From Linear Logic to Session-
Typed Concurrent Programming

Frank Pfenning

Joint work with Luis Caires, Bernardo
Toninho, Dennis Griffith

Januar y 13,2015 POPL 2015 Tutorial, Mumbai

Outline

The Curry-Howard correspondence
A change of perspective: linear logic

Constructing the language SILL
— Propositions as types

— Proofs as processes

— Cut reduction as communication

Examples

O’Caml source
git clone https://github.com/ISANobody/s1ll.git

Language Design from Logic

* Integrate computation and reasoning

* Logic programming (not this talk)
— Theories as programs
— Proof construction as computation

* “Functional” programming (this talk)
— Propositions as types

— Proofs as programs
— Proof reduction as computation

Functional Programming

e Curry [1934]

— Propositions as simple types
— Intuitionistic Hilbert proofs as combinator terms
— Computation is combinator reduction

* Howard [1969]
— Propositions as simple types
— Intuitionistic natural deductions as programs

— Proof reduction as computation

Deceptive Simplicity

* Generalizes to intuitionistic type theory
— General recipe beyond the propositional fragment

* Matching computational phenomena and logic

— Insufficient to just define proof terms

 Many properties come “for free”
— Type preservation
— Progress
— Termination (on pure fragment)

Examples

Modal logic S4 and staged computation
Temporal logic and partial evaluation

Lax logic and computational effects

Modal logic T and proof irrelevance

Modal logic S5 and distributed computation
Classical logic and continuations

Today: linear logic
— Let’s see what happens!

Intuitionistic Logic and Functions

* Basic natural deduction judgment
AL A FA
— From hypotheses A, ..., A, derive conclusion A

* With proof terms:
x1:AL, o oA EM A
— Labeled hyps / variables x; of type A,

— Proof / program M of type A
— When given N::A, [N./x]JM ="V (a value)

(Intuitionistic) Linear Logic

* Basic linear sequent calculus judgment

AL A F A
— With resources A, ..., A, we can prove A
— Each linear hypothesis must be used exactly once

* |n full language:
— Affine resources: use at most once
— Unrestricted hypotheses: use arbitrarily often

* Classical linear logic also possible [Wadler
2012]

Proofs as Processes

* With processes:
c1:A1, ..., A E P (¢ A)
— Labeled hypotheses / channels c.:A. used by P
— Labeled conclusion / channel c:A provided by P
— Process P communicates along channels ¢, and c
e Strong identification of process with channel
along which it offers
— Channel c as “process id”

Judgmental Rules of Sequent Calculus

Judgmental rules generic over propositions
Define the meaning of sequents themselves

AFA AN JAFC t .
— |
AANEC AF A
Silently re-order linear hypotheses
They are inverses

— Cut: if you can prove A, you may use A
— |dentity: if you can use A, you can prove A

da

Cut as Process Composition

AP, (a:A) ALaAFQy i (c: C)
AN F(a+ P, Q) (c: C)

cut

* (a < P,;Q,)spawns P,, continues as Q,
— P, and Q, communicate along fresh private channel b
* Operational semantics

— proc(P): process P provides along channel c
— State is multiset of executing processes

proc.(a < P, ; Q,) = proc,(F,), proc.(Qp) (b fresh)
* Inm-calculus: (a+ P,;Q.) = (va)(P, | Q,)

ldentity as Process Forwarding

a:AbF(c<a):(c: A &

* Operationally
proc.(c < a) = c=a
— Substitute channel a for cin client of (c : A)
* No direct equivalent in mt-calculus
* Implementation

— c tells its client to use a instead
— c terminates

Existential Quantification

Connectives have right and left rules

Right rule: how do we prove 3 x. A?

Left rule: how do we use dx. A?
The existential quantifier

A t/x]A A ly/z]AFC

AFdr. A H A, de. AFC

— v is fresh in premise of left rule

LY

Right Rule Sends the Witness

Right rule contains witness t
Al Q:(c:[t/x]A)
Al (sendct; Q) : (c:dx. A)

Send the witness along channel c
Continuation Q will provide [t/x]A along c
Left rule will have a matching action
Channel ¢ “changes type”

Left Rules Receives the Witness

 Parameter y stands for received witness

A cly/z]AF P (d:C)
Aycde. AF (y<recve; P):: (d: C)

LY

* Operational semantics communicates value

proc.(send ct; @), proc,(y < recv ¢ ; P)
—

proc.(Q), proc,([t/y] P)

The Pattern of Right and Left Rules

Each connective will be defined by right and
left rules (sequent calculus)

Right rules define how to prove A

— For the process,

Left rules define
— For the process,

now to provide A
now to exploit A

now to use A

Matching complementary process actions
— The one with information sends (non-invertible)
— The one without information receives (invertible)

Cut Reduction as Communication

* Logical cut reduction is a communication

A t/xz]A Aly/x|AFC
AFdx. A H A" dx. A+ C
AAFEC

LY

CUtEI:E.A

AF[t/z|A A [t/z]AF C
— A,A, I_ C

Cutp/z)A

e Term t from first premise is substituted in second
premise

Recursive Types

Let’s accept recursively defined propositions
— Formal treatment as (co)inductive types

Classify terms by simple types: dx:t. A
Example: ints = Jz:int. ints
— Represents an infinite stream of integers

Abbreviate 7AA=3x:7. A (z not free in A)

Let’s also accept recursively defined processes

Endless Streams of Integers

ints = int A ints;

from : int — {ints};
c < from n =

send ¢ n ;

c < from (n+1l)

 {A}is the type of a process P :: (c: A)
e ¢ < P means process P offers along channel c

* Tail call represents process continuation
— A single process will send stream of integers

* Channel variables and session types in red

January 13, 2015 POPL 2015 Tutorial, Mumbai 19

External Choice

* Client chooses between provided alternatives
* Provider offers both
* Logically: A& B

A+FA AF+B AAEC A, BFC

&R &Ly
AFA&DB AJA& BFC ANA& BEC

Ly

* Duplication of A okay in &R, since only one of
A and B will be used

Communicating a Choice

* Provider offers choice (receive label inl or inr)
AFP:(c:A) AFQ:(c:B)
At case(c,inl.Pinr.QQ) :: (c: A& B)

&R

* Client makes choice (send label inl or inr)
AccAFR:(d:C)
A,ccA& BFcinl; R::(d: C)

&Ly

A,c:BFER:(d:C)
A,cA& BrFcinr; R (d: C)

& Lg

Communicating Choice Labels

* Communication
proc.(case(c,inl.P,inr.QQ)), procy(c.inl ; R) = proc,.(P), proc,(R)

proc.(case(c, inl.P,inr.QQ)), procy(c.inr ; R) = proc.(Q), proc,(R)

e Can again be derived from cut reduction
* In SILL we use labeled choice &{l, : A}
c A&B=&{inl:A, inr:B}

Closing a Channel

* Closing a channel = terminating provider proc.

* Logically AL C

g ALlLC

L

* Process assignment
AFQ:(d:C)
1R

-+ (close ¢) :: (¢: 1) Ajc: 1 (waitce; Q) :: (d:C) L

* close sends a token, wait receives it

Streams of Integers

ints = &{ :int A ints, :1};

from : int — {ints};
c < from n =
case C
| = send ¢ n ;
c < from (n+l)
| = close c

* Provider must always be able to send more
* Client can choose to stop or get next int

January 13, 2015 POPL 2015 Tutorial, Mumbai

24

Filtering a Stream

ints = &{ :int A ints, :1};
filter : (int — bool) — {ints <« ints};

c < filter q < d =
case C
| = c < filterNext q < d
| = d. ;
wait d ;
close c

filterNext : (int — bool) — {int A ints <« ints};

« {A& A, ..., A }process offering A, using A’s

* Type of channels changes based on process state!

* Type error, say, if we forget to stop d

January 13, 2015 POPL 2015 Tutorial, Mumbai

25

Finding the Next Element

ints = &{ :int A ints, 21}
filter : (int — bool) — {ints < ints};
filterNext : (int — bool) — {int A ints <« ints};

c < filterNext q < d =
d. ;
n < recv d ;
case (g n)
| true = send c n ;
c < filter g < d
| false = ¢ <« filterNext g < d

 filter/filterNext process identified with channel c

January 13, 2015 POPL 2015 Tutorial, Mumbai

Prime Sieve

d, & filter (%3) < d; d, & from 2
c & sieve & d, d, & filter (%2) < d,
C d, d, dg
5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

January 13, 2015 POPL 2015 Tutorial, Mumbai

27

Prime Sieve

c & sieve € d; d, < filter (%3) < d, d, & from 2
d; & filter (%5) < d, d, & filter (%2) < d,
C d, d, d, dg
7 5 3 2
7 5 3
7 4
5
6
7

e c & sieve €& d sends first value p on d along c
 Then spawns new process to filter out %p

January 13, 2015 POPL 2015 Tutorial, Mumbai

28

Prime Sieve

ints = &{ :int A ints, 21}
sieve : {ints <« ints};

c < sieve < d =
case C
= d.
p < recv d ;
send Cc p ;
e < filter (mod p) < d ;
c < sieve <« e
| = d. + wait d ; close c

°
14

e < filter (mod p) €& d spawns new process
e Uses d, offers e (which is used by sieve)

January 13, 2015 POPL 2015 Tutorial, Mumbai

Primes

ints = &{ :int A ints, :1};
primes : {ints};

C < primes =
d < from 2 ;
c < sieve < d

* Primes correct with sync or async communication
* n+2 processes for n primes

January 13, 2015 POPL 2015 Tutorial, Mumbai

Internal Choice

* External choice: client chooses

* Internal choice: the provider chooses
* Client has to account for both

* Logically: A®B

AF A AE B AA-C A BFC

R R L
ArAcB o ArdeB 0 AAwBEC T

Internal Choice, Operationally

 Provider sends label, client branches on it

AFP:(c: A AFP:(c:B)
: @Rl _ @RQ
At (cinl; P)::(c: A® B) At (cinr; P):(c: A® B)

Ac:AFQ = (d:C) Ajc:BFR:(d:C)
A,c: A® B case(c,inl.Q,inr.R) :: (d: C)

DSL

* Nothing new in the operational semantics

Lists as Internal Choice

Replace binary with n-ary labeled choice
—A®B=o{nl:A,inr: B}

Lists of ints

— list = ®{nil: 1, cint A list};

Lists of channels

— list A =9{nil: 1, . A ®list A};
Representation is unspecified!

Combining Resources

Multiplicative conjunction A ® B, logically

AFA AFB AA,BFC
QR QL
ANFARB AA®R BFC

Operationally, ®R sends, ®L receives
— ®R is non-invertible
— ®L is invertible (carries no information)

Designate B as continuation, send channel d:A
Other choice also logically sound

Sending and Receiving Channels

e Other channels are ‘split’ between processes
AFP:(d:A) A'FQ:(c:B) 5
AA"F(sendc(d< Py); Q) (c: A® B) <

A,d:Ac:BFR:(e:C)
Ajc: AR B (d<+recvc; Ry) :: (e: C)

QL

* Operationally

proc.(send ¢ (d < Py) ; Q), proc.(d < recv ¢ ; Ry)
—

proc,(P,), proc.(Q), proc,.(R,) (a fresh)

Sending Existing Channels

* Previous construct always sends fresh channel

* Frequently, channel we want to send not fresh
— Employ forwarding
—sendcd=send c (d’ & (d' & d))
* Derived rule
At P:(c:B)
A,d: At (sendcd; P): (c: A® B)

Lists of Channels

list A = o :
nil : {list A};
c < nil =

C. :

close c

1,

:A ©® list A};

cons : {list A < A, list A}
c < cons < x, d =

C. ;
send c X ;
c < d

January 13, 2015

POPL 2015 Tutorial, Mumbai

How to Implement a Queue?

A header process with references to front and
back is impossible

— Race condition at last node

— SILL is inherently free of race conditions

Sharing only with persistent channels (!A)

— Do not permit “mutation”
Two stacks (as lists) is possible
Alternative: exploit concurrency!

Behavioral Abstraction

nterface to a process specifies interaction
oehavior, hides implementation

mplement queue interface with constant time
enqueue and dequeue operations

One process for each element in queue
Need: A —o B (with resource A, can prove B)

— Receive a channel of type A
— Proceed as B

Queues of Channels

queue A = &{ tA —O queue A,
s ®{ : 1, :A ® queue A}};

elem : {queue A < A, queue A};
c < elem < x, d =
case cC
| = y < recv c ;
d. ; send d vy ;
c < elem < x, d
| = C. ; send ¢ xX ;
c < d
empty : {queue A};
C < empty =
case cC
| eng = x < recv c ;
e < empty ;
c < elem < x, e
| deq = c. ; close c

January 13, 2015 POPL 2015 Tutorial, Mumbai

40

SILL Properties

Derived from logical origins

Session fidelity (= type preservation)
Deadlock freedom (= global progress)
Absence of race conditions (= confluence)

Termination & productivity
— With restrictions on recursive types

Session Type Summary

* From the point of view of session provider

c:tAA send value v : T along c, continue as A
C:T—>A receive value v : T along c, continue as A
c:A®B send channel d : A along c, continue as B
c:A—oB receive channel d : A along c, continue as B
c:1 close channel c and terminate

c:ofl: A} send label |. along c, continue as A,
c:&{l:A} receive label |. along c, continue as A,

c:lA send persistent lu : A along c and terminate
lu: A receive c : A along lu for fresh instance of A

January 13, 2015

POPL 2015 Tutorial, Mumbai

42

Contextual Monad

M:{A& A, ..., A } process expressions
offering service A, using services A, ..., A

Composition c< M<«d,, ..., d ;P
— c fresh, used (linearly) in P, consuming d,, ..., d

ldentity ¢ & d
— Notify client of c to talk to d instead and terminate

n

n

Strong notion of process identity

Limitations

* Linear channels with only two endpoints
— Derives from linear cut and identity

 Shared channels have no shared state

— Derives from copying semantics of !A

* Restricted mobility for distributed case

Static Type Checking

Bidirectional

— Precise location of type errors (once it parses...)

— Based on definition of normal proofs in logic

— Fully compatible with linearity

Natural notion of behavioral subtyping, e.g.

— &{I:A, k:B} < &{I:A} (we can offer unused alt’s)

— of[:A} < ®{l:A, k:B} (we need not produce all alt’s)
Supports ML-style value and session polymorphism
Explicit behavioral polymorphism for sessions

Affine types @A, with distributed garbage collection

Dynamic Semantics

* Three back ends
— Synchronous threads
— Asynchronous threads
— Distributed processes (incomplete)
* Curry-Howard lesson:
— The syntax can remain stable (proofs!)
— The semantics can vary: controling reductions
— Must be consistent with proof theory

e O’'Caml implementation at
— git clone https://github.com/ISANobody/sill.git

Much More to Say

* Theory of logical relations, observational equiv
* Hybrid linear logic with explicit worlds

* |n progress
— Dynamic monitoring and blame assignment
— Refinement types / contracts
— Full dependent types (= concurrent type theory)
— Concurrent CO (= imperative + threads)
— New foundation of object-oriented programming

Foundations: Functions

Agda Haskell, ML
Intuitionistic Type Theory Dependently Typed Recursively Typed
ITT AT A7
Intuitionistic Logic Simply Typed
IL A~
Untyped
A

January 13, 2015 POPL 2015 Tutorial, Mumbai 48

Foundations: Processes

? SILL

| |

Concurrent Type Theory Dependently Typed Sessions Recursively Typed
(ongoing) (ongoing) Sessions

Intuitionistic Linear Logic Session Typed
II_L T[—O,®,1,!,&,®

!

Untyped 5
- r

January 13, 2015 POPL 2015 Tutorial, Mumbai

49

Summary

SILL, a functional language with a contextual
monad for session-typed message-passing
concurrency

— Type preservation (session fidelity)
— Progress (deadlock and race freedom)

— Implementation with subtyping, polymorphism,
recursive types

Based on a Curry-Howard interpretation of
intuitionistic linear logic

Full dependent type theory in progress
Dynamic check of types and contracts in progress

Some References

« 2010 e 2013
— CONCUR: the basic idea, — ESOP: behavioral
revised for MISCS, 2012 polymorphism
e 2011 — ESOP: monadic integration

— PPDP: dependent types (SILL)

— CPP: digital signatures (0A) ° 2014
e 2012 — TGC: Coinductive types

— Security domains (A @ w),
spatial distribution

— CSL: asynchronous comm.

— ESOP: logical relations

— FOSSACS: functions as
processes

Collaborators

Luis Caires, Bernardo Toninho, Jorge Peréz
(Universidade Nova de Lisboa)

— FCT and CMU | Portugal collaboration

Dennis Griffith, Elsa Gunter (UIUC)

Anna Gommerstadt, Limin Jia (CMU) [Dyn. Monitors]
Stephanie Balzer (CMU) [New foundation for OO]
Rokhini Prabhu, Max Willsey [Concurrent CO]

Henry DeYoung (CMU) [From global to local types]
Apologies for the lack of references to related work

« git clone https://github.com/ISANobody/sill.git

