On a Logical Foundation for Explicit Substitutions

Frank Pfenning

Carnegie Mellon University

Joint Invited Talk

Typed Lambda Calculi and Applications (TLCA'07)

Rewriting Techniques and Applications (RTA'07)

Paris, France, June 26-28, 2007

Some joint work with Aleks Nanevski and Brigitte Pientka

Work in progress!

Apologia

- No specific references. See:
 - Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual Modal Type Theory. ToCL 2007, to appear.
 - Delia Kesner. The Theory of Calculi with Explicit
 Substitutions Revisited. Technical Report, October 2006.
- No theorems yet in dependent case
 - Substitution and identity theorems only up to k=2
 - Cover here only non-dependent (simply typed) case

Motivation

- Logical Frameworks: explicit substitutions
 - Explicit substitutions used internally
 - Understand their meaning, properties
 - Make available for specifications?
- Logical Frameworks: meta-variables
 - Meta-variables used internally, for search
 - Understand their meaning, properties
 - Make available for specifications?
- Are explicit substitutions purely operational?

Preview of Answers

- Substitutions are judgmental
- Explicit substitutions are categorical
- Reductions are propositional
- Meta-variables and explicit substitutions are tightly linked

Outline

- Hypothetical judgments and substitutions
- Meta-variables and simultaneous substitutions
- A multi-level system with stratified substitutions

Judgments and Propositions

- Judgments are objects of knowledge, subject to inference
- Propositions are subjects of truth (and related judgments)
- Example judgments:
 - A true
 - A valid (modal logic truth in all worlds)
 - A true at time t (temporal logic)
 - A false (classical logic)
 - M:A (type theory)
- Example propositions: $A \wedge B$, $A \supset B$, $\exists x. A$, ...

Meaning Explanations

- Meaning of logical connectives is determined by their verifications (= canonical proofs)
- Defined by introduction and elimination rules for truth
 - Introduction: how to verify truth

$$\frac{A \ true \quad B \ true}{A \wedge B \ true} \wedge I$$

Elimination: how to use truth

$$\frac{A \wedge B \ true}{A \ true} \wedge E_1 \qquad \frac{A \wedge B \ true}{B \ true} \wedge E_2$$

Computation and Reduction

- Computation reduces an arbitrary proof to a verification
- Reduction step where introduction is followed by elimination

$$\frac{A \ true \quad B \ true}{A \ A \ true} \land I$$

$$\frac{A \land B \ true}{A \ true} \land E_1 \qquad \longrightarrow \quad A \ true$$

- Reduces complexity of propositions in proof
- Verifications have subformula property
 - Necessary for well-founded meaning explanation

Proof Terms

- Proof terms M record evidence for truth
- Analytic judgment M:A (M is a proof of A true)

$$\frac{M:A \quad N:B}{\langle M,N\rangle:A\wedge B}\wedge I$$

$$\frac{M: A \wedge B}{\pi_1 M: A} \wedge E_1 \qquad \frac{M: A \wedge B}{\pi_2 M: B} \wedge E_2$$

Computation via reduction on proof terms

$$\pi_1 \langle M, N \rangle \longrightarrow M$$

$$\pi_2 \langle M, N \rangle \longrightarrow N$$

Incomplete Deductions

Incomplete deductions map proofs of open leaves to proofs of conclusion

$$\frac{A \wedge (B \wedge C) \ true}{\frac{B \wedge C \ true}{B \ true} \wedge E_1} \wedge E_2$$

- Complete deductions by substituting proofs for open leaves
- Write as hypothetical judgment

$$A \wedge (B \wedge C) \ true \vdash B \ true$$

Variables

Label hypotheses with proof term variables

$$\frac{x: A \wedge (B \wedge C)}{\pi_2 x: B \wedge C} \wedge E_2$$

$$\frac{\pi_2 x: B \wedge C}{\pi_1 \pi_2 x: B} \wedge E_1$$

Proof terms as evidence for hypothetical judgments

$$x:A \wedge (B \wedge C) \vdash \pi_1 \pi_2 x : B$$

Filling in a proof substitutes for a variable

Structural Principles

First form of hypothetical judgment

$$\underbrace{x_1:A_1,\ldots,x_n:A_n}_{\Gamma}\vdash M:C$$

- All x_i distinct; subject to tacit renaming (including M)
- Hypothesis rule (judgmental, not propositional)

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \text{ hyp}$$

Weakening principle (leaving M unchanged)

If
$$\Gamma \vdash M : A$$
 then $\Gamma, x : B \vdash M : A$

Substitution Principle

Substitution principle (judgmental, not propositional)

```
If \Gamma \vdash M : A
and \Gamma, x : A \vdash N : C
then \Gamma \vdash [M/x]N : C
```

- Substitution operation [M/x]N is *compositional* on N
 - Returns substitution-free term N'
 - [M/x]x = M
 - Corresponds to supplying missing proof
- Principle is open-ended
- Slightly more general weakening and substitution elided

Compositionality

Extend definition of substitution compositionality

$$[M/x]\langle N_1, N_2 \rangle = \langle [M/x]N_1, [M/x]N_2 \rangle$$

$$[M/x]\pi_1 N = \pi_1 [M/x]N$$

$$[M/x]\pi_2 N = \pi_2 [M/x]N$$

- Equations can be oriented as rewrite rules
- Equality (judgmental) vs reduction (propositional)

$$\pi_1 \langle N_1, N_2 \rangle \longrightarrow N_1$$
 $\pi_2 \langle N_1, N_2 \rangle \longrightarrow N_2$

Propositional Implication

• Define *implication* $A \supset B$ from hypothetical judgment

$$\frac{\Gamma, A \ true \vdash B \ true}{\Gamma \vdash A \supset B \ true} \supset I \qquad \frac{\Gamma \vdash A \supset B \ true}{\Gamma \vdash B \ true} \supset E$$

- Reflect hypothetical reasoning in propositions
- Implications can be nested arbitrarily

$$((A \supset B) \supset A) \supset A$$

Computation and Substitution

Proof term assignment

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . \ M : A \supset B} \supset I \qquad \frac{\Gamma \vdash M : A \supset B \quad \Gamma \vdash N : A}{\Gamma \vdash M \ N : B} \supset E$$

Computation via proof reduction

$$(\lambda x. N) M \longrightarrow [M/x]N$$

- Proof reduction via (auxiliary) substitution operation
- Substitution is capture-avoiding (via tacit α -conversion)

$$[M/x](\lambda y. N) = \lambda y. [M/x]N$$
 for $x \neq y$ and $y \notin FV(M)$

Summary

- Hypothetical judgments from incomplete proofs
- Substitution operation [M/x]N for hypothesis labeled x
- Reflects substitution principle for hypothetical judgments
- Compositional and open-ended
- Substitution (judgmental) vs. reduction (propositional)
- Implication $A \supset B$ internalizes hypothetical judgment
- Reduction via substitution $(\lambda x. N) M \longrightarrow [M/x]N$

Incomplete Proofs, Revisited

Leaves of incomplete proofs are hypothetical judgments

$$\frac{A \land B, A \supset C \vdash C}{A \land B \vdash B} \supset I$$

$$\frac{A \land B \vdash B \land (A \supset C) \supset C}{A \land B \vdash B \land ((A \supset C) \supset C)} \land I$$

$$\bullet \vdash (A \land B) \supset B \land ((A \supset C) \supset C)$$

• Variables x:A are insufficient to represent such obligations

Meta-Variables

• Introduce *meta-variables* U with $\Gamma \vdash U : A$

$$\frac{x:A \land B, y:A \supset C \vdash V:C}{x:A \land B \vdash U:B} \supset I$$

$$\frac{x:A \land B \vdash U:B}{x:A \land B \vdash \lambda y. V:(A \supset C) \supset C} \land I$$

$$\frac{x:A \land B \vdash \langle U, \lambda y. V \rangle:B \land ((A \supset C) \supset C)}{\bullet \vdash \lambda x. \langle U, \lambda y. V \rangle:(A \land B) \supset B \land ((A \supset C) \supset C)} \supset I$$

• Write $U:A[\Gamma]$ for $\Gamma \vdash U:A$ in hypothetical judgment

$$U: B[x:A \land B],$$

$$V: C[x:A \land B, y:A \supset C]$$

$$\vdash \lambda x. \langle U, \lambda y. V \rangle : (A \land B) \supset B \land ((A \supset C) \supset C)$$

Some Problems

Substitution for meta-variables would capture variables

$$U: B[x:A \land B],$$

$$V: C[x:A \land B, y:A \supset C]$$

$$\vdash \lambda x. \langle U, \lambda y. V \rangle : (A \land B) \supset B \land ((A \supset C) \supset C)$$

- $[\pi_2 x/U](\lambda x. \langle U, \lambda y. V \rangle) = \lambda x. \langle \pi_2 x, \lambda y. V \rangle$?
- Lack of α-conversion(!)
- Poor interaction with ordinary substitution, β -reduction
- Closedness restriction
 - Substitution for $U:A[\Gamma]$ can *only* use variables in Γ
 - Can it use other meta-variables?

Hypothetical Judgments, Revisited

Distinguish meta-variables and variables

$$\underbrace{U_1:B_1[\Psi_1],\ldots,U_m:B_m[\Psi_m]}_{\Delta};\underbrace{x_1:A_1,\ldots,x_n:A_n}_{\Gamma}\vdash M:C$$

- Contexts Γ , Ψ_i
- Meta-context ∆
- Hypothesis rule (as before)

$$\frac{x:A \in \Gamma}{\Delta; \Gamma \vdash x:A} \text{ hyp}$$

Meta-Hypothesis Rule

How to use meta-variables?

$$\frac{U:A[\Psi]\in\Delta}{\Delta;\Gamma\vdash ?:A} \text{ mhyp}$$

- Meta-variable U can only use variables in Ψ
- Term "?" can only use variables in Γ
- Solution: supply simultaneous substitution σ for variables in Ψ , using variables in Γ and meta-variables in Δ

$$\frac{U:A[\Psi]\in\Delta\quad\Delta;\Gamma\vdash\sigma:\Psi}{\Delta;\Gamma\vdash U[\sigma]:A} \text{ mhyp}$$

Suspensions

- Meta-variable $U:A[\Psi]$ may mention variables in Ψ
- $\sigma:\Psi$ substitutes terms for these variables
- Suspension $U[\sigma]:A$ cannot be eliminated until U is known

Simultaneous Substitutions

Substitutions match context structurally

$$\frac{\Delta; \Gamma \vdash \sigma : \Psi \quad \Delta; \Gamma \vdash M : A}{\Delta; \Gamma \vdash (\bullet) : (\bullet)} \qquad \frac{\Delta; \Gamma \vdash \sigma : \Psi \quad \Delta; \Gamma \vdash M : A}{\Delta; \Gamma \vdash (\sigma, M) : (\Psi, x : A)}$$

- Write (M_1, \ldots, M_m) for $(M_1/x_1, \ldots, M_m/x_m)$ for brevity
- Example with identity substitutions and renamed variables

$$U: B[u:A \land B],$$

$$V: C[v:A \land B, w:A \supset C]$$

$$\vdash \lambda x. \langle U[x], \lambda y. V[x, y] \rangle : (A \land B) \supset B \land ((A \supset C) \supset C)$$

• Remaining proof obligation in type of U and V

Explicit Substitutions

- Substitutions σ are now *inevitably* part of terms
- Substitutions must be explicit
- When we substitute term M for meta-variable U in suspension $U[\sigma]$, need to compute $M[\sigma]$
- Some questions:
 - How do we define $M[\sigma]$?
 - How do we substitute for meta-variables U?
 - How do we relate [M/x] and $[\sigma]$?
 - How do we understand the logical meaning?

Definition of Substitution

Typing guide

$$\frac{\Delta; \Psi \vdash M : A \quad \Delta; \Gamma \vdash \sigma : \Psi}{\Delta; \Gamma \vdash M[\sigma] : A}$$

Propagation of substitution

$$\langle M, N \rangle [\sigma] = \langle M[\sigma], N[\sigma] \rangle$$

 $(\pi_i M)[\sigma] = \pi_i M[\sigma]$
 $(\lambda x. M)[\sigma] = \lambda x. M[\sigma, x/x]$
 $(M N)[\sigma] = (M[\sigma])(N[\sigma])$
 $x[\sigma] = M \quad \text{for } M/x \in \sigma$
 $(U[\tau])[\sigma] = U[\tau[\sigma]]$

Composition of Substitution

Typing guide

$$\frac{\Delta; \Psi \vdash \tau : \Theta \quad \Delta; \Gamma \vdash \sigma : \Psi}{\Delta; \Gamma \vdash \tau[\sigma] : \Theta}$$

Composition of substitutions

$$(\bullet)[\sigma] = (\bullet)$$

$$(\tau, M)[\sigma] = (\tau[\sigma], M[\sigma])$$

Substitution for Meta-Variables

Substitution principle

```
If \Delta; \Psi \vdash M : A and \Delta, U : A[\Psi]; \Gamma \vdash N : C then \Delta; \Gamma \vdash [(\Psi, M)/U]N : C
```

- Close $(\Psi. M)$ for variable naming hygiene
- Compositional, with two remarks:
 - $[(\Psi.M)/U](U[\sigma])=M[\sigma'/\Psi]$ where $\sigma'=[(\Psi.M)/U]\sigma$ and σ'/Ψ renames domain
 - $[(\Psi.M)/U](\lambda x.N) = \lambda x.[(\Psi.M)/U]N$ since no capture possible $(\Psi.M$ closed)

Example

Recall example

$$U: B[u:A \land B],$$

$$V: C[v:A \land B, w:A \supset C]$$

$$\vdash \lambda x. \langle U[x], \lambda y. V[x, y] \rangle : (A \land B) \supset B \land ((A \supset C) \supset C)$$

- Apply $[(v, w. w (\pi_1 v))/V]$
- Crucial step:

$$\lambda x. \langle U[x], \lambda y. [(v, w. w (\pi_1 v))/V]V[x, y] \rangle$$

$$= \lambda x. \langle U[x], \lambda y. (w (\pi_1 v))[x/v, y/w] \rangle$$

$$= \lambda x. \langle U[x], \lambda y. y (\pi_1 x) \rangle$$

Single Substitution, Revisited

- For $\Gamma = (x_1:A_1,\ldots,x_n:A_n)$ define $\mathrm{id}_{\Gamma} = (x_1/x_1,\ldots,x_n/x_n)$
- For Γ , $x:A \vdash N:C$

$$(\lambda x. N) M \longrightarrow N[\mathrm{id}_{\Gamma}, M/x]$$

- Problems:
 - Γ is unknown at redex
 - Terms no longer invariant under weakening
- Can unify at lower level of abstraction
 - Use polymorphic identity substitution
 - Use de Bruijn indexes and shifts

Categorical Judgments

- Logically, $U:A[\Psi]$ reads "A valid relative Ψ "
- Without proof terms, write judgment $A \ valid[\Psi]$
 - $A \ true$ in every world where Ψ is true
 - Defined by single judgmental rule

$$\frac{\Delta; \Psi \vdash A \ true}{\Delta; \Gamma \vdash A \ valid[\Psi]}$$

- Validity is categorical with respect to truth
 - Γ may not be used to prove $A\ true$

Logical Meaning

• Internalize judgment $A \ valid[\Psi]$ as $\emph{proposition}\ [\Psi]A$

$$\frac{\Delta; \Psi \vdash A \ true}{\Delta; \Gamma \vdash [\Psi] A \ true} \ []I \ \frac{\Delta; \Gamma \vdash [\Psi] A \ true \ \Delta, A[\Psi]; \Gamma \vdash C \ true}{\Delta; \Gamma \vdash C \ true} \ []E$$

- Multiple-world interpretation
 - $[\Psi]A$ is true if A is true in every world where Ψ is true

 - $[\bullet]A$ means A is *necessarily true* (intuitionistic S4)
- Substitutions $\Gamma \vdash \sigma : \Psi$ are *witnesses to accessibility* from worlds where Γ is true to worlds where Ψ is true

Summary, Two-Level System

- Incomplete proofs of hypothetical judgments necessitate meta-variables
- Uses of meta-variables require explicit substitutions in terms
- Substitutions witness accessibility under multiple world semantics
- Two-level system
 - Ordinary variables
 - Meta-variables, under context of ordinary variables

Abstracting Meta-Variables

Propositional reflection of meta-variables

$$\frac{\Delta, u: A[\Psi]; \Gamma \vdash M : B}{\Delta; \Gamma \vdash \lambda U. M : [\Psi]A \to B} \to I$$

$$\frac{\Delta; \Gamma \vdash M : [\Psi]A \to B \quad \Delta; \Psi \vdash N : A}{\Delta; \Gamma \vdash M (\Psi. N) : B} \to E$$

New reduction

$$(\lambda U.M)(\Psi.N) \rightarrow [(\Psi.N)/U]M$$

Incomplete Proofs, Rerevisited

- Now open leaves have form Δ ; $\Gamma \vdash$? : A
- Need meta²-variables U²
- New meta²-hypothesis rule

$$\frac{U^2:A[\Sigma;\Psi]\in\Delta^2\quad\Delta^2;\Delta;\Gamma\vdash(\sigma^2;\sigma):(\Sigma;\Psi)}{\Delta^2;\Delta;\Gamma\vdash U^2[\sigma^2;\sigma]:A}\,\mathsf{m}^2\mathsf{hyp}$$

- Not practical
- Not expressively complete unless we close system under formation of meta-variables at any level

A Multi-Level System

- Unify in a multi-level system
- Models open derivations at any level
- Variables x^k at level $k \ge 0$
 - Ordinary variables x^0 for k=0
 - Meta-variables x^1 for k=1 (so far: U)
- Unified contexts

$$\Delta ::= \bullet \mid \Delta, x^k : A[\Psi^k]$$

- Ψ^k means n < k for all declarations $x^n : A[\Gamma^n]$ in Ψ
- For declarations $x^0: A[\Psi^0]$, $\Psi^0 = (\bullet)$ is forced!

Variables and Substitutions

Unified hypothesis rule

$$\frac{x^k : A[\Psi^k] \in \Delta \quad \Delta \vdash \sigma : \Psi^k}{\Delta \vdash x[\sigma] : A} \text{ hyp}$$

Substitution typing

$$\frac{\Delta \vdash \sigma : \Psi^k \quad \Delta|_n, \Gamma^n \vdash M : A \quad (n < k)}{\Delta \vdash (\sigma, (\Gamma^n, M)) : (\Psi^k, x^n : A[\Gamma^n])}$$

- $\Delta|_n$ keeps only y^m for $m \geq n$.
 - Enforces categorical restriction

Abstraction and Application

Typing rules

$$\frac{\Delta, x^k : A[\Psi^k] \vdash M : B}{\Delta \vdash \lambda x^k . M : [\Psi^k] A \to B} \to I$$

$$\frac{\Delta \vdash M : [\Psi^k] A \to B \quad \Delta|_k, \Psi^k \vdash N : A}{\Delta \vdash M (\Psi^k . N) : B} \to E$$

- $[(\bullet)^0]A \to B \text{ as } A \supset B$
- $[(\bullet)^1]A \to B$ as $\square A \supset B$ in IS_4
- $[(\bullet)^2]A \to B$ as $\Box^2 A \supset B$ where $\Box^2 A$ true if A true without using assumptions about truth or validity

Substitution Principle

- Write σ^k if $\Delta \vdash \sigma : \Psi^k$
- $M[\sigma^k]$ substitutes
 - for all variables in M of level n < k
 - for *no variables* in M of level $n \ge k$
- Typing guide

$$\frac{\Delta|_{k}, \Psi^{k} \vdash M : A \quad \Delta \vdash \sigma : \Psi^{k}}{\Delta \vdash M[\sigma^{k}] : A}$$

Substitution Definition

Critical cases, extended compositionally

$$(x^n[\tau^n])[\sigma^k] \qquad = \quad M[\tau^n[\sigma^k]] \qquad \qquad \text{for } n < k,$$

$$M/x^n \in \sigma$$

$$= \quad x^n[\tau^n[\sigma^k]] \qquad \qquad \text{for } n \ge k$$

$$(\lambda x^n.M)[\sigma^k] \qquad = \quad \lambda x^n.M[\sigma^k,x/x] \qquad \qquad \text{for } n < k$$

$$= \quad \lambda x^n.M[\sigma^k] \qquad \qquad \text{for } n \ge k$$

$$(M(\Gamma^n.N))[\sigma^k] \qquad = \quad (M[\sigma^k])(\Gamma^n.N[\sigma|_n,\mathrm{id}_\Gamma^n]) \qquad \text{for } n < k$$

$$= \quad (M[\sigma^k])(\Gamma^n.N) \qquad \qquad \text{for } n \ge k$$

Substitution Composition

Typing guide

$$\frac{\Delta|_{k}, \Psi^{k} \vdash \tau : \Theta \quad \Delta \vdash \sigma : \Psi^{k}}{\Delta \vdash \tau[\sigma^{k}] : \Theta}$$

Definition

$$(\tau, (\Gamma^n. M)/x^n)[\sigma^k] = (\tau[\sigma], (\Gamma^n. M[\sigma|_n, \mathrm{id}_{\Gamma}^n])/x^n)$$
 for $n < k$
= $(\tau[\sigma], (\Gamma^n. M)/x^n)$ for $n \ge k$

Single Substitutions, Rerevisited

Typing guide

$$\frac{\Delta|_{k}, \Psi^{k} \vdash N : B \quad \Delta, x : B[\Psi^{k}] \vdash M : A}{\Delta \vdash [(\Psi^{k}, N)/x^{k}]M : A}$$

- Compositional, similar to simultaneous substitution
- Show only one case

$$[(\Psi^k.N)/x^k](x^k[\sigma^k]) = N[\sigma_1^k/\Psi^k]$$
 for
$$\sigma_1^k = [(\Psi^k.N)/x^k](\sigma^k)$$

Example, Modified and Revisited

• Omit suspension $[(\bullet)^0]$ and closure $(\bullet)^0$.

$$s^{1}: B[u^{0}:A \wedge B],$$

 $t^{1}: C[v^{0}:A, w^{0}:A \supset C]$
 $\vdash \lambda x^{0}. \langle s^{1}[x^{0}], \lambda y^{0}. t^{1}[\pi_{1}x^{0}, y^{0}] \rangle : (A \wedge B) \supset B \wedge ((A \supset C) \supset C)$

Simultaneous substitution at level 2

$$\sigma^2 = ((u^0. \pi_2 u^0)/s^1, (v^0, w^0. w^0. w^0)/t^1)$$

Crucial part

$$(t^{1}[\pi_{1}x^{0}, y_{0}])[\sigma^{2}, x^{0}/x^{0}, y^{0}/y^{0}]$$

$$= (w^{0} v^{0})[\pi_{1}x^{0}/v^{0}, y^{0}/w^{0}]$$

$$= y^{0}(\pi_{1}x^{0})$$

Summary, Multi-Level System

- Uniform system of meta k -variables x^k
 - Contextual type $x^k : A[\Psi^k]$
 - Closed with respect to variables y^n for n < k
 - Suspensions $x^k[\sigma^k]$ where $\sigma^k: \Psi^k$
- Level 0: ordinary variables
- Level 1: meta-variables
- Variables at all levels can be abstracted and applied
- Satisfies α -conversion, subject reduction

Ongoing Work, Theory

- Identity principle, subject expansion
- Extension to dependent types
 - In $\Delta, x^k : A[\Psi^k]$, A can depend on variables in $\Delta|_k$ and Ψ^k
 - If Δctx then $\Delta|_k ctx$
 - Conjecture substitution and identity properties
 - Checked for k=2 (contextual modal type theory)
- Polymorphism? Substitution variables?
- Structural vs nominal contexts

Ongoing Work, Pragmatics

- Integrating single-variable and simultaneous substitution
- De Bruijn representation
 - Uniform numbering of all levels(?)
 - $\Delta|_k$ marks variables x^n for n < k as invisible
- Level annotations and reconstruction

Summary

- A logical explanation of
 - Meta-variables
 - Explicit substitutions
- Methodology
 - Separating judgments from propositions
 - Categorical judgments
- Uniform presentation of meta^k-variables and substitutions
- Dependent version conjectured
- Do not think of explicit substitutions as something purely operational!