Concurrent Programming in
Linear Type Theory

Frank Pfenning
Carnegie Mellon University

Joint work with Luis Caires, Bernardo Toninho,
Jorge Peréz, Dennis Griffith, Elsa Gunter, et al.

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Outline

* A new foundation for session types
* SILL by example

— Prime sieve
— Bit strings

* Language highlights
— Types and programs

— Implementation
— Ongoing research

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Session Types

Prescribe communication behavior between
message-passing concurrent processes

May be synchronous or asynchronous
Linear channels with two endpoints
Shared channels with multiple endpoints

Messages exchanged can be

— data values (including process expressions)
— channels (as in the mt-calculus)

— |labels (to indicate choice)

Curry-Howard Isomorphisms

* Logical origins of computational phenomena
* |ntuitionistic logic & functional programming
* S4 modal logic & quote/eval staging

* S5 modal logic < distributed programming

 Temporal logic < partial evaluation
* Linear logic < session-typed concurrency
 More than an analogy!

Linear Logic: A New Foundation

Linear propositions < session types
Sequent proofs < process expressions
Cut < process composition

dentity & message forwarding

Proof reduction € communication

inear type theory generalizes linear logic
— Logic: propositions do not mention proofs
— Type theory: proofs are internalized as terms

Benefits of Curry-Howard Design

Integrated development of programming
constructs and reasoning principles

— Correct programs via simple reasoning principles
— Even if they are not formalized in the language!

Elegant and expressive language primitives
Orthogonality and compatibility of constructs
Programming language theory as proof theory

Curry-Howard: How Far to Go?

 Computation vs. proof reduction
— Computation imposes a strategy
— Proof reduction could be anywhere
— n-expansion as equality, not computation

* Functional programming
— Always stop at A-abstraction (negative type)
— Call-by-name vs. call-by-value vs. call-by-need vs...

Curry-Howard: How Far to Go?

* Option 1: Synchronous m-calculus

— Only judgmental rules (cut, id) commute

— No propositional rules commute
* Option 2: Asynchronous mt-calculus

— Commute past outputs (pos. multiplicatives)

— Don’t commute past inputs (as in functional progs)
e Option 3: Solos [N. Guénot yesterday]

— Commute past inputs (neg. multiplicatives)
— Do not commute past neg. additives, exponentials

Some Choices for SILL

SILL = Sessions in Intuitionistic Linear Logic
Conservatively extend functional language

— Process expressions form a (contextual) monad

— Communication may be observable

Manifest notion of process
— Offer vs. use of a service

— Process < channel along which service is offered

Later: CILL, sessions in a C-like language

Properties of SILL

Type preservation
— Entails session fidelity on processes

Progress
— Absence of deadlock
— Absence of race conditions

Termination and productivity

— Some restrictions on recursive types required

Obeys a general theory of logical relations!

SILL by Example

* Syntax close to implementation in O’'Caml|
* No inference rules, just intuition

* Examples
— Endless streams of integers
— Streams of integers
— Stream filter
— Prime sieve
— Bit strings
— Increment and addition

Stream of Numbers

Data types

tu=bool |int|t>1|...|{A}

{ A }is type of process offering service A
Session types

A=

Data and session types may be recursive

In type theory, should be inductive or
coinductive (ongoing work)

Endless Streams of Integers

ints = int A ints;

from : int — {ints};
c < from n =

send ¢ n ;

c < from (n+l)

c:t A A sendvalue v:talong c and behave as A
Non-dependent version of dx:t. A

Tail call represents process continuation

e Asingle process will send stream of integers
Channel variables and session types in red

Feb 12, 2014 Mathematical Structures of Computation / Lyon 13

Streams of Integers

ints = &{ :int A ints, :1};

from : int — {ints};
c < from n =
case (recv c)
| = send c n ;
c < from (n+1l)
| = close c

c:&{l : A} receive label | along c and continue as A,
Labeled n-ary version of linear logic A & B

External (client’s) choice

c:1 terminate process; as linear logic 1

Closing a channel c terminates offering process

Feb 12, 2014 Mathematical Structures of Computation / Lyon

14

Filtering a Stream

ints = &{ :int A ints, :1};
filter : (int — bool) — {ints <« ints};

c < filter q < d =
case (recv c)
| = ¢ < filterNext g < d
| = send d ;
wait d ;
close c

filterNext : (int — bool) — {int A ints <« ints};

« {A& A, ..., A }process offering A, using A’s

* Type of channels changes based on process state!

* Type error, say, if we forget to stop d

Feb 12, 2014 Mathematical Structures of Computation / Lyon

15

Finding the Next Element

ints = &{ :int A ints, 21}
filter : (int — bool) — {ints <« ints};
filterNext : (int — bool) — {int A ints <« ints};

c < filterNext q < d =
send d ;
n < recv d ;
case (g n)
| true = send c n ;
c < filter g < d
| false = ¢ < filterNext g < d

 filter/filterNext process identified with channel c

Feb 12, 2014 Mathematical Structures of Computation / Lyon

16

Prime Sieve

d, & filter (%3) < d; d, & from 2
c & sieve & d, d, & filter (%2) < d,
C d, d, dg
5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

Feb 12, 2014 Mathematical Structures of Computation / Lyon

17

Prime Sieve

c & sieve € d; d, < filter (%3) < d, d, ¢ from 2
d; & filter (%5) < d, d, & filter (%2) < d,
C d, d, d, dg
7 5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

Feb 12, 2014 Mathematical Structures of Computation / Lyon

18

Prime Sieve

ints = &{ :int A ints, 21}
sieve : {ints < ints};

c < sieve < d =

case (recv cC)

| = send d :
p < recv d ;
send Cc p ;
e «<— filter (mod p) < d ;
C < sieve < e

| = send d :+ wait d ; close c

e e < filter (mod p) €& d spawns new process
e Uses d, offers e (which is used by sieve)

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Primes

ints = &{ :int A ints, :1};
primes : {ints};

C < primes =
d < from 2 ;
c < sieve < d

* Primes correct with sync or async communication
* n+2 processes for n primes

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Bit Strings

d, & bit true < d, d, < empty
c < bit false < d, d, & bit true < d,
C d, d, dg
bits = ®{eps:1, :bool A bits}; |

* Lowest bit on the left (above represents 6)

* c:®{:A}, sendalabell alongcand cont. as A
* n-ary version of linear logic A© B

* Internal (provider’s) choice

Feb 12, 2014 Mathematical Structures of Computation / Lyon 21

Bit String Constructors

bits = @®{ :1, :bool A bits};

empty : {bits};

C < empty =
send c ;
close c

bit : bool — {bits < bits};
c < bit b «< d =

send c ;

send ¢ b ;

c < d;

* Forwarding c < d represents logical identity
— Process offering along c terminates
— Client subsequently talks to process offering along d

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Alternative Constructor

bits = ®{ : 1,

num : int — {bits};
C < num n =

case n ==

| true = send c

| false = send c

: close c

°
14

send ¢ (odd n)
c < num (n/2)

:bool A bits};

.
4

* num as a single process holding an int n

* Channel type is process interface, not representation

Feb 12, 2014 Mathematical Structures of Computation / Lyon

23

Increment

bits = @®{ :1, :bool A bits};
inc : {bits <« bits};

c < inc < d =
case (recv d)
| = wait d ;
e < eps ;
c < bit true < e
| = b < recv d ;
case b
| true = e < inc < d ;
c < bit false < e
| false = ¢ < bit true < d

* inc process generates one bit string from another
 Spawns a new inc process in case of a carry

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Addition

bits = ®{ : 1, :bool A bits};
add : {bits < bits, bits};
c < add < d, e =
case (recv d)
| = wait d ;
cC < e
| = bl < recv d ;
case (recv e)
| = wait e ;
send c ;
send c bl;
c < d
| = b2 < recv e ; ..

* add uses two channels, provides one

* Receives are sequential; additional parallelism could be
justified by commuting conversions in proof theory

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Other Examples

* Data structures
— Stacks, queues, binary search trees

— Syntax trees, evaluation, tree transformation

e Algorithms
— Lazy and eager prime sieve
— Merge sort, odd/even sort, insertion sort

* Protocols

— Needham/Schroeder, safe and unsafe

Odd/Even Sort

cell = ®{ :int A cell’, :cell};
cell’” = &{ :int — cell, :cell};
elem : side — int — int — {cell <« cell};
c < elem O n < d = .. (sorted)

c — elem L (itl) m < d =
case (recv d)
| = k < recv d ;
send d ; send d m ;
case m > k

| true = ¢ < elem R i k < d
| false = ¢ < elem R i m < d

| = c < elem R im«<d

c < elem R (itl) k <« d =

send c ; send c k ;

case (recv c)

| = m < recv c ;
case m > k
| true = ¢ < elem L i m < d
| false = ¢ < elem L i k < d

= ¢c < elem L i k < d

Feb 12, 2014 Mathematical Structures of Computation / Lyon

27

Outline

* A new foundation for session types
* SILL by example

— Prime sieve
— Bit strings

* Language highlights
— Types and programs

— Implementation
— Ongoing research

Feb 12, 2014 Mathematical Structures of Computation / Lyon

28

Session Type Summary

* From the point of view of session provider

c:tAA send value v : T along c, continue as A
C:T>A receive value v : Talong ¢, continue as A
c:A®B send channel d : A along c, continue as B
c:A—o0B receive channel d : A along c, continue as B
c:1 close channel c and terminate

c:®{l: A} send label |. along c, continue as A,
c:&{l:A} receive label |. along c, continue as A,

c:lA send persistent lu : A along c and terminate

lu: A receive c : A along lu for fresh instance of A

Contextual Monad

M:{A& A, ..., A} process expressions
offering service A, using services A, ..., A

Composition cé M <& d,,...,d ;P

— c fresh, used (linearly) in P, consuming d,, ..., d

ldentity ¢ & d
— Notify client of c to talk to d instead and terminate

n

n

Strong notion of process identity

Static Type Checking

Bidirectional

— Precise location of type errors

— Based on definition of normal proofs in logic

— Fully compatible with linearity

Natural notion of behavioral subtyping, e.g.
— &{I:A, :B} £ &{|:A} (we can offer unused alt’s)

— o{l:A} < o{l:A, k:B} (we need not produce all alt’s)
Supports ML-style value polymorphism

No behavioral polymorphism yet

Dynamic Semantics

Three back ends

— Synchronous threads

— Asynchronous threads

— Distributed processes

Fourth back end (hypothetical):

— Solos ?

Curry-Howard lesson:

— The syntax can remain stable (proofs!)

— The semantics can vary: controling reductions
— Must be consistent with proof theory

Not released (but multiple “friendly” users)

Dynamic Type Checking

* May not trust all participating processes

* Type system compatible with
— Value dependent types, e.g. nat = {x:int | x > 0}

— Full dependent types, but still under investigation:

* “Right” equivalence on process expressions
* Restrictions on recursive types

* Contracts are partial identity processes
— Blame assignment (ongoing)
— Causality (ongoing)

Some Refinements

nat = {x:int | x = 0};

nats = &{ tnat A nats, t1};

eq n = {xX:int | x = n};

succs n = &{ teq n A succs(n+l), :1};

gt n = {x:int | x > n};
incrs n = &{ :dk:gt n. incrs k, :1};

 eq and gt are value type families

e succs and incrs are session type families
* Last line illustrates 3 as dependent A
* Not yet implemented

Feb 12, 2014 Mathematical Structures of Computation / Lyon

Other Logical Thoughts

e Affine logic (= linear logic + weakening)
— Static deallocations inserted

— Shorter programs, but errors more likely

* Hybrid linear logic (= linear logic + worlds)
— Worlds representing security domains
— Accessibility relation between domains
— Ongoing

e Affirmation modality for digital signatures

Session Types in a C-like Language

e CO: a type-safe subset of C

— Designed for teaching imperative programming,
algorithms, and data structures to freshmen

— Extended with contracts (pure boolean functions)

— Contracts are crucial for design, proof, and testing
e C1: function pointers and polymorphism
* CILL: session-typed concurrency?

CILL

Channels Sc are linearly typed (as in SILL)
Persistent channels SSc, variables x as usual
Channel types must be loop invariants

— lub at all join points in control-flow graph

Possible with or without shared memory

— No safety in the presence of shared memory

Exploring robustness of SILL concepts in
different setting

Integer Streams in CILL

choice intstream {
int /\ choice intstream :
void :

}i

typedef choice intstream ints;

ints $c from(int n) {
while (true) {
switch ($Sc) {
case :
send($Sc, n);
n = n+l;
case
close($c);
}
}

}

Feb 12, 2014 Mathematical Structures of Computation / Lyon

38

Speculating on Contracts

ints $c from(int n)
//@requires n >= 0;
//@ensures $c = all pos(S$c);
{
while (true) {
switch ($c) {
case
send($c, n);
n = n+l;
case
close($c);
}
}

}

* Value contracts must be pure boolean functions
e Channel contracts must be partial identity proc’s

Feb 12, 2014 Mathematical Structures of Computation / Lyon

39

Partial Identity Process

ints $c all pos(ints $d) {
switch (S$Sc) {
case :

$d. ;

int n = recv($d);

if (n <= 0) abort;

send($c, n);

$Sc = all pos(sd);

case :
sd. ; wait($d);
close(S$c);
}
}

e Synthesized in a type-directed way

Feb 12, 2014 Mathematical Structures of Computation / Lyon

40

Summary

e SILL, a functional language with a contextual
monad for session-typed message-passing
concurrency

— Type preservation (session fidelity)
— Progress (deadlock and race freedom)

— Implementation with subtyping, polymorphism,
recursive types

* Based on a Curry-Howard interpretation of
intuitionistic linear logic

* Full dependent type theory in progress

Some References

« 2010 e 2013
— CONCUR: the basic idea, — ESOP: behavioral
revised for MSCS, 2012 polymorphism
e 2011 — ESOP: monadic integration

— PPDP: dependent types (SILL)
— CPP: digital signatures (CA) * 2014 (in progress)

e 2012 — Security domains (A @ w),
spatial distribution
e J. Peréz, 14:30 today!

— Coinductive types

— CSL: asynchronous comm.
— ESOP: logical relations

— FOSSACS: functions as

— Blame assignment
processes

Thanks!

Luis Caires, Bernardo Toninho, Jorge Peréz (Universidade
Nova de Lisboa)

— FCT and CMU | Portugal collaboration

Dennis Griffith, Elsa Gunter (UIUC) [Implementation]
— NSA

Michael Arntzenius, Limin Jia (CMU) [Blame]

Stephanie Balzer (CMU) [New foundation for OO]

Henry DeYoung (CMU) [From global specs to local types]
Much more to say; see http://www.cs.cmu.edu/~fp
Apologies for the lack of references to related work

