Verifying Program Invariants with Refinement Types

Rowan Davies and Frank Pfenning Carnegie Mellon University

Logic Colloquium

Max-Planck-Institut für Informatik and Universität des Saarlandes October 2001

Acknowledgments: Robert Harper

<u>Overview</u>

- Introduction
- Refinement Types
- A Value Restriction
- Progress and Type Preservation
- Bi-Directional Type Checking
- Parametric Polymorphism
- Conclusion

Why Aren't Most Programs Verified?

- Difficulty of expressing a precise specification.
- Difficulty of proving correctness.
- Difficulty of co-evolving program, specification, and proof.
- Problems exacerbated by poorly designed languages.

Why Are Most Programs Type-Checked?

- Ease of expressing types.
- Ease of checking types.
- Ease of co-evolving programs and types.
- Most useful in properly designed languages.

A Continuum?

- Types as a *minimal* requirement for meaningful programs.
- Specifications as a *maximal* requirement for correct programs.
- Suprisingly few intermediate points have been investigated.
- Many errors are caught by simple type-checking.
- But many errors also escape simple type-checking.

A Research Program

- Designing systems for statically verifying program properties.
- Evaluation along the following dimensions:
 - Elegance, generality, brevity (ease of expression)
 - Practicality of verification (ease of checking)
 - Explicitness (ease of understanding and evolution)
- Some of these involve trade-offs.

- Catch more errors at compile-time.
- Increase confidence in correctness.
- Document crucial program invariants.
- Check consistency at module boundaries.
- Programmer guidance and involvement.
- Not: optimize compiled code.
- Not: extend type system to admit more programs.
- Instead: *refine* type systems to admit fewer programs.

Traditional Static Program Analysis

- Many useful lessons and ideas (e.g. abstract interpretation)
- Emphasis on compiler optimization (here: error discovery).
- Emphasis on inference of properties (here: checking).
- Additional documentation?
- Additional errors discovered?
- Problems at module boundaries.

Traditional Type Systems

- Many useful lessons and ideas (e.g. module interfaces)
- Emphasis on generality (e.g. polymorphism, record subtyping, intersection types).
- Emphasis on inference of types.
- Additional documentation?
- Additional errors discovered?

The Basic Idea

- ML as host language.
- Data structures via datatypes.
- Invariants on data structures specified by regular tree grammars.
- Extend to full language via subtyping and intersections.
- Bi-directional type checking.

Example: Bit Strings and Natural Numbers

• Datatype of bit strings (freely generated):

Bit Strings bits ::= ϵ | bits 1 | bits 0

- ϵ represents empty string, **0** and **1** are postfix operators.
- For example: $\lceil 0 \rceil = \epsilon$, $\lceil 6 \rceil = \epsilon \mathbf{110}$.
- Natural numbers have no leading **0**s.
- Refinements of type bits inductively defined:

Natural Numbersnat::= $\epsilon \mid pos$ Positive Numberspos::= $pos 0 \mid nat 1$

The Need for Subtyping and Intersections

- Subtyping: $pos \le nat \le bits$ (in general: lattice).
- Intersections: Consider $shiftl = \lambda x. x \mathbf{0}$.

 $\vdash \lambda x. x \mathbf{0} : \text{bits} \rightarrow \text{bits}$ $\vdash \lambda x. x \mathbf{0} : \text{nat} \rightarrow \text{bits}$ $\vdash \lambda x. x \mathbf{0} : \text{pos} \rightarrow \text{pos}$

• Intersections allow these to be expressed simultaneously.

$$\vdash \lambda x. x \mathbf{0} : (bits \rightarrow bits)$$
$$\land (nat \rightarrow bits)$$
$$\land (pos \rightarrow pos)$$

Other Examples

- Even and odd length lists (but not lists of length n).
- Empty and non-empty lists, single constructor types.
- Normal terms, head-normal terms, cps terms (but not closed terms).
- Color invariant on red/black trees (but not balance invariant).
- Valid stacks in operator precedence parsing.
- Intuition: recognizable by finite-state tree automaton.
- Generalization: restricted forms of dependent types.
 [Xi & Pf.'98,'99, Xi'99]

What are Intersection Types?

• Introduction rule

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash M : A \land B}$$

• Elimination rules

$$\frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M : A} \qquad \qquad \frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M : B}$$

Subtyping and Greatest Lower Bounds

• Subsumption

$$\frac{\Gamma \vdash M : A \qquad A \leq B}{\Gamma \vdash M : B}$$

• Intersection as a greatest lower bound

$$\overline{A \land B \le A} \qquad \overline{A \land B \le B}$$
$$\underline{A \le B} \qquad A \le C$$
$$\overline{A \le B \land C}$$

$$\frac{\Gamma \vdash M : A \land B}{\Gamma \vdash M : A} \qquad \overline{A \land B \leq A}$$

Intersections are Unsound with Effects

• Counterexample

let	$x = \operatorname{ref}(\epsilon 1)$: nat ref \land pos ref
in		
	$x := \epsilon;$	% use x : nat ref
	! x	% use x : pos ref
end	: pos	

evaluates to ϵ which does not have type pos.

• Analogous counterexample with parametric polymorphism:

$$\begin{array}{ll} \operatorname{let} & x = \operatorname{ref}\left(\lambda y.\,y\right) & : \forall \alpha.\,\left(\alpha \to \alpha\right) \operatorname{ref} \\ & \text{in} \\ & x := (\lambda y.\,\epsilon); & \% \text{ use } x : (\operatorname{nat} \to \operatorname{nat}) \operatorname{ref} \\ & (!\,x)\,(\epsilon\,\mathbf{1}) & \% \text{ use } x : (\operatorname{pos} \to \operatorname{pos}) \operatorname{ref} \\ & \text{end} & : \operatorname{pos} \end{array}$$

Types A ::= bits | nat | pos | $A_1 \rightarrow A_2$ | A ref | unit | $A_1 \wedge A_2$

$$\begin{array}{ll} \overline{A \leq A} & \underline{A \leq B} & \underline{B \leq C} \\ \overline{A \leq A} & \overline{A \leq C} & \leq : \mbox{ Reflexive and transitive } \\ \\ \underline{B_1 \leq A_1} & A_2 \leq B_2 \\ \overline{A_1 \rightarrow A_2 \leq B_1 \rightarrow B_2} & \rightarrow : \mbox{ Contra- and co-variant } \\ \\ \\ \underline{A \leq B} & \underline{B \leq A} \\ \overline{A \operatorname{ref} \leq B \operatorname{ref}} & & \mbox{ ref: Non-variant } \end{array}$$

$pos \le nat$	$\overline{nat} \leq bits$	Data types
$\overline{A \wedge B \leq A}$	$\overline{A \wedge B \leq B}$	∧: Lower bound
$\frac{A \le B}{A \le B}$		∧: Greatest lower bound
$\left[\overline{(A \to B) \land (A \to C)}\right]$	$C) \leq A \rightarrow (B \wedge C)$?? (Distributivity)

- Distributivity disturbs orthogonality of constructors.
- Distributivity is unsound with effects (see later).

- Language is standard call-by-value language with functions, mutable references, unit, bit strings, let and recursion.
- Use pure type assignment for typeless operational semantics.
- Later: bi-directional type-checking.
- Pragmatically: refinement restriction.
- Typing rules are standard for functions, recursion, references.
- De-emphasize refinement restriction here.

• Bit strings (two rules for case omitted):

 $\overline{\Gamma \vdash M} : \operatorname{pos}_{\overline{\Gamma} \vdash M} \underbrace{\Gamma \vdash M : \operatorname{bits}_{\overline{\Gamma} \vdash M} 0 : \operatorname{pos}}_{\overline{\Gamma} \vdash M} \underbrace{\Gamma \vdash M : \operatorname{bits}_{\overline{\Gamma} \vdash M} 0 : \operatorname{bits}}_{\overline{\Gamma} \vdash M} \underbrace{\Gamma \vdash M : \operatorname{bits}_{\overline{\Gamma} \vdash M} 1 : \operatorname{bits}}_{\overline{\Gamma} \vdash M} \underbrace{\Gamma \vdash M : \operatorname{bits}_{\overline{\Gamma} \vdash M} 1 : \operatorname{bits}}_{\overline{\Gamma} \vdash M} \underbrace{\Gamma \vdash M : \operatorname{bits}_{\overline{\Gamma} \vdash M} 1 : \operatorname{bits}}$

• Note: case (M:pos) does not need to check N_e .

Datatype Refinement: The General Case

- First specify (ML) datatype.
- Then specify refinements of datatypes.
- Analysis of refinements generates:
 - Completing of lattice structure to include intersections (using algorithms from tree automata).
 - Determine most general types of constructors.
 - Determine inversion principles for constructors.
- Does not allow negative refinements.
- Polymorphic refinements must be parametric.

• Value restriction and subsumption.

$$\frac{\Gamma \vdash V : A}{\Gamma \vdash V : A \land B} \qquad \qquad \frac{\Gamma \vdash M : A}{\Gamma \vdash M : B}$$

where

Values
$$V ::= x \mid \lambda x. M \mid \epsilon \mid V \mathbf{0} \mid V \mathbf{1}$$

- Originally introduced for parametric polymorphism [Tofte'90] [Wright'95].
- Value restriction here not tied to let!

 $\frac{\Gamma \vdash M : A \qquad \Gamma, x : A \vdash N : B}{\Gamma \vdash \operatorname{let} x = M \text{ in } N \operatorname{end} : B}$

Counterexample Revisited

```
let x = ref(\epsilon \mathbf{1}) : nat ref \land pos ref
in
x := \epsilon; % use x : nat ref
! x % use x : pos ref
end : pos
```

• No longer well typed:

 $\not\vdash \mathsf{ref}(\epsilon \mathbf{1})$: nat ref \land pos ref

since ref ($\epsilon \mathbf{1}$) is not a value.

• Distributivity is unsound with effects.

$$\left[\overline{(A \to B) \land (A \to C) \le A \to (B \land C)}\right]$$

• Counterexample:

 $\begin{array}{ll} \vdash \lambda u. \operatorname{ref}(\epsilon \, \mathbf{1}) & : \quad (\operatorname{unit} \to \operatorname{nat} \operatorname{ref}) \land (\operatorname{unit} \to \operatorname{pos} \operatorname{ref}) \\ \\ \operatorname{by} \ \operatorname{distributivity} \ \operatorname{and} \ \operatorname{subsumption}: \\ \\ \vdash \lambda u. \operatorname{ref}(\epsilon \, \mathbf{1}) & : \quad \operatorname{unit} \to (\operatorname{nat} \operatorname{ref} \land \operatorname{pos} \operatorname{ref}) \end{array}$

- $\vdash (\lambda u. \operatorname{ref}(\epsilon \mathbf{1})) \langle \rangle$: nat ref \land pos ref
- In a program:

let $x = (\lambda u. \operatorname{ref}(\epsilon \mathbf{1})) \langle \rangle$: nat ref \wedge pos refin ... end% as on slide 5

- Theorem: Subtyping is structural.
- Lemma: (Typing Inversion) With a store typing Δ :
 - 1. If $\Delta; \cdot \vdash V : A$ and $A \leq B \rightarrow C$ then $V = \lambda x. M$ and $\Delta; x: B \vdash M : C$.
 - 2. ... (one for each type or type constructor) ...

Fails in the presence of distributivity!

- **Theorem:** Call-by-value reduction semantics satisfies *progress* and *type preservation*.
- Proof: Follows [Wright & Felleisen '94] [Harper'94], using above inductive inversion properties.
 Fails in the presence of unrestricted intersection!

Consequences

• Language has no principal types:

 $\vdash \operatorname{ref}(\epsilon \mathbf{1}) : \text{ bits ref}$ $\vdash \operatorname{ref}(\epsilon \mathbf{1}) : \text{ nat ref}$ $\vdash \operatorname{ref}(\epsilon \mathbf{1}) : \text{ pos ref}$

but bits ref, nat ref and pos ref are unrelated and

 $\not\vdash ref(\epsilon \mathbf{1})$: bits ref \land nat ref \land pos ref

Bi-Directional Type-Checking

- Simplified subtyping allows simplified bi-directional type-checking.
- Functional fragment

Inferable I ::= x | IC | C:ACheckable $C ::= I | \lambda x. C$

- Normal forms require no type annotations.
- Two mutually recursive judgments:
 - $\Gamma \vdash I \uparrow A$ I synthesizes A (non-deterministically)
 - $\Gamma \vdash C \downarrow A$ C checks against A

Bi-Directional Typing Rules

• Inferable

$x:\!A$ in Г	$\Gamma \vdash I \uparrow A \to B$	$\Gamma \vdash C \downarrow A$
$\overline{{\mathsf \Gamma} \vdash x \uparrow A}$	$\Box \vdash I C$	$\uparrow B$
$\Box \vdash C \downarrow A$	$\underline{\Gamma \vdash I \uparrow A \land B}$	$\Gamma \vdash I \uparrow A \land B$
$\Gamma \vdash (C:A) \uparrow A$	${\sf \Gamma} \vdash I \uparrow A$	$\Gamma \vdash I \uparrow B$

• Checkable (C_v a checkable value)

$\Gamma \vdash I \uparrow A$	$A \leq B$	$\Gamma \vdash C_v \downarrow A$	$\Gamma \vdash C_v \downarrow B$
$\Box \vdash I \downarrow B$		$\Gamma \vdash C_v$	$\downarrow A \land B$

$$\frac{\Gamma, x : A \vdash M \downarrow B}{\Gamma \vdash \lambda x . M \downarrow A \to B}$$

Pragmatics

- No distributivity: sometimes more explicit types.
- Bi-directionality: sometimes lift local functions.
- Boolean constraints for efficient implementation (speculative)

parametric polymorphism	intersection polymorphism
type variable	boolean variable
unification	boolean constraint simplification

Another Example

• Converting a bit string to standard form.

```
\begin{array}{rcl} stdize & : & \text{bits} \rightarrow \text{nat} \\ & = & \text{fix } stdize. \ \lambda b. \, \text{case } b \\ & & \text{of } \epsilon \Rightarrow \epsilon \\ & & & \text{of } \epsilon \Rightarrow \epsilon \\ & & & & \text{of } \epsilon \Rightarrow \epsilon \\ & & & & & | \ y \, \mathbf{0} \Rightarrow y \, \mathbf{0} \, \mathbf{0} \\ & & & | \ y \, \mathbf{1} \Rightarrow y \, \mathbf{1} \, \mathbf{0} \\ & & & | \ x \, \mathbf{1} \Rightarrow (stdize \ x) \, \mathbf{1} \end{array}
```

• Possible sequential pattern matching in second case.

+ Elegance

- +? Generality (some rewriting, e.g. tests x = nil)
 - + Brevity (proportional to complexity of invariant)
- +? Practicality of verification (interaction with polymorphism?)
 - Full inference is decidable via abstract interpretation
 [Freeman'94], but captures too many accidental properties.
 - + Explicitness (clean at module boundary)

Types $A ::= \ldots \mid \alpha \mid \forall \alpha. A$

• Subtyping

$\forall \alpha. A \leq [B/\alpha]A$	$\overline{A_1 \land A_2 \le A_1}$	$\overline{A_1 \land A_2 \le A_2}$
$\frac{A \leq B}{A \leq \forall \alpha. B} \alpha \not\in FV(A)$	$A \leq B_1$	$A \leq B_2$
$A \leq \forall \alpha. B \qquad \qquad \forall \alpha \notin V (A)$	$A \leq B$	$A_1 \wedge B_2$

• Distributivity is unsound.

$$\left[\overline{\forall \alpha. (A \to B) \le A \to \forall \alpha. B} \; \alpha \notin \mathsf{FV}(A) \right]$$

Structural Subtyping (Sound & Complete)

$\overline{A \trianglelefteq A}$

pos	⊴ nat p	os ⊴ bits	nat ⊴ b	its
$\frac{B_1 \trianglelefteq A_1}{A_1 \to A_2}$	$\frac{A_2}{2 \leq B_1 \to B_1}$	$\frac{1}{B_2} \frac{B_2}{B_2} = \frac{A}{B_2}$		$\frac{B \trianglelefteq A}{B \text{ ref}}$
$\frac{A_1 \trianglelefteq B^o}{A_1 \land A_2 \trianglelefteq B^o}$	$\frac{A_2 \triangleleft}{A_1 \land A_2}$		$\frac{A \trianglelefteq B_1}{A \trianglelefteq B}$	$\frac{A \trianglelefteq B_1}{B_1 \land B_2}$
	$\frac{A \trianglelefteq B^o}{A \trianglelefteq B^o}$	$\frac{A \trianglelefteq}{A \trianglelefteq \forall a}$	$rac{B}{lpha.B}$ ($lpha ot\in$ F	∇A)

 $B^o \neq \forall x. B_1 \text{ and } B^o \neq B_1 \land B_2$

Properties of Subtyping

- With distributivity have [Mitchell'88].
- Subtyping then undecidable [Tiuryn & Urzyczyn'96] [Wells'95].
- Without distributivity have structural subtyping.
- Undecidable [Chrząszcz'98].
- Orthogonal to other type constructors.

Value Restriction

• Introduction rule

$$\frac{\Gamma \vdash V : A}{\Gamma \vdash V : \forall \alpha. A} \alpha \not\in \mathsf{FV}(\Gamma)$$

• Elimination via subtyping (unchanged)

$$\frac{\Gamma \vdash M : A \qquad A \le B}{\Gamma \vdash M : B}$$

• Counterexample:

 $\vdash \lambda u. \operatorname{ref}(\lambda y. y) : \forall \alpha. \operatorname{unit} \to (\alpha \to \alpha) \operatorname{ref}$ by distributivity and subsumption: $\vdash \lambda u. \operatorname{ref}(\lambda y. y) : \operatorname{unit} \to \forall \alpha. (\alpha \to \alpha) \operatorname{ref}$ $\vdash (\lambda u. \operatorname{ref}(\lambda y. y)) \langle \rangle : \forall \alpha. (\alpha \to \alpha) \operatorname{ref}$

• In a program:

let
$$x = (\lambda u. \operatorname{ref}(\lambda y. y)) \langle \rangle$$
: $\forall \alpha. (\alpha \rightarrow \alpha)$ refin ... end% as on slide 5

- Lemma: Typing inversion extends (without distributivity).
- **Theorem:** Progress and type preservation extend (with value restriction).
- New(?) view of value restriction and polymorphism.

Example: External vs Internal Invariants

val inc : (bits
$$\rightarrow$$
 bits) \land (nat \rightarrow pos)
= fix inc. λn . case n
of $\epsilon \Rightarrow \epsilon \mathbf{1}$
 $| x \mathbf{0} \Rightarrow x \mathbf{1}$
 $| x \mathbf{1} \Rightarrow (inc x) \mathbf{0}$
 $\vdash inc$: nat \rightarrow nat % by subtyping
 $\vdash inc$: pos \rightarrow pos % by subtyping
val inc \not nat \rightarrow nat
= fix inc. λn . case n
of $\epsilon \Rightarrow \epsilon \mathbf{1}$
 $| x \mathbf{0} \Rightarrow x \mathbf{1}$
 $| x \mathbf{1} \Rightarrow (inc x) \mathbf{0}$ % inc x : pos?

$$\begin{array}{lll} \text{val } count' & : & (\text{nat } \text{ref} \rightarrow (\text{unit} \rightarrow \text{nat})) \land \\ & & (\text{pos } \text{ref} \rightarrow (\text{unit} \rightarrow \text{pos})) \\ & = & \lambda c. \, \lambda x. \\ & & \text{let } y = ! \, c \\ & & \text{in } c := inc \; y; \; y \; \text{end} \end{array}$$
$$\begin{array}{lll} \text{val } count & : & (\text{nat} \rightarrow (\text{unit} \rightarrow \text{nat})) \land \\ & & (\text{pos} \rightarrow (\text{unit} \rightarrow \text{pos})) \end{array}$$

$$= \lambda n. \ count' \ (ref n)$$

Other Examples

• More programs

val <i>plus</i>	•	(nat \rightarrow nat \rightarrow nat) \land
		$(pos \rightarrow nat \rightarrow pos) \land$
		$(nat \rightarrow pos \rightarrow nat)$
val double	:	$(nat \rightarrow nat) \land (pos \rightarrow pos)$
val <i>stdize</i>	:	bits \rightarrow nat
val ω	:	$orall lpha. orall eta. ((lpha ightarrow eta) \wedge lpha) ightarrow eta$
	=	$\lambda x. x x$ (without refinement restriction)

• More refinements

zero ::=
$$\epsilon$$

even ::= $\epsilon \mid pos \mathbf{0}$
odd ::= nat $\mathbf{1}$

• Interesting differences: call-by-value vs. call-by-name

Lists	lpha list	::=	nil cons (α, α list)
Even	lpha even	::=	$nil \mid cons(\alpha, \alpha odd)$
Odd	$lpha {\sf odd}$::=	$cons(\alpha, \alpha even)$

- In call-by-value: $\alpha \operatorname{even} \wedge \alpha \operatorname{odd} = \bot$
- In call-by-name: $\vdash fix \omega. cons(\langle \rangle, \omega)$: unit even \land unit odd
- Combined with dependent types in logical framework LF [Pf.'93] [Pf. & Kohlase'93]

Related Work

- Intersection types (many)
- Forsythe [Reynolds'88] [Reynolds'96]
- Intersections and explicit polymorphism [Pierce'91]
 [Pierce'97]
- Refinement types [Freeman & Pf'91] [Freeman'94]
 [Davies'97]
- Intersection types and program analysis (many)
- Soft types (many)
- Local type inference [Pierce & Turner'97]
- Shape analysis and software model checking.

Future Work

- Sequential pattern matching.
- Complete implementation under refinement restriction.
- Local type inference with intersections and parametric polymorphism?
- Valuability instead of values? [Harper & Stone'00]
- Pure and impure function spaces?

Refinement types to statically verify program invariants.

- Between simple types and full specifications.
- Subtyping and intersections required.
- Simplified type system for soundness with effects.
- Progress theorem holds.
- Effective bi-directional type checking.
- Applied techniques to parametric polymorphism.