A Shared Memory Semantics

for Session Types

Frank Pfenning
joint work with Klaas Pruiksma

Department of Computer Science
Carnegie Mellon University

Invited Talk, Linearity/ TLLA 2018
July 8, 2018

Adventures with Curry and Howard

m Deep connections between logic and computation
m Depend on the logic but also the deductive system

m All logics and systems here are intuitionistic

Logic System Computation Programming
structural axiomatic | combinatory reduction functional
structural nat. ded. substitution functional
structural seq. calc.* explicit substitution functional

linear seq. calc. message passing concurrent (synch)

linear seq. calc.T message passing concurrent (asynch)

linear seq. calc.T shared memory “parallel” functional (lin)
multistructural | seq. calc.t shared memory “parallel” functional

*: (partially) focused
f: (partially) axiomatic

m Linear logic, sequent calculus, and synchronous
communication

m A calculus for asynchronous communication
m A shared memory interpretation
m Outlook (ongoing work)

Linear Propositions as Session Types

m A Curry-Howard interpretation linear logic
[Honda'93][Bellin & Scott'94][Honda et al.’98]...
[Caires & Pf."10][Wadler'12][Toninho et al.'13]...

m Linear propositions <> session types
m Sequent proofs < message-passing concurrent programs

m Cut reduction < communication

Cut as Parallel Composition

m Linear sequents
A, .. A EC

m Typing process P with channels x; and z
xt: AL XA E P (20 0)

m P is client to xq, ..., x,, provides z

m Cut as parallel composition with a shared private channel
AFPlx]:(x:A) A x:AEQ[x] = (z:C)
AN (x <« Plx]; Qx]):: (z: C)

cut

Substructural Operational Semantics

m Process configuration consists of semantic objects
proc(c, P): process P provides along channel ¢
m Every channel ¢ has a unique provider, unique client*
m Order is irrelevant
m By convention, a provider precedes its client

m Transition rules of the operational semantics match the
left-hand side against a subset of the objects and replace
them by the right-hand side (multiset rewriting)

m Example: cut executes by spawning a new process

proc(c, x « P[x] ; Q[x]) — proc(a, P[a]), proc(c, Q[a])
(a fresh)

m Rewriting is highly nondeterministic, but confluent with
session types

Cut Reduction as Communication

m Consider internal choice A® B

p @ Q
AL A A AFC N,BFC
—— &R, oL P Q1
AFA®B ANADBEC AFA A ARC
cutass cutpa
AN FC — AN FC

m Here: the first premise of the cut has the information

m Here: the second premise of the cut waits for it

Process Expressions for Internal Choice

m Process expressions

Expression Action Continuation
cm; P send label 71 along ¢ P
cm; P send label 75 along ¢ P

casec(m = Q1| m = @) receive w1 or m along ¢ @ or Q2

m Operational semantics

proc(c, c.mr1 ; P), proc(e,casec(m = Q1 | m = @2)) — proc(c, P), proc(e, Q1)
proc(c, c.mp ; P),proc(e,case c (m = Q1 | m2 = Q2)) — proc(c, P), proc(e, Q)

Typing Process Expressions

m Assign process expressions to usual right and left rules of
sequent calculus

AFP:(x:A) AFP:(x:B)
®R ®
AF (xm; P)u(x:A®B) AF (xm; P)i(x:A® B)

A x:AF Q@ (z:C) Al x:BF @ (z:0C)
oL
A x:A@Blcasex(m = Q1| m = Q) (z:C)

General Observations

m In a pair of matching right and left rules

m the invertible rule carries no information, so it receives
m the noninvertible rules makes a choice, so it sends

m From the perspective of the provider

m positive connectives send (@, 1, ®, 3)
m negative connectives receive (&, —o, V)

m Client will carry out complementary action

10/48

|dentity as Forwarding

m Identity identifies two channels (“forwarding”)

id id
A A y: AFE(x+y):(x: A

m Read: “x is implemented by y"

m Two alternative operational readings
proc(d, P[d]), proc(c, ¢ < d) — proc(c, Pc])
proc(c, ¢ < d), proc(e, Q[c]) — proc(e, Q[d])

m Arise from two different cut reductions, with id first or
second premise

P y —id 9

AFA AFA AEA AAEC

——— cut P cut Q
AFA = AFA N AFC = A, AFC

11/48

Unit as Termination

m 1 is positive:
m Right rule sends (close x)
m Left rule receives (waitx ; Q)
m Typing rules for new process expressions
AFQ:(z:0)

1R : 1L
-Fclosex :: (x:1) A, x:1F (waitx; Q) (z: C)

m Operational reading from cut reduction

proc(c, close ¢), proc(e, wait ¢ ; Q) — proc(e, Q)

12/48

Example: Bit Streams

m Generalize internal choice A® B to ®&{{ : As}er
m Then A& B=&{m : A m: B}
m Allow equirecursively defined types and processes
bits = @&{b0 : bits, bl : bits,$: 1}
-k six :: (x @ bits)
x < six = x.b0 ; x.bl ; x.bl; x.$; close x
m “Little endian”: least significant bit comes first

m proc(c, ¢ < six) does not reduce

m Need client for interaction
m Communication based on cut reduction is synchronous!

13 /48

Example: Incrementing a Bit Stream

m Transduce bits representing n to those representing n + 1
bits = @&{b0 : bits, bl : bits,$: 1}
y : bits & plusl :: (x : bits)
X < plusl <y =
casey (b0 = x.bl; x <y

bl = x.b0 ; x <— plusl <y
$ = x.bl; x.$; waity; closex)

14 /48

External Choice

m Provider receives for all negative type

m Example: external choice A & B

AFA AEFB
AFA&B

&R

nARC NBEC
& &
A AgBFC A A&BFC 7

15/48

Computation of External Choice

m Information now flows from client to provider

Py P> Q
ANAEC
AFA AI—B& &l P, Q
AFA&B ASAKBEC AFA AAEC
cutags cuta
AANEC — AN FC

m Use the same process expressions

proc(c,case c (1 = Py | mp = P,)), proc(e, c.m1 ; Q) — proc(c, P1), proc(e, Q)
proc(c,case c (m; = Py | mp = P»)), proc(e, c.ma ; Q@) — proc(c, P,), proc(e, Q)

16 /48

Example: A Binary Counter

m Show only part of the interface
ctr = &{inc : ctr, ...}
m Messages in bit streams now become processes
y 1 ctr = bit0 :: (x : ctr)
y :ctrt bitl @ (x : ctr)
-k zero i1 (x : ctr)
m Implementations

X 4— bit0 <— y = casex (inc = x < bitl < y)
X < bitl <~ y = casex (inc = y.inc; x < bit0 < y)
X < zero = case x (inc = y < zero ; x < bitl < y)

17/48

Example: A Binary Counter

m Counting to two
- two i (x @ ctr)
X < two = X < zero ; x.InC ; x.InC
m This does compute since zero has a client

proc(co, ¢o < two) —* proc(cy, ¢a < zero),
proc(cy, ¢ < bitl + &),
proc(cy, co < bit0 < ¢1)

18/48

Session Type Summary

m Judgmental constructs, independent of type
m Spawn (cut) x < P[x] ; Q[x]
m Forward (id) x < y

m Communication is synchronous

m From the perspective of the provider

Type Action Continuation
A1 @ A, | send T; A;
1 send close | none

AR B sendd: A | B

Ix:.B |reecvv:T | [v/x|B

A1 & Ay | recv T A;

A—B recvd:A | B

Vx:t.B | recv v T | [v/x]|B

1A recv d : A | fresh instance of A

19/48

m Type configurations A F C : A’

m C uses all channels in A
m C provides all channels in A’

m Allow recursive types and recursion

Theorem (Session Fidelity)
IfA-C:A"andC — C' then AFC': A

Theorem (Deadlock Freedom)

If -+ C : A then either (i) all processes proc(c, P) € C are
blocked on ¢, or (ii) C — C' for some C'.

20/48

m Linear logic, sequent calculus, and synchronous
communication

m A calculus for asynchronous communication
m A shared memory interpretation
m Outlook (ongoing work)

21/48

Asynchronous Communication

m Synchronous

m Derived from cut reduction
m Sender and receiver proceed together
m As in synchronous m-calculus
m Asynchronous
m Sender dispatches message, proceeds immediately
m Message is entered into channel buffer
m Message order is guaranteed (unlike asynchronous
m-calculus), to ensure session fidelity
m Operational semantics uses two forms of semantic
objects, proc(c, P) and msg(c, M)
m Is there a proof-theoretic explanation for asynchronous
communication?

22 /48

m-Calculus

m Synchronous m-calculus (side remark: no forwarding!)
P:=a(b).P|a(x).P|(P|Q)|(vx)P|0O]|!P
m Asynchronous m-calculus

P:=a(b)|a(x).P|(P| Q)| (vx)P|0]|!P

Asynchronous output action has no continuation

a(b).P =~ a(b)|P

Employ the same observation in the logical setting!

Continuation is proof of the premise

Rules with no premise have no continuation!

23 /48

Noninvertible Rules as Axioms

m Right rule example

AFA
e last

- —_— 3 0
AFAe B AFA®B

Ry

A+ B o
= aR, ——— ®R}
AFAGB BFA®B

m Left rule example
A AFC
— &l — &9
AN, ABFC A& B A

A BFC

— gl 19
A ABFC

—— &
A& BFB

24 /48

Simulating the Ordinary Rule

m Requires an analytic cut

—— oR? ——— all
AFA AFAGB T AZBFA ' AAFC
cutp cutp
AFA® B AAKBEC
m With process expressions
BRY &RY

y:Abxm(y):(x: A@B) y A& BF ym(x)::(x:A)
m Replace output prefix by spawn
x.m; Plx] ~ y <« Plyl;x.m(y) (P[x] provides x)
ym; Qy] = x<+ ym(x); Q[x] (Q[x]is client of x)

25 /48

Multiplicative Axioms

m Multiplicative conjunction (sending a channel)

- ®R0
AFA ABHA®B
cuty
A'FB ABFA®B
®R0 cutg
ABFA®B AN FA®B
m Linear implication (receiving a channel)
- @ @ 0 —OI_O
A+A AA—oBFB
cuty
A A—BF B A BFC
L0 cutg

AA—BFB AN, A—oBFC

26 /48

Updating the Operational Semantics

m Sending is accomplished by a spawn
m Receiving selects continuation

Q1 Q2
AAFC A BEC
R oL
AFA® B AN A BEC Q
cutags 1
AAEC = A AFC

m Computationally, select branch and substitute
continuation channel

proc(c, ¢.m1(d)), proc(e, case ¢ (m1(y) = Qily] | ma(y) = Qu[y])) — proc(e, Qi[d])
proc(c, c.my(d)), proc(e; case ¢ (m1(y) = Quly] | ma(y) = Q2[y])) — proc(e, Qa[d])

27 /48

Example Revisited: Bit Streams

m Recall
bits = @&{b0 : bits, bl : bits,$: 1}

- six i (x @ bits)

x + six = x.b0 ; x.b1 ; x.b1 ; x.$; close x
m Asynchronously (writing cuts in reverse)
X 4= six = x1 < x.b0(x1) ;
Xp < X1.b1(X2) H
X3 < X2.b1(X3) H
Xy — X3.$(X4) ’
close x4
m Execution
proc(co, co + six) —* proc(cy, close ¢q),
proc(cs, c3.$(cs)),
proc(c, C2 bl(C3))
proc(ci, c1.b1(c)),
proc(co, ¢o-b0(cy1))

28 /48

Example Revisited: Binary Counter

m Recall
ctr = &{inc: ctr,...}
y : ctr = bit0 :: (x : ctr)
y :ctr b bitl :: (x : ctr)
-k zero :: (x : ctr)
m With asynchronous message passing
x < bit0 < y = casex (inc(x’) = x’ < bitl < y)
X = bitl <y = casex (inc(x’) = y' < y.inc(y') ;
x' < bit0 < y')

x < zero = case x (inc(x’) = y < zero;
X' < bitl < y)

29 /48

Summary: Asynchronous Semantics

m Process expressions and actions

Rules Proc. Exp. Action Cont. Channel
®RY, &LY c.mi(d) send label my d

oL, &R casec (m;i(y) = Pily])i recv label m d

®R%, —L% sendc (e, d) send channel e d

®L, —R (z,y) < recvc; Q[z,y] recv channel e d

1R close ¢ send close msg none

1L wait ¢ ; Q recv close msg none

cut x + P[x]; Q[x] spawn P[a] (a fresh)

id X4y forward x to y

30/48

Key Points: Asynchronous Semantics

m Force communication to be asynchronous by taking away
continuation process from messages

m Logically, this means messages correspond to O-premise
rules (“axioms”)

m Operationally, sending messages is accomplished by
spawning a message process

m New form of cut reduction translates to asynchronous
semantics

m Lose traditional cut elimination

31/48

m Linear logic, sequent calculus, and synchronous
communication

m A calculus for asynchronous communication
m A shared memory interpretation
m Outlook (ongoing work)

32/48

Channels as Memory Addresses

m Previous implementations (Concurrent CO, SILL) use ad
hoc queues to implement buffered channels

Develop provable(?) implementation from first principles
Concurrency/parallelism should be preserved
Derived from substructural operational semantics [Pf'04]

Now proc(c, P) — evaluate P with destination ¢

New semantic artifact cell(c, V)

m cell(c, V) — cell ¢ holds value V
m Values V to be defined

33/48

Memory Allocation

m Only cut (spawn) creates fresh channels
proc(c, x < P[x]; Q[x]) — proc(a, P[a]), proc(c, Q[a]) (a fresh)

m Only cut (spawn) allocates memory
m Every address a has a unique proc(a, P) or cell(a, V)

m Implementation would allocate an uninitialized cell(a, _)

34/48

Internal Choice A @ B

m Process c.mi(d) writes 7x(d) to destination ¢
proc(c, c.mi(d)) — cell(c, mk(d))

m Writing process terminates
m Process case ¢ (7;(y) = Qi[y]): reads contents

cell(c, mx(d)), proc(e, case ¢ (mi(y) = Qi[y])i) — proc(e, Qk[d])

m The reading process may block if there is no value!

m Due to linearity (uniqueness of client), cell is deallocated
when read

35/48

m We replace “close” by ()

proc(c, close ¢) — cell(c, ())
cell(c, (), proc(e, wait c ; Q) — proc(e, Q)

36 /48

Example Revisited: Bit Streams

m Recall
bits = ®{b0 : bits, bl : bits,$: 1}
- six i (x : bits)
X 4= six = x1 < x.b0(x1) ;
X + x1.b1(x2) ;
X3 < X2.b1(X3) H
x4 x3.%(xa) 3
close x4
m Execution produces a simple linked list memory structure
proc(co, co + six) —* cell(ca, ()),
cell(cs, $(ca)),
cell(e, bl(e)),
cell(¢y, bl(e)),
cell(co, b0(cy))

37/48

Example Revisited: Incrementing a Bit Stream

m Recall
bits = &{b0 : bits, bl : bits,$: 1}
y @ bits & plusl :: (x : bits)
X < plusl <y =
casey (b0 = x.bl;x+y
bl = x.b0; x + plusl <y
$ = x.bl; x.$;waity ; closex)
m Asynchronous syntax
X ¢ plusl <y =
casey (bO(y') = x’ + x.bl(x') ; x' <y’
b1(y):>x +— x.b0(x") ; x' «+ plusl <y’
$(y') = x' + xbl(x') ; x"” + x".$(x") ; waity’ ; close x”")
m Forwarding

/!

proc(co, co — six), proc(do, do <+ plusl + cp)
* cell(eqy (), ..., cell(cr, bl(c)), cell(co, bO(c1)), proc(do, do +— plusl + cp)
2 cell(cs, (), - - -, cell(c1, bl(c)), proc(dy, di c1), cell(do, b1(dy))

cell(cy, (), ..., cell(di, bl(c)), cell(dy, b1(d1))

(Y]

38/48

|dentity (Forwarding)

m Two immediately plausible implementations
m Copying values

cell(d, V), proc(c, ¢ + d) — cell(c, V)
m Forwarding references with new form of cell contents

proc(c, ¢ + d) — cell(c, FWD(d))
cell(c, FWD(d)), proc(e, P[c]) — proc(e, P[d])

39/48

Negative Propositions (Surprise!)

m Recall: proc(c, P) executes P with destination ¢
m With positive propositions (@, 1, ®)
m the provider writes to memory instead of sending
m the client reads from memory instead of receiving
m With negative propositions (&, —o)
m the provider writes a continuation instead of receiving
m the client reads and jumps to the continuation

40/48

External Choice

m Operationally

proc(c, case ¢ (mi(y) = Qily]);) — cell(c, (mi(y) = Qily]))
cell(c, (mi(y) = Qily])i), proc(d, c.mx(d)) — proc(d, Qk[d])
m Process proc(d, c.mx(d)) may have to wait until cell is
initialized
m New value corresponds to a jump table with an entry for
every method T;

41/48

Example Revisited: Binary Counter

m Recall
ctr = &{inc: ctr,...}
y :ctr = bit0 :: (x : ctr)
y :ctr bitl :: (x: ctr)
-k zero =1 (x : ctr)
m With asynchronous message passing
X < bit0 < y = case x (inc(x’) = x" < bitl < y)
X < bitl + y = casex (inc(x’) = y’ < y.inc(y’) ; X' < bit0 < y’)
x < zero = case x (inc(x’) = y < zero ; x' + bitl « y)
m Execution
proc(co, co + zero), proc(cy, ¢o.inc(cy)), proc(c, c1.inc(c)) —*
proc(dy, di < zero), proc(da, da < bitl < dy), proc(cz, ¢ +— bit0 < ds)

m Each process writes a continuation to memory next

42 /48

Summary of Shared Memory Semantics

m Use locks or condition variables to implement blocking
read?
m Operational semantics in tabular form

Rule | From To

cut? | proc(c,x < P[x]; Q[x]) — proc(a, Pla]), proc(c, Q[a])
id cell(d, V), proc(c, ¢ + d) — cell(e, V)

®RY | proc(c, c.mi(d)) — cell(c, 7, (d))

@L | cell(c, mk(d)), proc(e, case c (mi(y) = Qily]);) — proc(e, Q«[d])

&R | proc(c,casec (mi(y) = Pi[y])i) — cell(c, (mi(y) = Pily])i)
&LY | cell(c, (mi(y) = Pily])i), proc(e, c.mi(d)) — proc(e, Pi[d])

1R | proc(c,closec) — cell(c, ())

1L cell(c, (), proc(e, wait ¢ ; Q) — proc(e, Q)

®@RY | proc(c,send c (e, d)) — cell(c, (e, d))

®L | cell(c, (e, d)), proc(f,{z,y) + recvc; Q[z,y])— proc(f, Q[e, d])

—oR | proc(c, (z,y) + recvc; Plz,y]) — cell(c, (z,y). Plz,¥])
—oL% | cell(c, (z,y). P[z,y]), proc(f,send c {e,d)) — proc(f, P[e,d])

43 /48

m Values
V = m(d) (®)
| (mi(y) = Pily])i (&)
| () (1)
| {c,d) (®)
| Gy Pyl (=)

m Session fidelity and deadlock freedom continue to hold

m Bisimulation between asynchronous message-passing and
shared memory semantics*

44 /48

Beyond Linearity (Work in Progress)

m Allow controlled application of structural rules using
modes of truth, arranged in a preorder
[Benton'94][Reed’09]

m Adjunctions connect the different modes
m Example modes: L (linear), U (weakening & contraction)

m Logically, we have multicut

AuF Ay AL Ay,..., Ak Cn
AN G

mcut

m Operationally, a provider may have multiple clients

m Magically, the substructural operational semantics
appears to continue to work!

45 / 48

Adjoint Sketch (Work in Progress)

BR?
oL

&R
8.0

m Every channel/address has an intrinsic mode

m Process objects remain ephemeral so they can evolve
m Cells inherit structural properties from channel /address
m Persistent semantic objects !¢ are not consumed

m For example

proc(cy, c.mk(d)) — !cell(cy, mk(d))
lcell(cy, mk(d)), proc(em, case ¢ (mi(y) = Qily])i) — proc(em, Qk[d])

proc(cy, case c (mi(y) = Pi[y]);) — !cell(cu, (mi(y) = Pily]):)
lcell(cy, (mi(y) = Pi[y])i), proc(e, c.mx(d)) — proc(e, Px[d])

m Provides a new shared memory semantics for a mixed
linear/non-linear concurrent programming language

46 /48

Is there a form of cut elimination for SEQ'?

Reimplement session types on shared memory based on
proof theoretic principles

Forwarding? Optimizations? Scheduling?
Relation to futures? [Halstead'85]
Incorporating sharing [Balzer & Pf'17]

47 /48

m Linear logic, sequent calculus, and synchronous
communication
m Provider/client distinction (intuitionistic)
m Provider: positive types send, negative types receive
m A calculus for asynchronous communication
m Sequent calculus with axioms for
positive-right /negative-left rules
m Send implemented via cut (spawn)
m A shared memory interpretation
m Linear destination-passing style
m Synchronization on memory read
m Right rules write, left rules read
m Outlook (ongoing work)
m Extend to structural session types
m Incorporate mutable shared memory

48 /48

