
Logical and Meta-Logical FrameworksFrank PfenningPPDP'99, Paris, FranceSeptember 30, 1999

1. Introduction2. Logical Frameworks3. Meta-Logical Frameworks4. Conclusion
(see also: upcoming article in Handbook of Automated Reasoning) 1



Some Terminology

� Deductive System: Calculus of axioms and inference rules de�ningderivable judgments. Used in the presentation of logics and programminglanguages.
� Logical Framework: Meta-language for the formalization of deductivesystems.

� Meta-Logical Framework: Meta-language for reasoning aboutdeductive systems.

2



Logical Frameworks

� Factor the e�ort required to implement various logics.� Support common concepts in deductive systems.� Provide generic tools for proof search.� Characterized by1. underlying formalism,2. meta-programming language,3. theorem proving environment.

3



Some Logical Frameworks

� Formalisms: hereditary Harrop formulas (HHF), dependently typed�-calculus (LF), inductive de�nitions, rewriting logic.� Meta-Programming Languages: functional (ML, rewriting), relational(�Prolog, Elf).� Theorem Proving Environments: tactics and tacticals, logicprogramming, proof checking.� Implementations: Isabelle, �Prolog, Elf, linear LF, Maude, Elan, Pi,Agda, : : :� More Information: http://www.cs.cmu.edu/~fp/lfs.html� General Mathematical Reasoning Systems: HOL, Coq, LEGO, Nuprl,PVS, Nqthm, : : :

4



Meta-Logical Frameworks

� Require means for representing logics. (A logical framework!)� Support common proof techniques in the study of logic and programminglanguages:1. structural induction (over derivations),2. inversion,3. interpretations,4. logical relations.� Characterized by1. underlying logical framework,2. formalism for meta-reasoning,3. automation techniques. 5



Some Meta-Logical Frameworks

� General-purpose reasoning systems used as meta-logical frameworks(Nqthm, HOL, Coq, LEGO, Nuprl, Isabelle/HOL, : : :):1. logics de�ned inductively,2. meta-reasoning by (structural) induction,3. automation by tactics (or inductive theorem proving).� Maude [Basin, Clavel & Meseguer'99]:{ based on rewriting logic,{ meta-reasoning by re
ection and induction,{ automation by rewriting.

6



More Meta-Logical Frameworks

� FOLDN[McDowell & Miller'97] [McDowell'97]:1. based on hereditary Harrop formulas (typically),2. meta-reasoning by de�nitional re
ection and induction over N ,3. interactive.
� Twelf [Sch�urmann & Pf.'98,'99]1. based on LF logical framework,2. meta-reasoning via total functional programs (termination, coverage),3. automation by inductive theorem proving.

7



This Talk
1. Inductive vs. non-inductive representations of logics.

2. Reasoning about non-inductive de�nitions.

3. Techniques for automation.

4. Further development (speculative).

8



The Example: Axiomatic Formulation of Intuitionistic Logic

� Abstract syntaxTerms t ::= a j x j f(t1; : : : ; tn)Propositions A ::= p(t1; : : : ; tn) j A1 � A2 j 8x:AAssumptions � ::= � j �; A

� Judgments Truth ` AEntailment � ` A

� Meta-theoremIf �; A ` C then � ` A� C. 9



Axioms and Inference Rules

� Axioms ` A� (B � A) (K)` (A� (B � C))� ((A� B)� (A� C)) (S)` (8x:A)� [t=x]A (F1)` (8x: (B � A))� (B � 8x:A) (F2)�(F2)�: x not free in B� Rule of inference` A�B ` A MP` B ` [a=x]A UGa` 8x:A
10



Higher-Order Abstract Syntax

� Use (simply typed) �-calculus to represent language.� Key idea:Represent variables in the object language by variables in themeta-language.� Technique employed in HHF, LF.� In general not inductive.

11



Representation Function
pxq = x x:ipf(t1; : : : ; tk)q = f pt1q : : : ptkq f : i ! � � � ! ipp(t1; : : : ; tk)q = p pt1q : : : ptkq p : i ! � � � ! opA1 � A2q = imp pA1q pA2q imp : o ! o ! op:Aq = not pAq not : o ! op8x:Aq = forall (�x:i: pAq) forall : (i ! o) ! o

� Constant declarations form signature in the framework.� Variable declarations form context in the framework.
12



The Framework, Simply Typed Fragment

� Simply typed �-calculus.Types A ::= a j A1 ! A2Objects M ::= c j x j �x:A:M jM1 M2Signatures � ::= � j �; a:type j �; c:AContexts � ::= � j �; x:A� Shared by HHF and LF.� Typing � `!� M : A.� Canonical (�-normal, �-long) forms � `!� M * A.� Suppress signature �.

13



Adequacy Theorem

� Theorem [Adequacy] For �x = x1:i; : : : ; xn:i and terms t andpropositions A with free variables among x1; : : : ; xn,1. �x `! M * i i� M = ptq,2. �x `! M * o i� M = pAq.3. The representation function p�q is a compositional bijection :[ptq=x]psq = p[t=x]sq and [ptq=x]pAq = p[t=x]Aq:
14



Weak vs. Strong Frameworks

� Recall: p8x:Aq = forall (�x:i: pAq) where forall : (i ! o)| {z }!! ! o.

� Requires function space to be parametric!� As soon as function space is too rich, either{ if � `� M : o then � `� M 0 * o for M 0 de�nitionally to M , or{ if � `� M * o then M = pAq for some Awill fail. Invalidates or complicates reasoning and meta-reasoning.� Prohibits case analysis and recursion in LF objects.� Also: [ptq=x]pAq = p[t=x]Aq means variables are \invisible".
15



Properties of Representations

� Variables by name: inductive,but must axiomatize variable renaming and substitution.� Variables as de Bruijn indices: inductive,captures variable renaming, must axiomatize substitution.� Variables as meta-language variables: not inductive,captures variable renaming, substitution.p8x: p(x)� q(x)q = forall (�x:i: imp (p x) (q x))=� forall (�y:i: imp (p y) (q y)) = p8y: p(y)� q(y)qp8x:Aq = forall (�x:i: pAq)p[t=x]Aq = [ptq=x]pAq =� (�x:i: pAq) ptq
16



Judgments as Types

� Use (dependently typed) �-calculus to represent derivations.� Key idea:Represents judgments of the object language by types in themeta-language.� Technique employed in LF, variations in HHF.� In general not inductive.

17



Representation of Axiomatic Derivations I

If H` A then pHq : hil pAq; so hil : o ! type

p K` A� (B � A) q = k pAq pBqk : �A:o:�B:o: hil (impA (impBA))

p G` A�B H` A MP` B
q

= mp pAq pBq pGq pHqmp : �A:o:�B:o: hil (impAB) ! hilA! hilB
18



Representation of Axiomatic Derivations II

p F1(8x:A)� [t=x]A q = f1 (�x:i: pAq) ptqf1 : �A:i ! o:�t:i: hil (imp (forall (�x:i: A x)) (A t))

p F �2(8x: (B � A))� (B � 8x:A) q = f2 (�x:i: pAq) pBqf2 : �A:i ! o:�B:o:hil (imp (forall (�x:i: impB (Ax))) (impB (forall (�x:i: A x))))

� (F �2 ) x not free in B.� Note how side condition is enforced in the representation.
19



Representation of Axiomatic Derivations III

p H` [a=x]A UGa` 8x:A
q

= ug (�x:i: pAq) (�a:i: pHq)ug : �A:i ! o: (�a:i: hil (Aa)) ! hil (forall (�x:i: A x))

� Again, side condition enforced in logical framework.
20



The Framework II: LF Type Theory

� Dependently typed �-calculus [Harper, Honsell & Plotkin'93].Kinds K ::= type j �x:A:KFamilies A ::= a j A M j �x:A1: A2 [ j A1 ! A2]Objects M ::= c j x j �x:A:M jM1 M2Signatures � ::= � j �; a:K j �; c:AContexts � ::= � j �; x:A

� Core Judgments (similar ones at other levels):� `� M : A M has type A� `� M = N : A M is equal to N at type A� `� M * A M is canonical of type A 21



LF Type Theory
� Characteristic rules:� `� M : �x:A:B � `� N : A� `� M N : [N=x]B� `� M : A � `� A = B : type� `� M : B

� Type checking and conversion is decidable.

� Every well-typed object has a unique canonical form.
22



Adequacy Theorem

� Theorem [Adequacy] For �a = a1:i; : : : ; an:i and deductions H of ` Awith free parameters among a1; : : : ; an,1. �a `� M * hilpAq i� M = pHq2. The representation is a compositional bijection:p[t=a]Hq = [ptq=a]pHq� Proof-checking in object logic is reduced to type-checking in logicalframework.� Made practical through type reconstruction and redundancy elimination.
23



Properties of Representations

� Generally not inductive.� Judgment forms as type families. hil : o ! type� Judgments as types. hil pAq : type� Deductions as objects. pHq : hil pAq� Parametric judgments as dependent function types.�a:i: hil (p[a=x]Aq) : type� Parametric derivations as functions.

24



Some Alternative Representations

� Hereditary Harrop formulas (�Prolog, Isabelle){ Judgments as propositions in meta-logic.{ No internal notion of deduction (logic vs. type theory)� Inductive de�nitions (FS0, many others){ No higher-order abstract syntax.{ Deductions as objects (sometimes).

25



Hypothetical Judgments

� Would like to prove Hilbert's deduction theorem:If �; A ` C then � ` A� C.(Note: � considered modulo permutations)� Relies on hypothetical judgment � ` C.� Systematically extend rules. For example:hyp�; A ` A � ` [a=x]A UGa� ` 8x:Awhere a does not occur in � or A.

26



Characteristic Properties of Hypothetical Judgments

� Substitution property:If � ` A and �0; A ` C then �0;� ` C.Realized by substitution into derivations.� Exchange.� Weakening.� Contraction.

27



Extending the Representation

� Modeling assumptions in object language by hypotheses inmeta-language.
� Theorem [Extended Adequacy] For �a = a1:i; : : : ; an:i,�H = u1:hil pA1q; : : : ; uk:hil pAkq, and deductions H of A1; : : : ; Ak ` Awith free parameters among a1; : : : ; an,1. �a; �H `� M * hil pAq i� pHq = M .2. The representation is a compositional bijection:p[t=a]Hq = [ptq=a]pHq and p[G=u]Hq = [pGq=u]pHq

� p hyp�; A ` A q = u where u:hil pAq in context. 28



Logical Frameworks Assessment

� Concise, elegant, e�ective in many cases.� Examples in programming languages and logics.� Meta-programming via ML (Isabelle).� Constraint logic programming (�Prolog, Elf).� Applications with state much easier in linear frameworks.� Some applications call for general constraint systems.� Proof-carrying code and theorem provingOn the value of proof terms! (LF, but not HHF.)
29



Logical Frameworks Summary

� Higher-order abstract syntax captures variable renaming, substitution,occurrence conditions.� Contextual representation of parametric and hypothetical judgmentscaptures substitution, exchange, weakening, and contraction.� Representation of judgments as types allows deductions as objects withinternal validity conditions.� Inductive representations allow induction.

30



Meta-Logical Frameworks

� Can we take advantage of the immediate nature of logical frameworkencodings to automate meta-theory?� Four approaches:1. Relational meta-theory, plus schema-checking [Rohwedder & Pf'96]2. Re
ection, consistent via modality [Despeyroux, Sch�urmann & Pf'97]3. (Meta-)meta-logic constructed over logical framework.4. De�nitional re
ection and induction over logical framework.� Alternative: use inductive encodings and develop theories of substitution,assumptions, etc.� Alternative: re
ection in rewriting logic. 31



Reasoning About Deductive Systems Represented in LF

� Design a logic or type theory to reason about deductive systems encodedin LF.� Impractical to simply de�ne LF as an inductive theory.(LF is simple, but its theory is complex!)� Goals:{ Conservative | preserve present LF representation techniques.{ Natural | informal proofs can be expressed directly.{ General | allow many meta-theorems and meta-proof techniques.{ Automatable | support e�cient automation of meta-proof search.� Inherit as much as possible from the logical framework!
32



Example: The Deduction Theorem, Propositional Case

� Theorem: If HA ` C then D` A� C .

� Proof: By induction on H (see following slides).� Recall: Hypothetical judgments as functions types.p HA ` C
q = �u:hil pAq: pHq u : hil pAq! hil pCq

� Representation, Hypothesis:p hypA ` A q = �u:hil pAq: u : hil pAq! hil pAq
33



Hypothetical Judgments, Revisited

� Representation, Modus Ponens:p H1A ` B � C H2A ` B MPA ` C

q

= �u:hil pAq:mp pBq pCq (pH1qu)(pH2q u) : hil pAq ! hil pCq
34



Representation of Meta-Proofs

� Attempt: Represent proof of deduction theorem as functionded : �A:o:�C:o: (hilA! hilC)| {z }in LF !| {z }outside LF hil (impAC)fails, because outer function is de�ned inductively.

� Solution: introduce separate level with 8, 9, >.ded 2 8A:o:8C:o:8H:(hilA! hilC): 9D:hil (impAC):>

� Suppress propositional arguments for deductions.ded 2 8H:(hilA! hilC):9D:hil (impAC):>
35



Proof of Deduction Theorem, Hypothesis

� Case: H = hypA ` A1 (A� ((A� A)� A))� ((A� (A� A))� (A� A)) S2 (A� ((A� A)� A)) K3 (A� (A� A))� (A� A) MP 1 24 A� (A� A) K5 A� A MP 3 4ded (�u:hilA: u) = mp (mp s k) k
36



Proof of Deduction Theorem, Axiom

� Case: H = KA ` C1 � (C2 � C1)1 ` (C1 � (C2 � C1))� (A� (C1 � (C2 � C1))) K2 ` C1 � (C2 � C1) K3 ` A� (C1 � (C2 � C1)) MP 1 2ded (�u:hilA: k) = mp k k

� Case: Axiom (S) similar.

37



Proof of Deduction Theorem, Modus Ponens

� Case:
H = H1A ` C1 � C2 H2A ` C1 MPA ` C21 ` A� (C1 � C2) Ind. hyp. on H12 ` (A� (C1 � C2))� ((A� C1)� (A� C2)) S3 ` (A� C1)� (A� C2) MP 2 14 ` A� C1 Ind. hyp. on H25 ` A� C2 MP 3 4ded (�u:hilA:mp (H1 u) (H2 u)) = mp(mp s (dedH1)) (dedH2)

38



Proof of Deduction Theorem, Summary

� Implicational fragment[ ded : (hilA! hilC) ) hil (impAC) ]ded 2 8H:(hilA! hilC): 9D:hil (impAC):>ded (�u:hilA: u) = mp (mp s k) kded (�u:hilA: k) = mp k kded (�u:hilA: s) = mp k sded (�u:hilA:mp (H1 u) (H2 u)) = mp (mp s (dedH1)) (dedH2)

� ded is a total function of the given type, therefore representsmeta-theoretic proof.

39



The Meta-Logic
� Trade o� generality vs. automation.� Exploit LF as much as possible.Formulas F ::= 8x:A:F j 9x:A:F j >At present, restricted to 8 : : : 89 : : :9 pre�x.� Validity of meta-logic.j= 8x:A:F i� j= [M=x]F for all M s.t. � `� M : Aj= 9x:A:F i� j= [M=x]F for some M s.t. � `� M : Aj= >� Implementation is, of course, incomplete.

40



Excursion: How to Exploit LF

� Represent falsehood by void : typeand no constructors.� Represent :A(x) by A(x) ! void.� Represent disjunction of types A(x) and :A(x) bydisj : i ! typeinjl : �x:i: A x! disj xinjr : �x:i: (Ax! void) ! disj x� Prove decidability as 8x:A(x) _ :A(x):8x:i: 9D:disj x:> 41



Meta-Logic via Realizability

� j= F if there is a total function P such that P 2 F .Meta-Functions P ::= �x:A:P j P M (8x:A:F )j hM;P i j let hx; pi = P1 in P2 (9x:A:F )j h i j let h i = P1 in P2 (>)j �p:F:P j p (recursion)j case x of 
 (cases)
 ::= �j (M ) P j 
) (case)� Standard (non-deterministic) operational semantics.
42



Checking Realizors� Check three conditions.1. Type Correctness: Returned values have expected type.Standard dependent type checking.2. Termination: Function always succeeds with a value or fails �nitelyalong each computation branch.Currently, simultaneous and lexicographic extensions of higher-ordersubterm ordering, given explicitly [Rohwedder & Pf '96].3. Coverage: Functions never fail.Using higher-order pattern uni�cation, check that all cases for closedterms of a given type a covered syntactically.� Functions may be don't-care non-deterministic. (Many proofs are.)� Both termination and coverage are in principle undecidable.� Termination is open-ended in practice. 43



Generating Realizors = Meta-Theorem Proving

� Filling (=) Type-checking):Simple CLP-style iterative deepening search in LF.Uses signature and results of induction hypothesis.� Recursion (=) Termination-checking):Generate legal appeals to induction hypothesis given a termination order.� Splitting (=) Coverage):Generate possible cases for variable by uni�cation (one step backwardsearch).

44



Objects With Parameters

� Above relies crucially on closed terms.j= 8x:A:F i� j= [M=x]F for all M s.t. � `� M : Aj= 9x:A:F i� j= [M=x]F for some M s.t. � `� M : Aj= >� Must generalize to allow proof of deduction theorem in �rst-order logic(parameters) or with arbitrary assumptions (hypotheses).If �; A ` C then � ` A� C.

45



Informal Proof
� New Case: H = hyp�0; C| {z }= � ; A ` C

1 �0; C ` C � (A� C) (K)2 �0; C ` C (hyp)3 �0; C ` A� C MP 1 2ded (�u:hilA:w) = mp kwwhere w:hil pCq in context?

46



Formulation in LF

� Recall: Contexts are mapped to contexts.� For � = A1; : : : ; An, p�q = u1:pA1q; : : : ; un:pAnq

� If H�; A ` C then p�q `� pHq : hil pAq! hil pCq.

� As a statement about encoding:For all � of the form u1:hilA1; : : : ; un:hilAn and objects H suchthat � `� H : hilA! hilC, there exists an object D such that� `� D : hil (impAC).

47



Extension of Meta-Logic

� Inductive description of classes of contexts.� Example: �H = � j �H; u:hilA (for some A). Write � 2 �H .� Allow outermost quanti�cation over inductively de�ned contexts.� Fix signature � and context class �X .j= F i� � j= F for all � 2 �X� j= 8x:A:F i� � j= [M=x]F for all M s.t. � `� M : A� j= 9x:A:F i� � j= [M=x]F for some M s.t. � `� M : A� j= >

48



Extension of Realizors

� Cannot use parameters x at the top-level, because the context may beempty!� Two ways to introduce parameters1. In the case that a given term is a parameter.2. Explicit �x:A.

49



Proof of Deduction Theorem Revisited

� �H ::= � j �H; w:Aded (�u:hilA:w) = mp kwded (�u:hilA: u) = mp (mp s k) kded (�u:hilA: k) = mp k kded (�u:hilA: s) = mp k sded (�u:hilA:mp (H1 u) (H2 u)) = mp (mp s (dedH1)) (dedH2)� At run-time, w will match one of many possible parameters wi.� Need to cross-reference parameters with context-class de�nition.
50



Impact on Veri�cation

� Type-checking. Verify that any parameters introduced lie within thespeci�ed context class. Context class inclusion when using lemmas.� Termination. Not a�ected.� Coverage. Verify that in addition to signature elements, all possibleparameter cases are covered.� Treats only context properties stable under exchange, weakening,contraction (hypothetical judgments).

51



Deduction Theorem in First-Order Logic

� Case:
H = H1�; A ` [a=x]C1 UGa�; A ` 8x:C1where a not in �, A, or C.1 � ` A� [a=x]C1 Ind. hyp. on H12 � ` 8x:A� C1 UGa 13 � ` (8x:A� C1)� (A� 8x:C1) F �24 � ` A� 8x:C1 MP 3 2

52



Representation in Meta-Logic

� Recall: ug : �C1:i ! o: (�a:i: hil (C1 a)) ! hil (forall (�x:i: C1 x)).� Declare �D = � j �D; w:hilA j �D; a:i� New case:ded (�u:hilA: ug (�a:i: C1 u a)) = ug (�a:i:mp f2 (ded (�u:hilA:C1 u a)))� Evaluation of �x:A:P1. creates a new actual parameter x for x,2. evaluates [x=x]P to V ,3. returns the abstraction �x:A: V .

53



The � Operator
� Slightly more complicated when several LF objects are returned(8 : : :89 : : : 9)� Final complication: subordination.� We do not abstract, if the �-bound variable cannot occur in the result.

54



Example: Counting Axiom Occurrences

nat : type: zero : nat: one : nat:plus : nat ! nat ! nat

� �a ::= � j �a; a:i [or �D ::= � j �D; a:i j �D; w:hilA].

� cnt 2 8H:hilA: 9N :nat:>.cnt k = one. . . (other axioms) : : :cnt (mpH1H2) = plus (cntH1) (cntH2)cnt (ug (�a:i:H a)) = �a:i: cnt (H a)[ cntw = zero ] 55



Subordination
� If A / B then a term of type B can not occur as a subterm of a canonicalterm of type A.� Extracted statically from signature.� Determines if �-abstraction is constructed from �.� Also important in termination checking [Rohwedder & Pf'96][t=x]A < 8x:i: A in �rst-order logic (i / o)[B=p]A 6< 8p:i: A in higher-order logic (o 6/ o)� Also needed for equational reasoning in LF [Virga'99].� In (predicative) inductive theories, given by the order of de�nition.

56



Status and Implementation

� Theory of meta-logic recently completed [Sch�urmann '00].� Prototype of theorem prover exists (not yet released, but available).� No tactics(!), development in de�nition/lemma/theorem style.� Work on various extensions in progress.

57



Some Twelf ExperimentsExperiment TimeCCC to �-calculus 1.099CPM completeness 1.134(Horn) LP soundness 4.501(Horn) LP completeness 0.195Mini-ML type preservation 0.799Mini-ML evaluation/reduction 25.546Deduction theorem 0.322�Axiomatic to natural deductions�Natural to axiomatic deductions�Intuitionistic cut elimination�Classical cut elimination�Sequent calculus to natural deduction�Natural deduction to sequent calculus�Church-Rosser theoremLinux 2.30, SML/NJ 110, Twelf 1.2 (�Twelf 1.5) on Pentium II (300 Mhz)58



Assessment I
� Must provide: induction order, search depth.� Derives its power from dependent types and separation of powers.� Excellent, if you know the proof ahead of time.� More Information: http://www.cs.cmu.edu/~twelf/

59



Assessment II
� Not robust with respect to failure.� Naive strategy (�lling ! splitting ! recursion).� Filling sometimes a bottle-neck (anticipate lemmas).� Too dependent on number of expression constructors (orthogonality?).� Ine�cient implementation (bottom-up vs. top-down).� More termination orders and reduction properties.� Proof terms (separate checking, interactive vs. automatic).

60



Other Future Work

� Constraints (currently, only in operational semantics of Twelf). [Virga'99]� Linearity (reason about state). [Cervesato & Pf.'96]� Order (reasoning about sequencing). [Polakow & Pf.'99]� Proof compression. [Necula'98] [Sch�urmann & Pf.'98]� Compilation. [Nadathur'99]

61



Related Work: FOLDN

� FOLDN [McDowell & Miller'97] [McDowell'97]� Logical framework 
exible (HHF, linear HHF).� Meta-logic richer, less automation (at present).� Induction over natural numbers (rather than termination).� De�nitional re
ection (rather than splitting).� Does not inherit HHF theorem proving.� Does not inherit reasoning about hypotheses (modeled as lists).� Does not inherit reasoning about parameters (nested abstractions?)
62



Related Work: Maude

� Maude [Basin, Clavel & Meseguer'99].� Logical framework based on rewriting logic.� Encodings are �rst-order.� Use as meta-logical framework from{ re
ection (representation of system in itself),{ initiality (satis�es inductive properties).� Not yet as deeply explored.

63



Related Work: Inductive Encodings

� FS0, Isabelle/HOL, Coq, LEGO, HOL, Nuprl, Agda.� Except for FS0, not explicitly designed as meta-logical framework.� Only inductive encodings and reasoning{ No higher-order abstract syntax.{ No hypothetical or parametric meta-reasoning.� Theorem proving generally based on tactics.� Less automation, di�erent \look & feel".� Numerous experiments.

64



Summary
� Presented principles underlying LF and similar logical frameworks.{ Higher-order abstract syntax.{ Judgments as types.{ Hypothetical and parametric judgments.� Explored design of meta-logical framework of LF encodings.{ Reasoning about closed objects.{ Reasoning about hypotheses and parameters.� Sketched automation techniques in Twelf.

65


