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Abstract

Both parametric and implicit representations can be used to model 2D
curves and 3D surfaces. Each has certain advantages compared to the
other. Implicit polynomial (IP) methods are not as popular as parametric
procedures because the lack of general procedures for obtaining IP
models of higher degree has prevented their general use in many
practical applications. In most cases today, parametric equations are used
to model curves and surfaces. One such parametric representation,
elliptic Fourier Descriptors (EFD) has been widely used to represent 2D
and 3D curves, as well as 3D surfaces. Although EFDs can represent
nearly all curves, it is often convenient to have an implicit algebraic
description F(x,y)=0, especially for determining whether given points lie
on the curve. Algebraic curves and surfaces also have proven very useful
in many model-based applications. Various algebraic and geometric
invariants obtained from these implicit models have been studied rather
extensively. In this paper, we present a new non-symbolic implicitization
technique called the matrix annihilation method, for converting
parametric Fourier representations to implicit polynomial form.

1. INTRODUCTION

In general, any closed curve can be described in terms of a set of
two (or three for space curves) Fourier series whose coefficients
are called elliptic Fourier descriptors (EFDs). The advantages of
using EFDs are that the shape information is concentrated in the
low frequency parts [1-5], hence shape can be described by the
first few coefficients. Invariants derived from EFDs have been
used for identification [5,6]. Algebraic curves/surfaces have also
proven to be very useful for shape representation [7,8]. In the
past few years, implicit representations have been used more
frequently, allowing a better treatment of several problems. One
example is the point classification problem, which is easily
solved with the implicit representation since it consists of a
simple evaluation of the implicit functions. Invariants associated
with these models have also been employed in several model-
based vision and pattern recognition applications [9-13].
However, there is very little in the literature on higher degree IP
models for large or entire free-form shapes because of the lack of
tractable computational procedures for obtaining and analyzing
such models. The implicit polynomial that defines a curve is not
easily determined. Although several different fitting algorithms
have been proposed thus far for directly determining IP models
from point data sets, the computational cost of many of them is
quite high because of the nonlinear optimization procedures
required to obtain acceptable fits. Lack of stability of parameters
has been another weakness. The problem of excessive number of
parameters in implicit representations was first studied in [13].
The 3L fitting algorithm [14] exhibits significantly improved
curve representation accuracy and stability. However, there is
significant value to further improvement in coefficient stability
to make algebraic curves more generally and robustly applicable

for object recognition. Instead of obtaining algebraic curve
representations directly from points, it is also possible to convert
parametric equations (which may be obtained from boundary
points) to implicit ones. Sederberg has extensively studied the
problem of converting parametrically defined curves to implicit
form using elimination theory, which involves computing the
determinant of Sylvester’s matrix [15-17]. Later, Hong
employed Sylvester’s matrix –also known as the resultant
method- for a particular class of problems involving
trigonometric polynomials, taking advantage of their special
structure [18]. A significant disadvantage of implicitization by
Sylvester’s matrix elimination method is that it involves
computing the determinant of a matrix which contains symbolic
variables. Ercil et al [19] studied the problem of converting
between parametric and implicit forms based on polar/spherical
coordinate representations. However, their technique is valid
only for star-shaped objects.
In this paper, we present a new, non-symbolic implicitization
technique, called the matrix annihilation method, for converting
parametric Fourier representations to algebraic (implicit
polynomial) representations. We should note that our method is
numerical, so that we can obtain higher order polynomial curves
than previously possible through implicitization. Furthermore,
our procedure is computationally efficient. The structure of the
paper is as follows: Section 2 reviews implicitization by
Sylvester’s matrix. In section 3, our approach for implicitization
is described. Section 4 illustrates our procedure using several
examples. Section 5 describes two vision-based examples, and
some concluding remarks are given in Section 6.

2. Review of Implicitization by Sylvester’s Matrix

Sylvester’s matrix elimination method [17] can be used to
implicitize parametric polynomial curves such as x=a2t

2+a1t+a0

and y=b2t
2+b1t+b0. In particular, if we re-write these equations as

a2t
2+a1t+(a0-x)=0 and b2t

2+b1t+(b0-y)=0, the resultant of these
two polynomials is then defined by the determinant of
Sylvester’s matrix, namely
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an implicit algebraic curve that is equivalent to the parametric
curve. In general, if x and y are polynomials of degree p, the
corresponding algebraic curve also will have degree p. To
further illustrate this procedure, consider the parametric curve
defined by the equations: t2sin2tcos5.04.0x −+= and
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t2sin2tsin2.06.0y −+= . By substituting the following
equivalent complex relations for coskt and sinkt

( ) 2/eektcos iktikt −+= , ( ) 2/eektsin iktikt −−= (2.1)

and then substituting z=eit and mutiplying both equations by z2 in
order to make all z powers positive, we obtain

( ) iz25.0zx4.0z25.0iz0 234 −+−++=
( ) 35.0iz1.0zy6.0iz1.0z35.00 234 ++−+−=

Using elimination theory, the determinant of Sylvester’s matrix
is then defined by
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which implies the (monic) quartic implicit polynomial curve

0736.3y698.24x578.1y04.79xy726.15x332.1y35.160
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that is shown in Figure 1(a).
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Figure 1 (a) Parametric curve and implicit curve obtained by Sylvester’s
elimination method, (b) parametric curve and implicit curve obtained by matrix
annihilation method are superimposed.

3. Our Approach: Implicitization by Matrix Annihilation

Consider an n-harmonic elliptic Fourier descriptor representation
of any 2-D curve, namely1
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where (ao,co) is the center of the curve. Using (2.1), we can
express (3.1) as
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1 The coefficients of coskt and sinkt in (3.1) can be uniquely determined from an ordered
sequence of points which describe the boundary of a curve using the relations given in Chapter 2
of [6]. We will assume here that this operation has been performed and, therefore, that the Fourier
coefficients are known.

where ( ) 2/ibaA kkk
−= , ( ) 2/ibaB kkk

+= , ( ) 2/idcC kkk
−= ,

( ) 2/idcD kkk
+= for k=1,…,n, with

00 aA = and
00 cC = .

These equations can be expressed in a more compact form by
substituting z for eit,
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If the g and h sequences are written as vectors
[ ]

n101n AAABBg ��= and [ ]
n101n CCCDDh ��= ,

(3.3) can then be re-written as ( ) zgzx
�

⋅= and ( ) zhzy
�

⋅= where

[ ]n1nT zz1zzz ��
� −−= . We next employ the time

convolution property of the z-transform: “if g[k] ⇔ x(z) and
h[k] ⇔ y(z) then g[k]∗h[k] ⇔ x(z)y(z)”. Note that convolution
in discrete-time domain corresponds to multiplication in the z-
domain. For example, ( ) ( ) { }]k[g]k[gZzxzxx 2 ∗== ,

( ) ( ) { }]k[h]k[gzyzxxy ∗Ζ== , ( ) ( ) { }]k[h]k[hzyzyy2 ∗Ζ== .

The monomials qp yx for different p and q values can be found
similarly. We can therefore write
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or simply zP=Γ for some complex )1dn2(2/)2d)(1d( +×++
matrix P. We next re-write P as
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for some unique, real )1d2(2/)2d)(1d( 2 +×++  matrix P̂ .
We then determine the “largest” (d+1)(d+2)/2-1=d(d+3)/2

columns of P̂ via an orthogonal-triangular decomposition
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defined by EP̂QR = , where Q is a unitary matrix, R is an upper
triangular matrix whose diagonal elements are of decreasing
absolute value, and E is a permutation matrix which orders the

columns of EP̂ in correspondence with those of QR . The

unique unit vector ν that annihilates the first 2/)3d(d + columns

of EP̂ , which we will define as P
~

, then yields an appropriate
(non-monic) implicit polynomial function as the product

0)y,x(fd
==Γν . The Matlab routines “qr” and “null” are used

to perform the required computations.
Implicitization of truncated Fourier descriptors with n harmonics
implies an algebraic equation of degree d=2n.

4. SOME EXAMPLES

In this section, we present the implicitization of several curves,
some with strong discontinuities and some self-intersecting.
Given an ordered sequence of points on each curve, we first
computed the parametric Fourier coefficients of the curve. We
then implicitized the curves both by our matrix annihilation
method and Sylvester’s elimination method. Both implicitization
methods were implemented in Matlab. For Sylvester’s
elimination method, we used the Symbolic Toolbox of Matlab
and/or Maple. Assuming that n harmonic Fourier coefficients are
used to represent the curve, our method involves computing the

annihilating vector of P
~

, whereas implicitization by Sylvester’s
elimination method involves computing the determinant of a
4nx4n symbolic matrix. As the number of harmonics used to
represent curves increase, the computation time increases for
both methods. However, since Sylvester’s elimination method
involves symbolic computation, the computation time increases
faster than our method, as we will show.

4.1. Convert 2 harmonic EFD curve to 4th degree IP curve:

To illustrate our matrix annihilation procedure, consider the
earlier parametric curve defined by

t2sin2tcos5.04.0x −+= , t2cos7.0tsin2.06.0y ++=

whose Fourier coefficients are given by 4.0a 0 = , 6.0c0 =

[ ] [ ]05.0aa 21
= [ ] [ ]20bb 21

−=
[ ] [ ]7.00cc 21

= [ ] [ ]02.0dd 21
=

The complex Fourier coefficients are then determined to be
4.0A

0
= , 6.0C

0
= , [ ] [ ]i25.0AA 21 = , [ ] [ ]i25.0BB 21 −= ,

[ ] [ ]35.0i1.0CC
21

−= , [ ] [ ]35.0i1.0DD 21 = . The g and h

sequences are then defined as

]i25.04.025.0i[g −= , ]35.0i1.06.0i1.035.0[h −=

which subsequently imply (3.4). The (15x14) P
~

matrix is then
determined as outlined above and the vector that annihilates this
matrix is found to be

[
]3414.00836.00051.08215.00669.01007.0

0082.04049.00806.00068.01265.00081.00191.0

00−−−

−−−=ν

Reordering the terms in lexicographic order and dividing by the
leading coefficient, we obtain the following monic implicit
polynomial curve

0736.3y698.24x578.1y04.79xy726.15x332.1y35.160

xy061.13yx657.19x6.1y639.66yx327.16x)y,x(f
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that is shown in Figure 1(b). The annihilated matrix P
~

defined
by our method is 15x14, and it takes 0.06 seconds to implicitize.
Sylvester’s matrix is 8x8, but it takes 7.25 seconds to implicitize.

4.2. Convert 3 harmonic EFD curve to 6th degree IP curve:

The parametric curve in Figure 2(a) is represented by the
following Fourier coefficients:

-0.0906a
0

= , -0.1194c0 =
[ ] [ ]-0.1302-0.1902-0.1827aaa

321
=

[ ] [ ]-0.1568-0.1753-0.3267bbb
321 =

[ ] [ ]-0.0971-0.153-0.3383ccc
321

=
[ ] [ ]-0.15890.09920.3385ddd

321
=

The 6th degree IP obtained by both our annihilation method and
Sylvester’s elimination method is the same, namely
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and shown in Figure 2(a). The annihilated matrix P
~

defined by
our method is 28x27 and it takes 0.06 seconds to implicitize.
Sylvester’s matrix is 12x12, but it takes 8.46 seconds to
implicitize.
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Figure 2 (a) Parametric curve, implicit curve (circles) obtained by matrix
annihilation and implicit curve (dots) obtained by Sylvester’s elimination methods
are superimposed. (b) Parametric curve and implicit curve (circles) obtained by
matrix annihilation method are superimposed.

4.3. Convert 6 harmonic EFD curve to 12th degree IP curve:

The parametric curve in Figure 2(b) is represented by following
Fourier coefficients:

057.0a 0
−= , 0157.0c0

−=
[ ] [ ]1703.0,0262.0,1513.0,083.0,0574.,5224.a,a,a,a,a,a 654321 −−=
[ ] [ ]0113.,0251.0,0154.,0258.0,089.0,09.b,b,b,b,b,b 654321 −−−=
[ ] [ ]0176.0,0832.,0843.0,0682.0,0652.0,1396.c,c,c,c,c,c

654321
−−=

[ ] [ ]1864.,0864.,1858.0,0938.0,0893.0,6211.0d,d,d,d,d,d 654321 −−=

The 12th degree implicit polynomial2 obtained by our
annihilation method is shown in Figure 2(b). The annihilated

2  The coefficients of the implicit polynomial equations which define our remaining curves can be
obtained from the authors.
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matrix P
~

defined by our method is 91x90 and it takes 1.21
seconds to implicitize. When the number of harmonics used to
represent a curve is greater than 4 (degree of target implicit
polynomial greater than 8), we found that implicitization by
Sylvester’s elimination method is impossible using Matlab.

5. Extracting Shape Features from IP Models

Once an implicit polynomial that defines the shape of an
object has been determined, it can be used for object recognition
in a variety of ways. As shown in [12-14], algebraic invariants
can be defined and determined directly from implicit polynomial
models. These invariants can then be used to compare and
identify similar objects. Implicit polynomial representations can
also be used to characterize the local geometry of a curve, i.e
curvature. The classical approach in curvature computation is to
use local curve fitting or structural models for a local
neighborhood of the curve, which typically perform poorly in the
vicinity of singularities. To avoid this problem, we use the
implicit representation obtained by our matrix annihilation
method to compute curvature of a curve and determine whether
the objects are the same or similar.
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Figure 3 (a) Carpal3d_01_01 image. (b) Contour points of the first bone (circle)
and 10th degree IP curve obtained by our matrix annihilation (solid). (c) Contour
points of the second bone (circle) and 8th degree IP curve (solid).

Figure 4 (a) Cell image, (b) contour points of the cell (circle) and 10th degree IP (5
harmonic) (solid).

Consider the carpal bone image depicted in Figure 3 (a).
Using our matrix annihilation algorithm, a 10th degree IP curve is
determined that describes the boundary of the first bone and an
8th degree IP curve is determined that describes the boundary of
the second bone, which is depicted in Figure 3 (b) and (c)
respectively. Similarly, implicit representation of the cell in
Figure 4(a) is shown in Figure 4 (b). Computing the curvature of
carpal bone shapes from their implicit representation together
with perpendicular distance computation, we aim to use such
information to quantify the degree to which the shape of a
particular carpal bone differs from that of an ideal one.

6. CONCLUSIONS

Implicit polynomial representations are very useful for modeling
given point data sets, and numerous papers have been written
which illustrate their importance in image understanding and

object recognition. A variety of methods have been devised for
directly fitting given data sets to implicit polynomial curves and,
although such methods are continually being refined and
improved, alternative implicitization procedures are equally
important and useful. In this report, we have demonstrated a new
matrix annihilation method for efficiently converting curves
defined by elliptic Fourier descriptors to algebraic ones. As we
have explicitly illustrated, our matrix annihilation method works
very well and efficiently in many higher order cases where
symbolic-based methods fail. We are currently working on
extending our matrix annihilation method to implicitize both 2D
curves and 3D surfaces that are defined by a variety of
parametric representations. We also are investigating the use of
these implicit models in a variety of computer vision
applications. The two simple examples in Section 5 were given
to illustrate the potential utility of our method, and spatial
limitations prevent us from presenting additional computer
vision applications here.
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