Three Applications of Strictness
in the Efficient Implementaton
of Higher-Order Terms

Frank Pfenning

Workshop on Implementation of Logic
Réunion Island, France
November 11, 2000

Joint work with Carsten Schurmann and Kevin Watkins

Outline

e Notational Definitions

e Strictness

1 Unification with Definitions

2 Matching and Rewriting

3 Syntactic Redundancy Elimination

e Conclusion

Notational Definitions

e Common in mathematical practice

e Some examples:

A = ADL
(A=B) = (ADB)AN(BDA)
Jlx. A(x) = dz. A(x) A\Vy.A(y) Dx =y
A—B = Tllz:A.B where = not free in B
nat = pa.l + «
zero = fold (inl x)

e Based on higher-order abstract syntax, not concrete syntax
[Griffin'89]

Derived Rules of Inference as Notational Definitions

e andelr D = andel (ander D)

D
D AN (BAC)
B LR _ B L

e trans D E = impi (Au.impe E (impe D u))

D E

ADB B>OC
ASC trans _

Other Kinds of Definitions

e By cases pred(0) = 0, pred(n+ 1) =n
e Recursive double(0) = 0O, double(n + 1) = double(n) + 2
e Syntactic sugar [1,2,3] = 1::2::3::n1l

e Admissible rules of inference

e Sometimes, these may be thought of as notational
definitions at a different semantic level.

pred = lam (Az. case x 0 (An.n))

Setting

e Logical framework or type theory (LF, Coq, Isabelle, Nuprl)
e All support notational definitions

e Framework tasks: (in Twelf system based on LF)

— representation and checking (LF)
(terms, formulas, proofs, ...)

— search and meta-programming (EIf)
(theorem proving, logic programming, proof
transformation, ...)

— meta-theorem proving (Twelf)
(logical interpretations, soundness & completeness, type
preservation, ...)

Core Operations

e Type checking VM : A
requires convertibility ' = M = N : A.

e Search ' 7: A and type inference
require unification 30.T - O0M = 6N : A

e Meta-theorem proving splits cases
(also requiring unification).

e All of these require B-reduction

(use deBruijn indices and explicit substitutition
[Dowek,Hardin,Kirchner,Pf'96]).

LLanguage

Types A = aMp...Mp|A—A|Nz:A A
Objects M = hMy...My | x:A. M
Heads h 1= =z variables
e constructors
| d defined constants

Signatures X X, A |, dA=M| ...

e [ype-checking is easy except for convertibility.
e 6(d) =M ifd:A=M in X
e Will omit types.

e Consider only Bn-long normal forms.

Semantics of Definitions

e Definitions must be semantically transparent.
e For human interface: preserve definitions!
e For efficiency: preserve definitions!

e How do we reconcile these?

Bno-Convertibility

e Huet's algorithm for definitions in (early?) Coq

(ignoring some issues of control):

|
2|
Y

C

C

QL

= = g

|- |l

=
U

o

SIS
-l
=

|
N
2l =

4

else

else

M =N

fails for ¢ # ¢/
5(d) M =c
cM=65§(d) N
M =N or

for d = d’' or prev. case fails

S(A)M=dN
dM=6(d)N

5(d) M = 6(d) N

10

Example: Must Expand Definitions

e k= Ax.\y.x

k12=k13 = 1=1AN2=3

fails
= §(k)12=k13
= 1=k13
= 1=6(k)13
= 1=1

e Even identical defined constants need to be expanded.

11

Example: Need Not Expand Definitions

e “A=AD 1L (literally: = =XA.AD 1)
—Ag = —Bp for Ag # Bg
= Agp = Bp
fails
= (AgD>Ll)=(Bg>Dl)
= Agp = Bp

fails again

e EXxpanding identical defined constants if often redundant.

12

Analysis of Huet's Algorithm

Preserves definitions as much as possible.
Inefficient mostly during failure.
Type-checking mostly succeeds.

Tactic-based search often fails because of constructor
clashes.

No unification supported!

13

Injectivity

d is injective if for all appropriate M and N,

dM=dN implies M=N

Injectivity of d implies:

whenever M #*# N then dM#dN

Allows early failure, avoids expansion of definitions.

k is not injective (must expand).

— is injective (need not expand).

14

Strictness

e Strictness is a syntactic criterion on §(d) that guarantees
injectivity.

e A definition d:A = \z. h M is strict if every parameter z; has

at least one strict occurrence in M.

e An occurence of x of the form xyy...yn in M is strict if

1. all heads on the path from the root to the occurrence of
x are either constructors ¢, strict definitions d, or locally
bound variables y, but not definition parameters x;;

2. y1,...,yn are distinct locally bound variables
(z occurs as a pattern variable).

15

Examples Revisited

—A AD L strict in A
nimp A B -B D -A strict in A and B

(A=B) = (ADB)A(BDA) strictin A and B

Jlx. A(x) = Jx. A(x) AVy.A(y) Dx =1y
=l

At —o.de. AxANVy. Ay Dz =y

two strict occurrences of A

16

Counterexamples Revisited

kxy = x

no strict occurrence of = or y

1 Cerex = rew (C(fstle1,e2))) (Cle1))
no strict occurrences of C, e1 or es
instt A = infer W(Ax.Azxz)) (At)

strict in A, not strict in ¢

e [hese are often declared as constructors, not defined.

17

Optimization of Convertibility

e Mark definition as strict if it is strict in all arguments.

e Avoid retry in Huet’'s algorithm: commit to

dM=dN=M-=N

e Practical value depends on percentage of strict definitions.
e In applications, most definitions are strict.
e Non-strictness mostly for derived rules of inference.

e Find appropriate level for definitions:

k . exp— exp — exp
= Ax.erp.\y.exp.x not strict
kE . exp

= lam(Xx:exp.lam(Ay:exp.x)) strict

18

Application 1: Unification with Definitions

e Unification derived from convertibility.
e Definitions much harder: strictness indispensible.

e Huet's algorithm for convertibility incomplete for
unification.

e Example: occurs-check with definitions

Y = k1Y

occurs-check fails, but unification should succeed

19

Counterexample: Keeping Definitions

e Consider
k12=k1YANY =3
=Y =2AY =3
fails
but ¥ = 3 is the most general unifier!

e Problem: unification of

k12=k1Y

succeeds, but unifier is not most general.

e NO natural backtrack points as for convertibility.

20

Strict Unification

o Let d be a strict definition, U(E) the set of unifiers of E.
Then

U dM=dN)=U(M = N)
from properties of convertibility and substitution.

e Generalized occurs-check: X = h M fails the occurs-check if
there is a strict occurrence of X in M.

e Note: id = \xz.x is not strict because otherwise
X = id(2d(id X))

would fail the generalized occurs-check.

21

Implementation of Strict Unification

Definitions are classified as strict or non-strict

(“abbreviations

H).

Strict definitions are preserved as much as possible.

Non-strict definitions are expanded during parsing.

Critical cases of algorithm:

EEE

o

1§
)

& o o
Z|

z =
L I

2|

5(d) M =cN
cM=4§(d) N
M =N

5(d) M = 6(d) N
for d = d’

22

Assessment

e Unification is central in logical framework
(type reconstruction, logic programming and search)

e Strict unification seems to work well in practice.

e EXploits interactions with other features of implementation
(de Bruijn indices, explicit substitutions).

23

Refinements of Strictness

e Refinement (a): strictness per parameter

mst t A

infer (WV(Axz.Azx)) (At)
strict in A, not strict in ¢
inst; A = infer (V(Ax. Ax)) (At)

strict in remaining argument A

e Refinement (b): hereditary analysis

instt A = infer W(Ax.Azx)) (At)

strict intis A= \x. A x is strict in z.

e Context-dependent.

e Practical value questionable: too few non-strict definitions.

24

Application 2: Matching and Rewriting

e Higher-order matching used in several contexts
(functional logic programming, higher-order rewriting,
meta-programming)

e [heorem:
40.T -F0M = N : A

has unique solutions if every free variable X has one strict
occurrence in M.

e ODbtain higher-order patterns if all occurrences must be
strict [Miller'91] [Nipkow'91].

e More general case arises in practice [Virga'99].

e Of interest with and without dependent types.

25

Application 3: Syntactic Redundancy Elimination

e LF representations with dependent types carry significant
redundant information for simplicity of type-checking.

e Inflates proof terms, slows down checking.

e Syntactic redundancy elimination: drop redundant
information, retain decidability of type-checking.

e Important for proof compression
(proof-carrying code [Necula’'98], non-linear compression).

e Important for efficient checking and unification with
dependencies.

26

Example

A B
ANB

NI

andi : MA.MNB.pf(A) = pf(B) — pf (AN B)

e Consider
andi A B D E . pf(AN B)
:pf(A) :pf(B)
e A is redundant if D can synthesize its type.
e B is redundant if £ and synthesize its type.

e A and B are redundant we know the type of the whole
because A and B occur strict in pf(AA B)!

27

Another Example

Va. A(x)
A(t)

foralle : Tt:i. MNA:t — 0. pf WV(Ax. Az)) — pf(At)

e Consider
foralle t A D . pf(At)
pf (V(Az. A x))
e A is redundant if D can synthesize its type.

e A is not redundant if we only inherit a type
(A is not strict in pf(At)).

e ¢t iS not redundant either way.

28

Bi-Directional Type Checking

e Annotate each constant occurrence as synthesizing 1 or
inheriting | a type.

e Annotations are by no means unique.
e Result of strictness analysis.

e Redundant quantifiers are bracketed.

andiv¥ 1 [MA.][NB.] pf+(A4) — pfH(B) — pf*(A A B)
andi™ : [NA.][NB.] pfT(A) = pfN(B) — pfT(A A B)
andel¥ : [NA.] NB.pf*(A A B) — pf+(A4)
andel™ : [MA.][NB.] pfT(AA B) — pfT(A)
foraller + NMt.NA. pf*(VOz. A z)) — pf(At)
foralle™ : Mt [NA.] pfT(vOz. A) — pf T (A t)

29

Complex Annotations

oret : [MA.][NB.][NC.]
pfT(Av B)
—(pfT(A) = pfH(C))
—(pfM(B) — pfH(C)) — pf+(C)

e Generally, no best annotation (depends on usage).
e Strictness is critical.

e Hand-crafted annotations based on knowledge about object
theory may be best.

e Automatic annotations for second-order case practical
(non-linear proof size compression in LF; [Necula’'98]).

30

Avoiding Redundant Unification

e Maintain invariant that in

J0.N = 60M = ON : A

we have

(-FM:A and THFN:A

e [hen we don't need to unify inherited arguments.

e Empirical study: 50% improvement in logic programming
efficiency of 13 case studies [Michaylov & Pf'93].

e NO gain for simple types.

31

Summary

e Strictness, motivated from notational definitions

1 unification with definitions

2 matching and rewriting (with or without definitions)
3 proof compression (with or without definitions)

e Further empirical evaluation?

e Refined analysis?

32

