; • ` �(A( B) NEC
• ; • ` �(A( B)( (�A(�B) (K )
Γ ; • ` �A(�B MP
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Correspondence

Theorem (Correspondence for Linear K)

Γ ; ∆ ` A iff Γ ; ∆ `̀ A

Proof.

In each direction by structural induction on given
deduction.
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Adding Weakening and Contraction

Structural axioms for necessity

` A(�B( A (W )
` (�A(�A( C )( (�A( C ) (C )

Deduction theorems as before

Sequent calculus (A+ denotes multiple copies of A)

Γ ; ∆ `̀ C

Γ,A ; ∆ `̀ C
wk

Γ,A,A ; ∆ `̀ C

Γ,A ; ∆ `̀ C
ct

• ; Γ1 `̀ A Γ2,A
+ ; ∆ `̀ C

Γ1, Γ2 ; ∆ `̀ C
cut�+A

Other formulations are possible

30 / 48



Elementary Linear Logic

Linear KWC is elementary linear logic

Captures elementary recursive functions
[Danos & Joinet’01]

KTWC adds ` �A( A

Can represent all recursive functions [D&J remark]

K4WC adds ` �A(��A
K4TWC is intuitionistic linear logic

Linear KT[WC] and K4[WC] have judgmental
formulations (next)
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Reflexivity (= Dereliction)

Axiomatically:
` �A( A (T )

Sequent calculus:

Γ ; ∆,A `̀ C

Γ,A ; ∆ `̀ C
refl

All metatheorems carry over, including correspondence.
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Transitivity (= Digging)

Axiomatically:

` �A(��A (4)

Sequent calculus:

Γ1 ; Γ2 `̀ A

Γ1, Γ2 ; • `̀ �A
�R

Γ′1 ; Γ′′1 `̀ A Γ2,A ; ∆ `̀ C

Γ′1, Γ′′1, Γ2 ; ∆ `̀ C
cut�

All metatheorems carry over
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Story So Far

Base axiomatic system

` (A( B)( (B( C )( (A( C ) (L)
` A( A (I )
` (A( B( C )( (B( A( C ) (X )

` �(A( B)( (�A(�B) (K )

` A( B ` A

` B
MP

` A

` �A NEC

Additional axioms

` �A( A (T ) dereliction
` �A(��A (4) digging

` C (�A( C (W ) weakening
` (�A(�A( C )( (�A( C ) (C ) contraction

All∗ combinations yield defensible logics with structural
cut elimination and identity.

T4WC = intuitionistic linear logic
WC = elementary linear logic

Weakening and contraction for truth provide another
dimension

Structural properties of validity must include thos of
truth
W2C = elementary affine logic
T4W2C = intuitionistic affine logic
T4W2C2 = intuitionistic modal logic (S4)
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Techniques

Separating judgments and propositions

Validity derived via inclusion and independence
Truth can depend on validity
Validity cannot depend on truth

Sequent calculus with validity and truth

Valid and true antecedents
Additional judgmental rules for T, 4, W, C

Hypothetical Hilbert system as bridge

Validity judgment as additional hypotheses
Two deduction theorems

Various combinations can be “optimized”
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Another Decomposition: Adjoint Logic

Combine intuitionistic and intuitionistic linear logic via an
adjunction [Benton’94]

Two functors F and G , F left adjoint to G
Syntax as modal operators G A and F X
Decompose !A ' F (G A)

Generalized to multi-modal logics [Reed’09]

Applies to polarization [Laurent’99] [Pf. & Griffith’15]

Question: Does it apply to weaker logics?
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Adjoint Logic

Two-level system [Benton’94] (↓ = F , ↑ = G )

Unrestricted AU ::= AU → AU | ↑AL

Linear AL ::= AL( AL | ↓AU

Represent !AL ' ↓↑AL

Now both levels are linear

No weakening or contraction
No analogue of dereliction or digging
Read: U = Upper level, L = Lower level
Upper level represents validity
Lower level represents truth
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Adjoint K, Judgmental Rules

Γ ::= • | Γ,AU

∆ ::= • | ∆,AL

Judgments Γ `̀ AU and Γ ; ∆ `̀ AL

AU `̀ AU

idU • ; AL `̀ AL

idL

Γ1 `̀ AU Γ2,AU `̀ CU

Γ1, Γ2 `̀ CU

cutUU
Γ1 ; ∆1 `̀ AL Γ2 ; ∆2,AL `̀ CL

Γ1, Γ2 ; ∆1,∆2 `̀ CL

cutLL

Γ1 `̀ AU Γ2,AU ; ∆ `̀ CL

Γ1, Γ2 ; ∆ `̀ CL

cutUL
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Adjoint K, Modal Rules

Γ `̀ AU

Γ ; • `̀ ↓AU

↓R
Γ,AU ; ∆ `̀ CL

Γ ; ∆, ↓AU `̀ CL

↓L

Γ ; • `̀ AL

Γ `̀ ↑AL

↑R
Γ ; ∆,AL `̀ CL

Γ, ↑AL ; ∆ `̀ CL

↑L
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Adjoint K, Axiomatic System

Two judgments `LAL and `UAU

Implicational fragments (eliding level annotations)

`L(A( B)( (B( C )( (A( C ) (L)L
`LA( A (I )L
`L(A( B( C )( (B( A( C ) (X )L

`U(A→ B)→ (B → C )→ (A→ C ) (L)U
`UA→ A (I )U
`U(A→ B → C )→ (B → A→ C ) (X )U

`LA( B `LA
`LB

MPU
`UA→ B `UA

`UB
MPL
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Adjoint K, Modal Operators

Mixed analogues of K

`L↓(AU → BU)( (↓AU( ↓BU) (K )L
`U↑(AL( BL)→ (↑AL → ↑BL) (K )U

Mixed analogues of NEC

`UAU

`L↓AU

↓
`LAL

`U↑AL

↑

Adjunction properties

`L↓↑AL( AL (J)L

`LAU → ↑↓AU (J)U
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Adjoint K, Hypothetical Hilbert System

Judgments Γ `UAU and Γ ; ∆ `LAL

In analogy with sequent calculus. For example:

Γ `UAU

Γ ; • `L↓AU

↓
Γ ; • `LAL

Γ `U↑AL

↑

Three deduction theorems

Γ,AU `
U
BU

Γ `UAU → BU

DEDUU

Γ ; ∆,AL `
L
BL

Γ ; ∆ `LAL( BL

DEDLL

Γ,AU ; ∆ `LBL

Γ ; ∆ `L↓AU( BL

DEDUL
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Adjunct K, Correspondence

Theorem (Correspondence for Adjunct K)

(i) Γ ; ∆ `̀ AL iff Γ ; ∆ `LAL

(ii) Γ `̀ AU iff Γ `UAU

Weakening and contraction for U are orthogonal

Under !AL ' ↓↑AL

!AL( AL follows by (J)L
!AL( !!AL follows by (J)U

Unavoidable? Linear K violates stratification of syntax:

• ; Γ `̀ A

Γ ; • `̀ �A �R
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Summary

Four properties of !A, reflexivity (T), transitivity (4),
weakening (W), contraction (C), can be mixed and
matched

Axiomatic system by subsetting axioms
Sequent systems via judgmental distinctions and rules
Structural cut elimination and identity for all∗ systems
Clean meaning explanations
Yields elementary linear logic (= KWC)
Applications for other systems?

Adjoint decomposition !A ' ↓↑A
Weakening and contraction orthogonal
Reflexivity and transitivity appear inevitable
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Further Observations and Questions

Conjecture generalization to a pre-order of levels

For independence and inclusion [Pientka]
For adjoint approach [Reed’09]
See also subexponentials [Nigam & Miller’09]
Applications in session types [Pf & Griffith’15]

Compatible with constructive possibility [Pf’13]

Not fully compatible with world-indexed truth
[Simpson’94]

Violates independence (♦A(�B)(�(A( B)
Related discrepancies for A⊕ B, 0
Recover via tethering? [Pf’13]

Can we construct fragmentary dependent type theories?

Are there further structural complexity classes?

Other applications?
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Teaser: Simpson’s Axiom

No rule applies!
♦A(�B `̀∗ �(A( B)

`̀∗ (♦A(�B)(�(A( B)

(R

Not provable in any presented system

Proof would violate independence!
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Teaser: World-Indexed Truth

A[w ] means A true in world w

w0 ≤ w1 means w1 is accessible from w0

w0 ≤ w1,A[w1] `̀ A[w1] idA

w0 ≤ w1,A[w1] `̀ ♦A[w0] ♦R , (w0 ≤ w1)

B[w1] `̀ B[w1] idB

�B[w0],w0 ≤ w1 `̀ B[w1] �L, (w0 ≤ w1)

(♦A(�B)[w0],w0 ≤ w1,A[w1] `̀ B[w1] (L
(♦A(�B)[w0],w0 ≤ w1 `̀ (A( B)[w1] (R
(♦A(�B)[w0] `̀ �(A( B)[w0] �R

`̀ ((♦A(�B)(�(A( B))[w0]

(R

Provable without any assumption on accessibility!
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