
Three Applications of Strictness
in the Efficient Implementaton

of Higher-Order Terms

Frank Pfenning

Workshop on Implementation of Logic

Réunion Island, France

November 11, 2000

Joint work with Carsten Schürmann and Kevin Watkins
1

Outline

• Notational Definitions

• Strictness

1 Unification with Definitions

2 Matching and Rewriting

3 Syntactic Redundancy Elimination

• Conclusion

2

Notational Definitions

• Common in mathematical practice

• Some examples:

¬A = A ⊃ ⊥

(A ≡ B) = (A ⊃ B) ∧ (B ⊃ A)

∃!x.A(x) = ∃x.A(x) ∧ ∀y. A(y) ⊃ x .
= y

A→B = Πx:A.B where x not free in B

nat = µα.1 + α

zero = fold (inl ?)

• Based on higher-order abstract syntax, not concrete syntax

[Griffin’89]

3

Derived Rules of Inference as Notational Definitions

• andelr D = andel (ander D)

D

A ∧ (B ∧ C)
∧ELR

B =

D

A ∧ (B ∧ C)
∧ER

B ∧ C ∧EL
B

• trans D E = impi (λu. impe E (impe D u))

D

A ⊃ B

E

B ⊃ C
trans

A ⊃ C = . . .

4

Other Kinds of Definitions

• By cases pred(0) = 0, pred(n+ 1) = n

• Recursive double(0) = 0, double(n+ 1) = double(n) + 2

• Syntactic sugar [1,2,3] = 1::2::3::nil

• Admissible rules of inference

• Sometimes, these may be thought of as notational

definitions at a different semantic level.

pred = lam (λx. case x 0 (λn. n))

5

Setting

• Logical framework or type theory (LF, Coq, Isabelle, Nuprl)

• All support notational definitions

• Framework tasks: (in Twelf system based on LF)

– representation and checking (LF)

(terms, formulas, proofs, . . .)

– search and meta-programming (Elf)

(theorem proving, logic programming, proof

transformation, . . .)

– meta-theorem proving (Twelf)

(logical interpretations, soundness & completeness, type

preservation, . . .)

6

Core Operations

• Type checking Γ `M : A

requires convertibility Γ `M .
= N : A.

• Search Γ ` ? : A and type inference

require unification ∃θ.Γ ` θM .
= θN : θA

• Meta-theorem proving splits cases

(also requiring unification).

• All of these require β-reduction

(use deBruijn indices and explicit substitutition

[Dowek,Hardin,Kirchner,Pf’96]).

7

Language

Types A ::= aM1 . . .Mn | A→ A | Πx:A.A

Objects M ::= h M1 . . .Mn | λx:A.M

Heads h ::= x variables

| c constructors

| d defined constants

Signatures Σ ::= · | Σ, c:A | Σ, d:A = M | . . .

• Type-checking is easy except for convertibility.

• δ(d) = M if d:A = M in Σ

• Will omit types.

• Consider only βη-long normal forms.

8

Semantics of Definitions

• Definitions must be semantically transparent.

• For human interface: preserve definitions!

• For efficiency: preserve definitions!

• How do we reconcile these?

9

βηδ-Convertibility

• Huet’s algorithm for definitions in (early?) Coq

(ignoring some issues of control):

c M
.
= c N ⇒ M

.
= N

c M
.
= c′ N fails for c 6= c′

d M
.
= c N ⇒ δ(d) M

.
= c N

c M
.
= d N ⇒ c M

.
= δ(d) N

d M
.
= d N ⇒ M

.
= N or

d M
.
= d′ N for d 6= d′ or prev. case fails

⇒ δ(d) M
.
= d′ N

else d M
.
= δ(d′) N

else δ(d) M
.
= δ(d′) N

10

Example: Must Expand Definitions

• k = λx. λy. x

k 1 2
.
= k 1 3 ⇒ 1

.
= 1 ∧ 2

.
= 3

fails

⇒ δ(k) 1 2
.
= k 1 3

⇒ 1
.
= k 1 3

⇒ 1
.
= δ(k) 1 3

⇒ 1
.
= 1

• Even identical defined constants need to be expanded.

11

Example: Need Not Expand Definitions

• ¬A= A ⊃ ⊥ (literally: ¬ = λA.A ⊃ ⊥)

¬A0
.
= ¬B0 for A0 6

.
= B0

⇒ A0
.
= B0

fails

⇒ (A0 ⊃ ⊥)
.
= (B0 ⊃ ⊥)

⇒ A0
.
= B0

fails again

• Expanding identical defined constants if often redundant.

12

Analysis of Huet’s Algorithm

• Preserves definitions as much as possible.

• Inefficient mostly during failure.

• Type-checking mostly succeeds.

• Tactic-based search often fails because of constructor

clashes.

• No unification supported!

13

Injectivity

• d is injective if for all appropriate M and N ,

d M
.
= d N implies M

.
= N

• Injectivity of d implies:

whenever M 6 .= N then d M 6 .= d N

• Allows early failure, avoids expansion of definitions.

• k is not injective (must expand).

• ¬ is injective (need not expand).

14

Strictness

• Strictness is a syntactic criterion on δ(d) that guarantees

injectivity.

• A definition d:A = λx. h M is strict if every parameter xi has

at least one strict occurrence in M.

• An occurence of x of the form x y1 . . . yn in M is strict if

1. all heads on the path from the root to the occurrence of

x are either constructors c, strict definitions d, or locally

bound variables y, but not definition parameters xi;

2. y1, . . . , yn are distinct locally bound variables

(x occurs as a pattern variable).

15

Examples Revisited

¬A = A ⊃ ⊥ strict in A

nimp A B = ¬B ⊃ ¬A strict in A and B

(A ≡ B) = (A ⊃ B) ∧ (B ⊃ A) strict in A and B

∃!x.A(x) = ∃x.A(x) ∧ ∀y. A(y) ⊃ x .
= y

∃! = λA:i→ o.∃x.A x ∧ ∀y. A y ⊃ x .
= y

two strict occurrences of A

16

Counterexamples Revisited

k x y = x

no strict occurrence of x or y

π1 C e1 e2 = rew (C(fst〈e1, e2〉)) (C(e1))

no strict occurrences of C, e1 or e2

inst t A = infer (∀ (λx.A x)) (A t)

strict in A, not strict in t

• These are often declared as constructors, not defined.

17

Optimization of Convertibility

• Mark definition as strict if it is strict in all arguments.

• Avoid retry in Huet’s algorithm: commit to

d M
.
= d N ⇒M

.
= N

• Practical value depends on percentage of strict definitions.

• In applications, most definitions are strict.

• Non-strictness mostly for derived rules of inference.

• Find appropriate level for definitions:

k : exp→ exp→ exp

= λx:exp. λy:exp. x not strict

k : exp

= lam(λx:exp. lam(λy:exp. x)) strict

18

Application 1: Unification with Definitions

• Unification derived from convertibility.

• Definitions much harder: strictness indispensible.

• Huet’s algorithm for convertibility incomplete for

unification.

• Example: occurs-check with definitions

Y
.
= k 1 Y

occurs-check fails, but unification should succeed

19

Counterexample: Keeping Definitions

• Consider

k 1 2
.
= k 1 Y ∧ Y .

= 3

⇒ Y
.
= 2 ∧ Y .

= 3

fails

but Y = 3 is the most general unifier!

• Problem: unification of

k 1 2
.
= k 1 Y

succeeds, but unifier is not most general.

• No natural backtrack points as for convertibility.

20

Strict Unification

• Let d be a strict definition, U(E) the set of unifiers of E.

Then

U(d M .
= d N) = U(M .

= N)

from properties of convertibility and substitution.

• Generalized occurs-check: X
.
= h M fails the occurs-check if

there is a strict occurrence of X in M.

• Note: id = λx. x is not strict because otherwise

X = id(id(id X))

would fail the generalized occurs-check.

21

Implementation of Strict Unification

• Definitions are classified as strict or non-strict

(“abbreviations”).

• Strict definitions are preserved as much as possible.

• Non-strict definitions are expanded during parsing.

• Critical cases of algorithm:

d M
.
= c N ⇒ δ(d) M

.
= c N

c M
.
= d N ⇒ c M

.
= δ(d) N

d M
.
= d N ⇒ M

.
= N

d M
.
= d′ N ⇒ δ(d) M

.
= δ(d′) N

for d 6= d′

22

Assessment

• Unification is central in logical framework

(type reconstruction, logic programming and search)

• Strict unification seems to work well in practice.

• Exploits interactions with other features of implementation

(de Bruijn indices, explicit substitutions).

23

Refinements of Strictness

• Refinement (a): strictness per parameter

inst t A = infer (∀ (λx.A x)) (A t)

strict in A, not strict in t

inst t A = infer (∀ (λx.A x)) (A t)

strict in remaining argument A

• Refinement (b): hereditary analysis

inst t A = infer (∀ (λx.A x)) (A t)

strict in t is A = λx.A x is strict in x.

• Context-dependent.

• Practical value questionable: too few non-strict definitions.

24

Application 2: Matching and Rewriting

• Higher-order matching used in several contexts

(functional logic programming, higher-order rewriting,

meta-programming)

• Theorem:

∃θ.Γ ` θM .
= N : A

has unique solutions if every free variable X has one strict

occurrence in M.

• Obtain higher-order patterns if all occurrences must be

strict [Miller’91] [Nipkow’91].

• More general case arises in practice [Virga’99].

• Of interest with and without dependent types.

25

Application 3: Syntactic Redundancy Elimination

• LF representations with dependent types carry significant

redundant information for simplicity of type-checking.

• Inflates proof terms, slows down checking.

• Syntactic redundancy elimination: drop redundant

information, retain decidability of type-checking.

• Important for proof compression

(proof-carrying code [Necula’98], non-linear compression).

• Important for efficient checking and unification with

dependencies.

26

Example

A B ∧I
A ∧B

andi : ΠA.ΠB. pf (A)→ pf (B)→ pf (A ∧B)

• Consider

andi A B D E : pf (A ∧B)

:pf (A) :pf (B)

• A is redundant if D can synthesize its type.

• B is redundant if E and synthesize its type.

• A and B are redundant we know the type of the whole
because A and B occur strict in pf (A ∧B)!

27

Another Example

∀x.A(x)
∀E

A(t)

foralle : Πt:i.ΠA:i→ o. pf (∀(λx.A x))→ pf (A t)

• Consider

foralle t A D : pf (A t)

:pf (∀(λx.A x))

• A is redundant if D can synthesize its type.

• A is not redundant if we only inherit a type

(A is not strict in pf (A t)).

• t is not redundant either way.

28

Bi-Directional Type Checking

• Annotate each constant occurrence as synthesizing ⇑ or
inheriting ↓ a type.

• Annotations are by no means unique.

• Result of strictness analysis.

• Redundant quantifiers are bracketed.

andi↓ : [ΠA.][ΠB.] pf ↓(A)→ pf ↓(B)→ pf ↓(A ∧B)

andi⇑ : [ΠA.][ΠB.] pf ⇑(A)→ pf ⇑(B)→ pf ⇑(A ∧B)

andel↓ : [ΠA.] ΠB. pf ↓(A ∧ B)→ pf ↓(A)

andel⇑ : [ΠA.][ΠB.] pf ⇑(A ∧B)→ pf ⇑(A)

foralle↓ : Πt.ΠA. pf ↓(∀(λx.A x))→ pf ↓(A t)

foralle⇑ : Πt. [ΠA.] pf ⇑(∀(λx.A x))→ pf ⇑(A t)

29

Complex Annotations

ore↓ : [ΠA.][ΠB.][ΠC.]

pf ⇑(A ∨ B)

→(pf ⇑(A)→ pf ↓(C))

→(pf ⇑(B)→ pf ↓(C))→ pf ↓(C)

• Generally, no best annotation (depends on usage).

• Strictness is critical.

• Hand-crafted annotations based on knowledge about object

theory may be best.

• Automatic annotations for second-order case practical

(non-linear proof size compression in LFi [Necula’98]).

30

Avoiding Redundant Unification

• Maintain invariant that in

∃θ.Γ ` θM .
= θN : θA

we have

Γ `M : A and Γ ` N : A

• Then we don’t need to unify inherited arguments.

• Empirical study: 50% improvement in logic programming

efficiency of 13 case studies [Michaylov & Pf’93].

• No gain for simple types.

31

Summary

• Strictness, motivated from notational definitions

1 unification with definitions

2 matching and rewriting (with or without definitions)

3 proof compression (with or without definitions)

• Further empirical evaluation?

• Refined analysis?

32

