Logical and Meta-Logical Frameworks

Frank Pfenning

PPDP’99, Paris, France
September 30, 1999

1. Introduction
2. Logical Frameworks
3. Meta-Logical Frameworks

4. Conclusion

(see also: upcoming article in Handbook of Automated Reasoning)

Some Terminology

e Deductive System: Calculus of axioms and inference rules defining
derivable judgments. Used in the presentation of logics and programming

languages.

e Logical Framework: Meta-language for the formalization of deductive
systems.

e Meta-Logical Framework: Meta-language for reasoning about

deductive systems.

Logical Frameworks

e Factor the effort required to implement various logics.
e Support common concepts in deductive systems.
e Provide generic tools for proof search.
e Characterized by
1. underlying formalism,

2. meta-programming language,

3. theorem proving environment.

Some Logical Frameworks

e Formalisms: hereditary Harrop formulas (HHF), dependently typed

A-calculus (LF), inductive definitions, rewriting logic.

e Meta-Programming Languages: functional (ML, rewriting), relational
(AProlog, Elf).

e Theorem Proving Environments: tactics and tacticals, logic

programming, proof checking.

e Implementations: Isabelle, AProlog, Elf, linear LF, Maude, Elan, Pi,
Agda, ...

e More Information: http://www.cs.cmu.edu/"fp/1fs.html

e General Mathematical Reasoning Systems: HOL, Coq, LEGO, Nuprl,
PVS, Nqthm, ...

Meta-Logical Frameworks

e Require means for representing logics. (A logical framework!)

e Support common proof techniques in the study of logic and programming
languages:

1. structural induction (over derivations),
2. Inversion,
3. Interpretations,

4. logical relations.
e Characterized by

1. underlying logical framework,
2. formalism for meta-reasoning,

3. automation techniques.

Some Meta-Logical Frameworks

e General-purpose reasoning systems used as meta-logical frameworks

(Ngthm, HOL, Coq, LEGO, Nuprl, Isabelle/HOL, .. .):

1. logics defined inductively,
2. meta-reasoning by (structural) induction,

3. automation by tactics (or inductive theorem proving).
e Maude [Basin, Clavel & Meseguer’99:

— based on rewriting logic,
— meta-reasoning by reflection and induction,

— automation by rewriting.

More Meta-Logical Frameworks

e FOLDN|[McDowell & Miller'97] [McDowell'97):

1. based on hereditary Harrop formulas (typically),
2. meta-reasoning by definitional reflection and induction over NV,

3. 1nteractive.

e Twelf [Schiirmann & Pf.’98,°99]

1. based on LF logical framework,
2. meta-reasoning via total functional programs (termination, coverage),

3. automation by inductive theorem proving.

This Talk

1. Inductive vs. non-inductive representations of logics.

2. Reasoning about non-inductive definitions.

3. Techniques for automation.

4. Further development (speculative).

The Example: Axiomatic Formulation of Intuitionistic Logic

e Abstract syntax

Terms ¢t == al|z| f(t1,...,t,)
Propositions A = p(t1,...,t,) | A1 D Ay | Vx. A
Assumptions A == - |AA
e Judgments
Truth - A

Entailment AF A

e Meta-theorem

IfA, AFCthen AFADC.

Axioms and Inference Rules

e Axioms

(F2)*: x not free in B

e Rule of inference

- AD (BD A) (K)

F(AD(BDC)D(ADB)D(ADC)) (9)

= (Vx. A) D [t/z]A (F1)

= (Vx.(BD A)) D (B DVzx. A) (F>)*
- ASB - A - a/2]A

- B MP - Vz. A v

10

Higher-Order Abstract Syntax

e Use (simply typed) A-calculus to represent language.

o Key idea:

Represent variables in the object language by variables in the

meta-language.

e Technique employed in HHF, LF.

e In general not inductive.

11

Representation Function

[—./,E—I

" f(ty, ..)
[—p(tla R 7tk)—|
l_Al D) AQ_I
l__|A—|

V. A

X

fre . T

P '_tl_' . '—tk—'
imp l_Al—l I—AQ_]
not" A’

forall (Ax:i."A™)

P
imp
not

forall

| — e =

| — -+ — o0
0O—+0—0
0— 0

(i—o0)—o

e Constant declarations form signature in the framework.

e Variable declarations form context in the framework.

12

The Framework, Simply Typed Fragment

Simply typed A-calculus.

Types A = a| A — A

Objects M 1= cl|a| A M | My M,
Signatures ¥ == -| X, aitype| XL, c:A
Contexts [= -|lzA

Shared by HHF and LF'.
Typing l—; M : A.
Canonical (B-normal, n-long) forms I I—; M A

Suppress signature 2.

13

Adequacy Theorem

e Theorem [Adequacy| For I', = zq:i, ..., x,:i and terms ¢ and

propositions A with free variables among x1, ..., ,,
1. T, - MApiiff M ="t
2T, F Mfoifft M="A"

3. The representation function "-'is a compositional bijection:

Mt /x]"s'="[t/z]s" and [t7/x]"AT="[t/z]A

14

Weak vs. Strong Frameworks

Recall: "Vx. A7 = forall (Ax:i.” A™) where forall : (i — o) — o.

I

Requires function space to be parametric!

As soon as function space is too rich, either

— gf T = M o thenT = M’ o for M' definitionally to M, or
— z'frl—nMﬂo then M =T A" for some A

will fail. Invalidates or complicates reasoning and meta-reasoning.

Prohibits case analysis and recursion in LF objects.

Also: ["t7/z]" A7 = "[t/x] A" means variables are “invisible”.

15

Properties of Representations

e Variables by name: inductive,

but must axiomatize variable renaming and substitution.

e Variables as de Bruijn indices: inductive,

captures variable renaming, must axiomatize substitution.

e Variables as meta-language variables: not inductive,
captures variable renaming, substitution.

V. p(z) D q(x)" = forall (Az:i.imp (px) (q z))
=, forall (Ay:i.imp (py) (qy)) = "Vy.p(y) D q(y)"

"Vx. A7 = forall (Ax:i.T A7)
"t/x]AT ="t x]" AT =5 (Az:i.TAT) Tt

16

Judgments as Types

Use (dependently typed) A-calculus to represent derivations.

Key idea:

Represents judgments of the object language by types in the
meta-language.

Technique employed in LF, variations in HHF.

In general not inductive.

17

Representation of Axiomatic Derivations I

H . .
If then "H 1 : hil" A7 so hil : 0 — type
- A

r 1

FAS(BoA N —krarp

k : MA:0.MB:o. hil (imp A (imp B A))

g
-ADB - A
|_ B MP = mp I—A—l |_B—| I_g_l r”}_[—l
mp : MA:0.MB:o. hil (imp A B) — hil A — hil B

18

Representation of Axiomatic Derivations II

(Vx. A) D [t/x]A o fi(Ax:i. AT T
fi : MA:i — o. N¢:i. hil (imp (forall (Az:i. Az)) (At))

I l
*

(Vxz.(BDA)) D(BDVz. A) b =f,(A\z:i."T A7) B™
fr : MA:i — o.T1B:o.
hil (imp (forall (Az:i.imp B (A x))) (imp B (forall (Az:i. A z))))

e (F3}) x not free in B.

e Note how side condition is enforced in the representation.

19

Representation of Axiomatic Derivations III

H
- [a/x]A
UG . .
- Ve, A =ug(Az:i.TAY) (Aai. THT)
ug : MA:i — o. (MNa:i. hil (A a)) — hil (forall (Az:i. Ax))

e Again, side condition enforced in logical framework.

20

The Framework II: LF Type Theory

e Dependently typed A-calculus [Harper, Honsell & Plotkin’93].

Kinds K == type | Nr:A. K

Families A = a|AM|Nz:A Ay [Al — A
Objects M = cl|ax | e:A.M | My M,
Signatures ¥ == | Y a:K |¥ cA

Contexts [== -|lzA

e Core Judgments (similar ones at other levels):

M- M: A M has type A
TE M=N:A M is equal to N at type A
re A A M is canonical of type A

21

LE Type Theory

e Characteristic rules:
[F M :NeA B [N:A
M- MN:[N/2]|B

T M:A [A=DB: type

- M:B

e Type checking and conversion is decidable.

e Every well-typed object has a unique canonical form.

22

Adequacy Theorem

e Theorem |[Adequacy] For [, = aq:i, ..., a,:i and deductions H of + A
with free parameters among aq, ..., a,,

1. T, - MAhilmAY iff M ="H"
2. The representation is a compositional bijection:
“[t/a]H = [Tt /a]"H

e Proof-checking in object logic is reduced to type-checking in logical
framework.

e Made practical through type reconstruction and redundancy elimination.

23

Properties of Representations

e Generally not inductive.

e Judgment forms as type families. hil : 0 — type
e Judgments as types. hilm A : type
e Deductions as objects. "HThilT AT

e Parametric judgments as dependent function types.

Ma:i. hil ("[a/x] A7) : type

e Parametric derivations as functions.

24

Some Alternative Representations

e Hereditary Harrop formulas (AProlog, Isabelle)

— Judgments as propositions in meta-logic.

— No internal notion of deduction (logic vs. type theory)
e Inductive definitions (FSp, many others)

— No higher-order abstract syntax.

— Deductions as objects (sometimes).

25

Hypothetical Judgments

e Would like to prove Hilbert’s deduction theorem:
fAAFCthen AFADC.

(Note: A considered modulo permutations)
e Relies on hypothetical judgment A+ C.

e Systematically extend rules. For example:

] AFla/z]A
AAFA P AF V. A

where a does not occur in A or A.

UG

26

Characteristic Properties of Hypothetical Judgments

e Substitution property:
fAFAand A, AFC then A", A+ C.

Realized by substitution into derivations.
e [xchange.
e Weakening.

e Contraction.

27

Extending the Representation

e Modeling assumptions in object language by hypotheses in
meta-language.

e Theorem |[Extended Adequacy| For [, = ay:i, ..., a,:i,
FH = ulhl| '—Al_], Ce ,ukhl| '—Ak_l, and deductions H of Al, cee Ak = A
with free parameters among aq, ..., a,,

1 T, Ty MAhITAY iff "4 = M.
2. The representation is a compositional bijection:

"[t/aH =["t"/a]"H" and T[G/ulH ' =["G"/u]"H"

r 1

° AAF A hyp = 4 where w:hil TA7 in context.

28

Logical Frameworks Assessment

e Concise, elegant, effective in many cases.
e Fxamples in programming languages and logics.
e Meta-programming via ML (Isabelle).

e Constraint logic programming (AProlog, Elf).

e Applications with state much easier in linear frameworks.

e Some applications call for general constraint systems.

e Proof-carrying code and theorem proving

On the value of proof terms! (LF, but not HHF.)

29

Logical Frameworks Summary

e Higher-order abstract syntax captures variable renaming, substitution,

occurrence conditions.

e Contextual representation of parametric and hypothetical judgments

captures substitution, exchange, weakening, and contraction.

e Representation of judgments as types allows deductions as objects with
internal validity conditions.

e Inductive representations allow induction.

30

Meta-Logical Frameworks

e Can we take advantage of the immediate nature of logical framework
encodings to automate meta-theory?

e Four approaches:
1. Relational meta-theory, plus schema-checking [Rohwedder & Pf96]
2. Reflection, consistent via modality [Despeyroux, Schiirmann & Pf’97]
3. (Meta-)meta-logic constructed over logical framework.
4. Definitional reflection and induction over logical framework.

e Alternative: use inductive encodings and develop theories of substitution,
assumptions, etc.

e Alternative: reflection in rewriting logic.

31

Reasoning About Deductive Systems Represented in LF

e Design a logic or type theory to reason about deductive systems encoded

in LF.

e Impractical to simply define LF as an inductive theory.
(LF is simple, but its theory is complex!)

e Goals:

— Conservative — preserve present LEF representation techniques.
— Natural — informal proofs can be expressed directly.
— General — allow many meta-theorems and meta-proof techniques.

— Automatable — support efficient automation of meta-proof search.

e Inherit as much as possible from the logical framework!

32

Example: The Deduction Theorem, Propositional Case

e Theorem: If then

AFC -ADC
e Proof: By induction on H (see following slides).

e Recall: Hypothetical judgments as functions types.

r 1

H
AFRC

= Awhil"TALTH " hilTAT — hil P C

e Representation, Hypothesis:

r 1

A AP uhilTAT w hilTAT —s hil T AT

33

Hypothetical Judgments, Revisited

e Representation, Modus Ponens:

r 1

H Ho
AFBDC AFB
AFC
= whil TAT mp T BITCT (THy) (THa) < hil TAT s hil T

MP

34

Representation of Meta-Proofs

o Attempt: Represent proof of deduction theorem as function

ded : MMA:0.NC"o0. (hil A — hilC') — — hil(imp AC)
in LF outside LF

fails, because outer function is defined inductively.

e Solution: introduce separate level with V, 4, T.

ded € VA:0.VC:0.VH:(hil A — hil C).AD:hil (imp AC'). T

e Suppress propositional arguments for deductions.

ded € VH:(hil A — hilC'). 3D:hil (imp AC). T

35

Proot of Deduction Theorem, Hypothesis

e Case:

o1 AW N =

ded (Au:hil A. u) = mp (mpsk)k

36

Proof of Deduction Theorem, Axiom

e Case:

H:
Al‘ClD(CQDCl)

K

1 F(C1D(CDC))D(AD(CD(Cy, D))
2 Cl D) (02 D) 01)
3 FAD(C1D(Cy;DCY))

ded (Au:hilA. k) = mpkk

e Case: Axiom (5) similar.

K

MP12

37

Proof of Deduction Theorem, Modus Ponens

e Case:
H Ho
H:AI—ClDCg At C I
Ak

1 FAD(C;DCY) Ind. hyp. on H;
2 F(AD(CiDC)D((ADC1)D(AD(Cy)) S

3 F(ADC)D(ADCY) MP?21

4 - A>DC Ind. hyp. on H,
5 FADC, MP 34

ded (Au:hil A. mp (Hyu) (Hau)) = mp(mps(ded Hy)) (ded H,)

38

Proof of Deduction Theorem, Summary

e [mplicational fragment

[ded : (hilA — hilC) = hil(imp AC)]
ded € VH:(hil A — hilC).3D:hil imp AC). T

ded (Au:hil A.u) = mp(mpsk)k

ded (Au:hilA. k) = mpkk

ded (Au:hilA. s) = mpks

ded (Au:hil A.mp (Hyu) (Hau)) = mp(mps(ded Hy)) (ded Hy)

e ded is a total function of the given type, therefore represents
meta-theoretic proof.

39

The Meta-Logic

Trade off generality vs. automation.

Exploit LF as much as possible.

Formulas F' = Vr:A. F|3dc:AF|T
At present, restricted to V...Vd...d prefix.

Validity of meta-logic.
= VoA F it =[M/x]F forall M st. - M A

= Jdr:A. F iff =[M/x]F for some M s.t. - M A
= T

Implementation is, of course, incomplete.

40

Excursion: How to Exploit LF

e Represent falsehood by

void : type

and no constructors.
e Represent —A(x) by A(z) — void.
e Represent disjunction of types A(x) and —=A(x) by
disj : i — type
injl : Mz:i. Az — disjx
injr : Mx:i. (Ax — void) — disjz
e Prove decidability as Vx. A(x) V —~A(x):

Vai.dD:disjz. T

41

Meta-Logic via Realizability

e — F'if there is a total function P such that P € F'.

Meta-Functions P == Az:A.P|PM (Vx:A. F)
(M, P) |let (x,p) = P in P, (Jx:A.F)
()|let () =P in P, (T)
up:F. P | p (recursion)
case z of () (cases)
Q =
| (M= P|Q) (case)

e Standard (non-deterministic) operational semantics.

42

Checking Realizors

e Check three conditions.

1. Type Correctness: Returned values have expected type.
Standard dependent type checking.

2. Termination: Function always succeeds with a value or fails finitely
along each computation branch.
Currently, simultaneous and lexicographic extensions of higher-order
subterm ordering, given explicitly [Rohwedder & Pf "96].

3. Coverage: Functions never fail.
Using higher-order pattern unification, check that all cases for closed
terms of a given type a covered syntactically.

e Functions may be don’t-care non-deterministic. (Many proofs are.)
e Both termination and coverage are in principle undecidable.

e Termination is open-ended in practice.

43

Generating Realizors = Meta-Theorem Proving

e Filling (= Type-checking):
Simple CLP-style iterative deepening search in LF.
Uses signature and results of induction hypothesis.

e Recursion (= Termination-checking):

Generate legal appeals to induction hypothesis given a termination order.

e Splitting (= Coverage):
Generate possible cases for variable by unification (one step backward
search).

44

Objects With Parameters

e Above relies crucially on closed terms.
= VoA F it =[M/x]F forall M st. - =M A

= Jdrv:A. F iff =[M/x]F for some M s.t. - =M A
= I

e Must generalize to allow proof of deduction theorem in first-order logic
(parameters) or with arbitrary assumptions (hypotheses).

fAAFCthen AFADC.

45

Informal Proof

e New Case:
H = h
AN C.AFC
= A

yp

1 ANCHFCD(ADCO) (K)
2 N, CFC (hyp)
3 ANNCHADC MP12

ded (Au:hil A. w) = mpkw

where w:hil"C' " in context?

46

Formulation in LF

e Recall: Contexts are mapped to contexts.
e For A=Ay,... A,
"AT=u"AL Y ut A
H M . .
o [f then "TATE "H 1 hilTAT = hilTC.
AJAFC

e As a statement about encoding:

For all [of the form uy:hil Ay, ..., u,:hil A,, and objects H such
that T F H : hil A — hil (', there exists an object D such that
F'= D hil (imp AQ).

47

Extension of Meta-Logic

e Inductive description of classes of contexts.

e Example: 'y = - | g, whil A (for some A). Write I' € T'y.

e Allow outermost quantification over inductively defined contexts.

e Fix signature X and context class I .

= F

[=Vx:A F
[= dr:A F
(=T

iff [
iff T
ifft [

— ' foralll ely
= (M /x]F forall M st. T I—H M: A

= [M/x]F for some M s.t. T I—H M: A

48

Extension of Realizors

e Cannot use parameters x at the top-level, because the context may be

empty!

e Two ways to introduce parameters
1. In the case that a given term is a parameter.

2. Explicit vx:A.

49

Proof of Deduction Theorem Revisited

o [yg:=-|TywA

ded (Au:hil A. w) —
ded (Au:hil A.) —
ded (Au:hilA. k) —
ded (Au:hilA.s) —
ded (Au:hil A.mp (Hyu) (Hau)) =

mp k w

mp (mpsk) k

mp k k

mpks

mp (mps(ded Hy)) (ded H>)

e At run-time, w will match one of many possible parameters w;.

e Need to cross-reference parameters with context-class definition.

50

Impact on Verification

e Type-checking. Verify that any parameters introduced lie within the
specified context class. Context class inclusion when using lemmas.

e Termination. Not affected.

e Coverage. Verify that in addition to signature elements, all possible

parameter cases are covered.

e Treats only context properties stable under exchange, weakening,
contraction (hypothetical judgments).

51

Deduction Theorem in First-Order Logic

e Case:

Hi

Y — A,A - [CL/:C]Ol

A,A |‘V.’L’Cl

where a not in A, A, or C'.

1
2
3
4

A+ ADla/z]Cy
AFVYr. ADC

UG

Ind. hyp. on H;
UG 1

AF (V. ADC1)D(ADVe.Cy) Fy

A+ ADVr. (4

MP 3?2

52

Representation in Meta-Logic

e Recall: ug: MCL:i — o. (MNa:i. hil (Cya)) — hil (forall (A\z:i. C x)).
e Declare

rD — ‘ Fp,w:hiIA ‘ rD,Q:i

e New case:

ded (Au:hil A.ug (Ma:i. Ciua)) = ug(va:i. mp f; (ded (Au:hil A. Ciua)))
e Evaluation of va:A. P

1. creates a new actual parameter x for z,
2. evaluates [z /z]P to V|
3. returns the abstraction \x:A. V.

53

The v Operator

e Slightly more complicated when several LF' objects are returned

(V...va...3)
e Final complication: subordination.

e We do not abstract, if the v-bound variable cannot occur in the result.

54

Example: Counting Axiom Occurrences

nat : type. zero : nat. one : nat.

plus : nat — nat — nat

o [, :=-|T, ai or ['p =+ |Tp,a:i|lp,w:hil A].

e cnt € VH:hil A.dN:nat. T.

cnt k — onhe

(other axioms)

cnt (mp Hy H») = plus(cnt Hy) (ent Hy)
cnt (ug (Aa:i. Ha)) = wvai.cnt(H a)
[entw = zero |

95

Subordination

o If A< B then a term of type B can not occur as a subterm of a canonical
term of type A.

e [ixtracted statically from signature.
e Determines if \-abstraction is constructed from v.

e Also important in termination checking [Rohwedder & Pf’96]
[t/x]A < Vz:i. A in first-order logic (i <o)
[B/p|A £ Vp:i. A in higher-order logic (o 4 o)

e Also needed for equational reasoning in LF [Virga’99].

e In (predicative) inductive theories, given by the order of definition.

56

Status and Implementation

Theory of meta-logic recently completed [Schiirmann "00].
Prototype of theorem prover exists (not yet released, but available).
No tactics(!), development in definition/lemma/theorem style.

Work on various extensions in progress.

57

Some Twelf Experiments

*Axiomatic to natural deductions
*Natural to axiomatic deductions

Experiment Time
CCC to A-calculus 1.099
CPM completeness 1.134
(Horn) LP soundness 4.501
(Horn) LP completeness 0.195
Mini-ML type preservation 0.799
Mini-ML evaluation/reduction 25.546
Deduction theorem 0.322

*Intuitionistic cut elimination
*Classical cut elimination

*Sequent calculus to natural deduction
*Natural deduction to sequent calculus

*Church-Rosser theorem

Linux 2.30, SML/NJ 110, Twelf 1.2 (*Twelf 1.5) on Pentium II (300 Mhz)

58

Assessment |

Must provide: induction order, search depth.
Derives its power from dependent types and separation of powers.
Excellent, if you know the proof ahead of time.

More Information: http://www.cs.cmu.edu/ " twelf/

59

Assessment 11

e Not robust with respect to failure.

e Naive strategy (filling — splitting — recursion).

e Filling sometimes a bottle-neck (anticipate lemmas).

e Too dependent on number of expression constructors (orthogonality?).
e Inefficient implementation (bottom-up vs. top-down).

e More termination orders and reduction properties.

e Proof terms (separate checking, interactive vs. automatic).

60

Other Future Work

e Constraints (currently, only in operational semantics of Twelf). [Virga’99
e Linearity (reason about state). [Cervesato & Pf.’96]

e Order (reasoning about sequencing). [Polakow & Pf.’99]

e Proof compression. [Necula’98] [Schiirmann & Pf.’98]

e Compilation. [Nadathur’99]

61

Related Work: FOLDN

e FOLDN [McDowell & Miller'97] [McDowell’97]

e Logical framework flexible (HHF, linear HHF).

e Meta-logic richer, less automation (at present).

e Induction over natural numbers (rather than termination).

e Definitional reflection (rather than splitting).

e Does not inherit HHF theorem proving.

e Does not inherit reasoning about hypotheses (modeled as lists).

e Does not inherit reasoning about parameters (nested abstractions?)

62

Related Work: Maude

Maude [Basin, Clavel & Meseguer’99.
Logical framework based on rewriting logic.
Encodings are first-order.

Use as meta-logical framework from
— reflection (representation of system in itself),
— initiality (satisfies inductive properties).

Not yet as deeply explored.

63

Related Work: Inductive Encodings

FSy, Isabelle/HOL, Coq, LEGO, HOL, Nuprl, Agda.

Except for F'Sg, not explicitly designed as meta-logical framework.
Only inductive encodings and reasoning

— No higher-order abstract syntax.

— No hypothetical or parametric meta-reasoning.

Theorem proving generally based on tactics.

Less automation, different “look & feel”.

Numerous experiments.

64

Summary

e Presented principles underlying LF and similar logical frameworks.
— Higher-order abstract syntax.
— Judgments as types.
— Hypothetical and parametric judgments.

e [ixplored design of meta-logical framework of LF encodings.

— Reasoning about closed objects.

— Reasoning about hypotheses and parameters.

e Sketched automation techniques in Twelf.

65

