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Abstract. Object recognition is a central problem in computer vision. When objects are defined by boundary
curves, they can be represented either explicitly or implicitly. Implicit polynomial (IP) equations have long been
known to offer certain advantages over more traditional parametric methods. However, the lack of general procedures
for obtaining IP models of higher degree has prevented their general use in many practical applications. In most
cases today, parametric equations are used to model curves and surfaces. One such parametric representation, elliptic
Fourier Descriptors (EFD), has been widely used to represent 2D and 3D curves, as well as 3D surfaces. Although
EFDs can represent nearly all curves, it is often convenient to have an implicit algebraic description F(x, y) = 0, for
several reasons. Algebraic curves and surfaces have proven very useful in many model-based applications. Various
algebraic and geometric invariants obtained from these implicit models have been studied rather extensively, since
implicit polynomials are well-suited to computer vision tasks, especially for single computation pose estimation,
shape tracking, 3D surface estimation from multiple images and efficient geometric indexing into large pictorial
databases. In this paper, we present a new non-symbolic implicitization technique called the matrix annihilation
method, for converting parametric Fourier representations to algebraic (implicit polynomial) representations, thereby
benefiting from the features of both.
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1. Introduction

Object recognition and pose estimation in computer vi-
sion provides a sizeable literature on alignment and in-
variants based on moments, B-splines, superquadrics,
conics, differential invariants and Fourier descriptors
(Taubin, 1991; Huang and Cohen, 1996; Solina and

∗This work was supported by the NSF under Grant DMI-9820804.

Bajcsy, 1990; Ma, 1993; Mundy and Zisserman, 1992;
Calabi et al., 1998) Shape representation based on para-
metric representations has been studied extensively,
and the use of parametric representations remains dom-
inant in computer graphics, computer vision and ge-
ometric modeling. However, algebraic models have
certain mathematical and computational advantages
complementary to the parametric methods, and they
are receiving increased attention.
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Algebraic curves/surfaces have proved to be very
useful for shape representation (Taubin et al., 1994;
Keren et al., 1994; Bloomenthal, 1997). Invariants as-
sociated with algebraic models have also been em-
ployed in several model-based vision and pattern recog-
nition applications (Wolovich and Unel, 1998; Unel
and Wolovich, 1998, 1999, 2000; Subrahmonia et al.,
1996). In the past few years, implicit representations
have been used more frequently, allowing a better treat-
ment of several problems. It is sometimes more con-
venient to have an implicit equation in applications
such as determining curve/surface intersections and the
point classification problem, since they imply a simple
evaluation of the implicit functions. Implicit polyno-
mials are also well-suited for determining “how close”
measured points on a curve/surface are to the ideal
curve/surface, once the ideal surface is modeled with
an implicit polynomial (Wolovich et al., 2002).

There is very little in the literature on higher degree
IP models for large or entire free-form shapes because
of the lack of tractable computational procedures for
obtaining and analyzing such models. The problem of
excessive number of parameters in implicit represen-
tations was first studied in Subrahmonia et al. (1996).
The implicit polynomial that defines a curve is not eas-
ily determined. Several different fitting algorithms have
been proposed for directly determining IP models from
point data sets. The linear 3L fitting algorithm (Lei
et al., 1996) often exhibits very fast and accurate curve
representation and stability. Continuous improvements
are being made on the stability of algebraic curve fitting
for obtaining IP models (Tasdizen et al., 2000). How-
ever, there is significant value in determining other IP
methods.

Instead of obtaining algebraic curve representations
directly from points, it is also possible to convert para-
metric EFD equations (which may be obtained from
boundary points) to implicit ones, which the main fo-
cus here. The general process of converting from para-
metric equations of curves or surfaces to implicit ones
is known as implicitization, and it has been studied for
more than a century.

Salmon performed surface implicitization by elimi-
nating parameters from the parametric surface equa-
tions (Salmon, 1915). In 1908, Dixon published a
more compact resultant for eliminating two variables
from three polynomials, which became the standard
method for surface implicitization in the absence of
base points (Dixon, 1908). Implicitization techniques
based on elimination theory also have been extensively

used by Sederberg (1983), Sederberg and Anderson
(1984), and Sederberg and Goldman (1986) and involve
computing the determinant of Sylvester’s matrix. A sig-
nificant disadvantage of implicitization by Sylvester’s
matrix elimination method is that it involves comput-
ing the determinant of a matrix which contains sym-
bolic variables. Using Dixon’s formulation, Sederberg
implicitizes tensor product surfaces (Sederberg, 1983).
Recently, Sederberg et al. introduced an implicitization
method called the moving quadric method (Sederberg
and Chen, 1995) where they lower the size of the matrix
from which the resultant is formed by moving curves.

Hong employed Sylvester’s matrix for a particular
class of problems involving trigonometric polynomi-
als, taking advantage of their special structure (Hong,
1995). Hobby (1991) used the same general approach
as Sederberg, but introduced singular value decompo-
sition and rotated coordinates to enhance the numer-
ical stability of implicitization for polynomial cubic
curves (Hobby, 1991). Macaulay’s (1916) formulation
expresses the resultant as a ratio of two determinants.
Bajaj et al. (1988) and Chionh (1990) use such proce-
dures to compute the resultant of three parametric equa-
tions for implicitizing. In Canny (1990), Canny com-
puted the resultant by perturbing the equations when
determinants were zero, which introduces an additional
variable and increases the symbolic complexity of the
resulting expression. As noted in Hoffmann (1989),
many techniques based on elimination theory can result
in extraneous factors along with the implicit equation,
and separating them can be a time consuming task.

Unsalan and Ercil (2001) studied the problem of con-
verting between parametric and implicit forms based on
polar/spherical coordinate representations. However,
their technique is valid only for star-shaped curves.
Many of these and other methods of implicitization,
such as multivariate resultants (Chionh and Goldman,
1992) are surveyed in Hoffmann (1993).

Another technique for implicitization utilizes
Groebner bases by computing a canonical represen-
tation of the ideal generated by the parametric equa-
tions by defining a suitable ordering of the variables
(Buchberger, 1985, 1989). The problem of implic-
itizing parametric surfaces without any base points
can be done using Groebner bases or resultants as
shown in Buchberger (1989) and Manocha and Canny
(1992b), although it is fairly complex in practice. Sev-
eral other procedures have been devised to implicitize
surfaces with base points (Hoffmann, 1989; Chionh,
1990; Manocha and Canny, 1992a, 1992b).
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Here, we note that any closed curve can be described
in terms of a set of two (or three for space curve) Fourier
series whose coefficients are called elliptic Fourier de-
scriptors (EFDs). The advantages of using EFDs are
that the shape information is concentrated in the low
frequency parts (Wallace and Mitchell, 1980; Kuhl and
Giardina, 1982; Zahn and Roskies, 1972; Granlund,
1972; Lin and Hwang, 1987), so that shape can be de-
scribed by the first few coefficients. Invariants derived
from EFDs have been used for identification (Lin and
Hwang, 1987; Lestrel, 1997). Recently, Sheu and Wu
have proposed a scheme to obtain two-variable 3D FDs
to describe both axisymmetric and nonaxisymmetric
objects, which are generated by computing 2D FDs
from 2D coordinates followed by an iterative compu-
tation of 3D FDs (Wu and Sheu, 1998).

In this paper, we present a new non-symbolic im-
plicitization technique, called the matrix annihilation
method, for converting parametric EFD representations
to algebraic ones. We should note that our method is nu-
merical, so that we can directly parametrize more com-
plex curves with higher order polynomial degrees. Fur-
thermore, our procedure is computationally efficient.

The structure of the paper is as follows: Section 2
reviews implicitization by Sylvester’s matrix. In
Sections 3 and 4, our approach for implicitization of
closed curves is explained and illustrated by examples.
Section 5 describes some vision-based examples and
some concluding remarks are given in Section 6.

2. Review of Implicitization
by Sylvester’s Matrix

Sylvester’s matrix elimination method (Sederberg,
1983; Hoffmann, 1989) can be used to implicitize
parametric polynomial curves such as

x = a2t2 + a1t + a0 y = b2t2 + b1t + b0

In particular, if we re-write these equations as

a2t2 + a1t + (a0 − x) = 0 b2t2 + b1t + (b0 − y) = 0,

the resultant of these two polynomials is then defined
by the determinant of Sylvester’s matrix, namely

S =




a2 a1 a0 − x 0

0 a2 a1 a0 − x

b2 b1 b0 − y 0

0 b2 b1 b0 − y




⇒ |S| = b2
2x2 − 2a2b2xy + a2

2 y2

+ (
2a2b2b0 + a1b1b2 − a2b2

1 − 2a0b2
2

)
x

+ (a2b1a1 + 2a2b2a0−2a2
2b0 − a2

1b2
)
y

+ (a2b0 − a0b2)2 + (a1b2 − a2b1)

× (a1b0 − a0b1) = 0

an implicit algebraic curve that is equivalent to the para-
metric curve. In general, if x and y are polynomials of
degree p, the corresponding algebraic curve also will
have degree p.

To further illustrate this procedure, consider the para-
metric curve defined by the equations:

x = 0.4 + 0.5 cos t − 2 sin 2t

y = 0.6 + 0.2 sin t − 2 sin 2t

By substituting the following equivalent relations for
cos kt and sin kt

cos kt = eikt + e−ikt

2
, sin kt = eikt − e−ikt

2

and then substituting z = eit, the following complex
form of these equations is obtained,

x(z) = 0.4 + 0.25z + 0.25z−1 + i z2 − i z−2

y(z) = 0.6 − 0.1i z + 0.1i z−1 + 0.35z2 + 0.35z−2

In order to make all z powers positive, both equations
are multiplied by z2, so that

0 = i z4 + 0.25z3 + (0.4 − x) z2 + 0.25z − i

0 = 0.35z4 − 0.1i z3 + (0.6 − y) z2 + 0.1i z + 0.35

Using elimination theory, the determinant of
Sylvester’s matrix is then defined by

S =




−i 0.25 0.4 − x 0.25 i 0 0 0

0 −i 0.25 0.4 − x 0.25 i 0 0

0 0 −i 0.25 0.4 − x 0.25 i 0

0 0 0 −i 0.25 0.4 − x 0.25 i

0.35 0.1i 0.6 − y −0.1i 0.35 0 0 0

0 0.35 0.1i 0.6 − y −0.1i 0.35 0 0

0 0 0.35 0.1i 0.6 − y −0.1i 0.35 0

0 0 0 0.35 0.1i 0.6 − y −0.1i 0.35




,
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Figure 1. Parametric curve (2 harmonic EFD) and 2nd degree
implicit curve (dots) obtained by Sylvester’s elimination method are
superimposed.

which implies the (monic) quartic implicit polynomial
curve

f4(x, y) = x4 + 16.327x2 y2 + 66.639y4 − 1.6x3

− 19.657x2 y − 13.061xy2 − 160.35y3

− 1.332x2 + 15.726xy + 79.039y2

+ 1.578x + 24.698y − 3.736 = 0

that is shown in Fig. 1.

3. Our Approach: Implicitization
by Matrix Annihilation

Consider an n-harmonic elliptic Fourier descriptor rep-
resentation of any 2-D curve, namely1

x(t) = ao +
n∑

k=1

(ak cos kt + bk sin kt)

(3.1)

y(t) = co +
n∑

k=1

(ck cos kt + dk sin kt)

where (a0, c0) is the center of the curve and
ak, bk, ck, dk, k = 1, . . . , n are elliptic Fourier coef-
ficients of the curve up to n Fourier harmonics. We

next substitute the relations

cos kt = eikt + e−ikt

2
, sin kt = eikt − e−ikt

2
(3.2)

for cos kt and sin kt in order to obtain a complex-
exponential form of the elliptical Fourier descriptors,
namely

x(t) = A0 +
n∑

k=1

Akeikt + Bke−ikt

(3.3)

y(t) = C0 +
n∑

k=1

Ckeikt + Dke−ikt

where

Ak = (ak − ibk)

2
Bk = (ak + ibk)

2

and

Ck = (ck − idk)

2
Dk = (ck + idk)

2

for k = 1, . . . , n. Here A0 = a0 and C0 = c0. These
equations can be expressed in a more compact form by
substituting z for eit,

x(z) = Ao +
n∑

k=1

(Ak zk + Bk z−k) ≡
n∑

k=−n

g[k]zk

y(z) = Co +
n∑

k=1

(Ck zk + Dk z−k) ≡
n∑

k=−n

h[k]zk

(3.4)

where

g[k] =




Ak if k > 0

A0 if k = 0

Bk if k < 0

h[k] =




Ck if k > 0

C0 if k = 0

Dk if k < 0

Alternatively, the g and h sequences can be written as
vectors, namely

g = [Bn · · · B1 A0 A1 · · · An]

h = [Dn · · · D1 C0 C1 · · · Cn]

Equation (3.4) can then be re-written as

x(z) = g · �z and y(z) = h · �z

where

�zT = [z−n · · · z−1 1 z · · · zn].
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To explicitly determine representations of the mono-
mials, x p yq , given x(z) = g ·�z and y(z) = h ·�z, we next
utilize the time convolution property of the well-known
z-transform, which states that if

g[k] ⇔ x(z) and h[k] ⇔ y(z)

then

g[k] ∗ h[k] ⇔ x(z)y(z)

Note that convolution in discrete-time domain cor-
responds to multiplication in the z-domain. For
example,

x2 = x(z)x(z) = Z{g[k] ∗ g[k]},
xy = x(z)y(z) = Z{g[k] ∗ h[k]},
y2 = y(z)y(z) = Z{h[k] ∗ h[k]}

The monomials x p yq for different p and q values can
be found similarly. We can therefore write




1

x

y

x2

xy

y2

x3

x2 y

xy2

y3

x4

x3 y
...

xyd−1

yd




︸ ︷︷ ︸
�

=




0 · · · 0 1 0 · · · 0
g

h

g ∗ g

g ∗ h

h ∗ h

g ∗ g ∗ g

g ∗ g ∗ h

g ∗ h ∗ h

h ∗ h ∗ h

g ∗ g ∗ g ∗ g

g ∗ g ∗ g ∗ h
...

g ∗ h ∗ · · · ∗ h︸ ︷︷ ︸
d−1

h ∗ h ∗ · · · ∗ h︸ ︷︷ ︸
d




︸ ︷︷ ︸
P: Convolution Matrix




z−nd

...

z−1

1

z1

...

znd




︸ ︷︷ ︸
�z

,

or simply

� = Pz̄,

for some complex (d +1)(d +2)/2× (2dn +1) matrix
P . We next re-write P as

P = P̂




1 0 0 · · · 0 0 0

i 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 i 0 · · · 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · 0 1 0

0 0 0 · · · 0 i 0

0 0 0 · · · 0 0 1

0 0 0 · · · 0 0 i




︸ ︷︷ ︸
C

for some unique, real (d + 1)(d + 2)/2 × (2d2 + 1)
matrix P̂ .

We then determine the “largest” (d + 1)(d + 2)/2 −
1 = d(d + 3)/2 columns of P̂ via an orthogonal-
triangular decomposition defined by QR = P̂E , where
Q is a unitary matrix, R is an upper triangular ma-
trix whose diagonal elements are of decreasing abso-
lute value, and E is a permutation matrix which orders
the columns of P̂E in correspondence with those of
QR. The unique unit vector ν that annihilates the first
d(d + 3)/2columns of P̂E , which we will define as P̃ ,
then yields an appropriate (non-monic) implicit poly-
nomial function as the product ν� = fd (x, y) = 0.
The Matlab routines “qr” and “null” are used to perform
the required computations. Implicitization of truncated
Fourier descriptors with n harmonics implies an alge-
braic equation of degree d = 2n.

To illustrate our matrix annihilation procedure, con-
sider the earlier parametric curve defined by

x = 0.4 + 0.5 cos t − 2 sin 2t

y = 0.6 + 0.2 sin t + 0.7 cos 2t

whose Fourier coefficients are given by

a0 = 0.4, c0 = 0.6

[ a1 a2 ] = [ 0.5 0 ], [ b1 b2 ] = [ 0 −2 ]

[ c1 c2 ] = [ 0 0.7 ], [ d1 d2 ] = [ 0.2 0 ]
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The complex Fourier coefficients are then deter-
mined to be

A0 = 0.4, C0 = 0.6

[ A1 A2 ] = [ 0.25 i ],

[ B1 B2 ] = [ 0.25 −i ]

[ C1 C2 ] = [ −0.1i 0.35 ],

[ D1 D2 ] = [ 0.1i 0.35 ]

The g and h sequences are then defined as

g = [−i 0.25 0.4 0.25 i]

h = [0.35 0.1i 0.6 −0.1i 0.35]

which subsequently imply




1

x

y

x2

xy

y2

...

xy3

y4




=




0 · · · 0 1 0 · · · 0

g

h

g ∗ g

g ∗ h

h ∗ h
...

g ∗ h ∗ h ∗ h

h ∗ h ∗ h ∗ h




︸ ︷︷ ︸
P




z−8

...

z−1

1

z
...

z8




The (15 × 14) P̃ matrix is then determined as outlined
above and explicitly given by

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0.4 1 0 0 0 0 0 0 0 0 0 0 0 0
0.6 0 0 0 0.35 0 0 0 0 −0.1 0 0 0 0

2.285 0.8 −1 0 0.0625 0 0 0 0 0.5 0 0 −0.5 0
0.24 0.575 0 0.35 0.14 0 0 0.1875 0 −0.04 0 0 0 0
0.625 0 0.1225 0 0.41 0 0 0 0 −0.05 0 0 0.07 0
2.614 3.855 −1.2 0.1875 0.075 0 −0.75 −0.7344 0 0.6 −1 0 −0.6 0

1.3147 0.46 −0.5281 0.28 0.4872 0.275 0 0.15 −0.35 0.0777 0 0 −0.3687 0
0.25 0.4725 0.049 0.3925 0.164 0 0.1006 0.1831 0 −0.02 0.1225 0 0.028 0
0.672 0 0.21 0 0.5096 −0.0367 0 0 0.0429 −0.0585 0 0 0.0883 0
9.589 5.656 −5.7061 0.3 0.4506 −0.9375 −1.2 −1.175 −0.375 3.605 −1.6 −1 −3.6675 0

1.5009 2.1385 −0.6337 1.1102 0.5399 0.33 −0.5883 0.247 −0.42 0.1061 −0.4594 0 −0.4425 −0.3625
1.1144 0.378 −0.2595 0.314 0.5386 0.3119 0.0805 0.1465 −0.3673 0.0658 0.096 0.1312 −0.2432 0
0.2688 0.4253 0.084 0.4355 0.2039 −0.0147 0.1515 0.2017 0.0171 −0.0234 0.2008 0 0.0353 0.0475
0.7716 0 0.3142 0 0.6174 −0.0696 0 0 0.0955 −0.0617 0 −0.0171 0.1162 0

and the vector that annihilates this matrix is found
to be

ν = [−0.0191 0.0081 0.1265 −0.0068 0.0806

0.4049 − 0.0082 − 0.1007 − 0.0669

− 0.8215 0.0051 0 0.0836 0 0.3414]

Reordering the terms in lexicographic order and di-
viding by leading coefficient, we obtain the following
monic implicit polynomial curve

f4(x, y) = x4 + 16.327x2 y2 + 66.639y4 − 1.6x3

− 19.657x2 y − 13.061xy2 − 160.35y3

− 1.332x2 + 15.726xy + 79.039y2

+ 1.578x + 24.698y − 3.736 = 0

that is shown in Fig. 2. The annihilated matrix
defined by our method is 15 × 14 and it takes
0.06 seconds to implicitize using Matlab. The
Sylvester’s matrix is 8 × 8, but it takes 7.25 seconds to
implicitize.

4. Some Additional Examples

In this section, we present the implicitization of more
complex curves. To demonstrate the performance of
our method when dealing with some possible prob-
lems, we employed a number of different curves. Given
the ordered sequence of points on each curve, we first
computed the parametric Fourier coefficients of the
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Figure 2. Parametric curve (2 harmonic EFD) and 2nd degree
implicit curve (circles) obtained by matrix annihilation method are
superimposed.

curve. We then implicitized the curves both by our
matrix annihilation method and Sylvester’s elimina-
tion method. Both implicitization methods were im-
plemented in Matlab.

For Sylvester’s elimination method, we used the
Symbolic Toolbox of Matlab. Assuming that n har-
monic Fourier coefficients are used to represent the
curve, our method involves computing the annihilat-
ing vector of P̃ , whereas implicitization by Sylvester’s
elimination method involves computing the determi-
nant of a 4n × 4n symbolic matrix. As the number
of harmonics used to represent curves increase, the
computation time increases for both methods. But be-
cause Sylvester’s elimination method involves sym-
bolic computation, the computation time increases
faster than our method, as we show in following ex-
amples.

When the number of harmonics used to represent a
curve is greater than 4 (degree of target implicit poly-
nomial greater than 8), we found that implicitization
by Sylvester’s elimination method is impossible using
Matlab because of the excessive size of the symbolic
matrices. Thus, in the following examples, implicit-
ization by Sylvester’s elimination method is demon-
strated only for a curve defined by 3 harmonic Fourier
coefficients.

4.1. Example 1: 3 Harmonic EFD Curve Converted
to 6th Degree IP Curve

The parametric curve in Fig. 3 is represented by
following Fourier coefficients:

a0 = −0.0906, c0 = −0.1194

[a1 a2 a3] = [−0.1827 − 0.1902 − 0.1302] ,

[b1 b2 b3] = [−0.3267 − 0.1753 − 0.1568]

[c1 c2 c3] = [−0.3383 − 0.153 − 0.0971] ,

[d1 d2 d3] = [0.3385 0.0992 − 0.1589]

The 6th degree IP obtained by both our annihilation
method and Sylvester’s elimination method is same,
namely

f (x, y)

= x6 − 6.4992x5 y + 17.6741x4 y2 − 25.7403x3 y3

+ 21.1742x2 y4 − 9.3283xy5 + 1.7195y6

− 2.5056x5 + 10.5328x4 y − 16.0141x3 y2

+ 10.0422x2 y3 − 1.6236xy4 − 0.4356y5

+ 0.1532x4 + 3.6857x3 y − 7.8187x2 y2

+ 4.8756xy3 − 0.7753y4 + 2.1925x3

− 2.9669x2 y + 0.8362xy2 + 0.0254y3

+ 0.6077x2 − 0.5863xy + 0.0803y2

− 0.0041x + 0.0599y − 0.0096 = 0

as shown in Fig. 3. The annihilated matrix P̃ defined
by our method is 28 × 27 and it takes 0.06 seconds to
implicitize. The Sylvester’s matrix is 12 × 12, but it
takes 8.46 seconds to implicitize.

4.2. Example 2: 6 Harmonic EFD Curve Converted
to 12th Degree IP Curve

The parametric curve in Fig. 4 is represented by
following Fourier coefficients:

a0 = −0.057, c0 = −0.0157

[a1 a2 a3 a4 a5 a6]

= [−0.5224 −0.0574 0.0830 0.1513 0.0262 0.1703]

[b1 b2 b3 b4 b5 b6]

= [−0.09 0.089 0.0258 −0.0154 0.0251 −0.0113]

[c1 c2 c3 c4 c5 c6]

= [−0.1396 0.0652 0.0682 0.0843 −0.0832 0.0176]
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Figure 3. Parametric curve (3 harmonic EFD), 6th degree implicit
curve (circles) obtained by matrix annihilation method and, implicit
curve (dots) obtained by Sylvester’s elimination method are
superimposed.

Figure 4. Parametric curve (6 harmonic EFD) and 12th degree
implicit curve (circles) obtained by matrix annihilation method are
superimposed.

[d1 d2 d3 d4 d5 d6]

= [0.6211 0.0893 0.0938 0.1858 −0.0864 −0.1864]

The 12th degree implicit polynomial2 obtained by our
annihilation method is shown in Fig. 4. The annihilated
matrix P̃ defined by our method is 91 × 90 and it takes

1.21 seconds to implicitize. The Sylvester’s matrix is
24×24 and, once again, it cannot be implicitized using
Matlab or Maple.

5. Implicit Shape Representation
in Vision Applications

In this section, we present some results relevant to com-
puter vision. In particular, consider the carpal image
of two bones depicted in Fig. 5(a). Using EFD fitting
(Lestrel, 1997) followed by our matrix annihilation al-
gorithm, a 10th degree IP curve is determined that de-
scribes the boundary of the first bone and an 8th degree
IP curve is determined that describes the boundary of
the second bone depicted in Fig. 5(b) and (c) respec-
tively. Analogous results are shown in Fig. 6. Similarly,
implicit representation of the cell in Fig. 7(a) is shown
in Fig. 7(b).

Once an implicit polynomial model that defines the
shape of an object has been determined, it can be
employed in a variety of ways. In particular, alge-
braic invariants can easily be computed from the IP
equations and subsequently used for object recogni-
tion (Wolovich and Unel, 1998; Unel and Wolovich,
1998, 1999, 2000; Subrahmonia et al., 1996).

The classical approach in curvature computation is to
use curve fitting or structural models in a local neigh-
borhood of the curve. However, this procedure typi-
cally performs poorly in the vicinity of singularities
(Monga and Benayoun, 1995). The curvature of an
IP-defined object can be directly defined mathemati-
cally using derivatives of the IP equations, as shown
in Rutter (2000). Such curvature computations can be
more direct and accurate than those obtained using the
classical approach, especially in the vicinity of singu-
larities. As in the case of invariants, curvature com-
parisons can be used to define and/or compare similar
free-form objects.

Finally, we have recently determined a new and
highly accurate method of determining the perpendic-
ular distance from a point in either 2D or 3D space
to a curve or surface defined by an implicit poly-
nomial equation. This method has been proven to
be very useful in metrology applications (Wolovich
et al., 2002). Since the underlying algorithm also can
be used to determine the distances between dots and
the solid IP curves in Figs. 5–7, it too should prove
to be very useful in a variety of model-based vi-
sion applications. We are currently investigating all
of these methods based on the implicit polynomial
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Figure 5. (a) Carpal3d 01 01 image. (b) Contour points of the first bone (dots) and 10th degree IP curve obtained by our matrix annihilation
(solid). (c) Contour points of the second bone (dots) and 8th degree IP curve (solid).

Figure 6. (a) Carpal3d 01 11 image. (b) Contour points of the first bone (dots) and 10th degree IP curve obtained by our matrix annihilation
(solid). (c) Contour points of the second bone (dots) and 8th degree IP curve (solid).

Figure 7. (a) Cell image and (b) contour points of the cell (dots)
and 10th degree IP (5 harmonic) (solid).

representations that we obtain using our matrix annihi-
lation procedure.

6. Conclusions

Implicit polynomial representations are very useful for
modeling given point data sets, and numerous papers

have been written which illustrate their importance in
image understanding and object recognition. A vari-
ety of methods have been devised for directly fitting
given data sets to implicit polynomial curves and, al-
though such methods are continually being refined and
improved, alternative implicitization procedures are
equally important and useful.

In this report, we have demonstrated a new ma-
trix annihilation method for efficiently converting cer-
tain types of parametrically defined curves to algebraic
ones. As we have explicitly illustrated, our matrix an-
nihilation method works very well and efficiently in
many higher order cases where symbolic-based meth-
ods fail, although stability problems and outliers can
occur when the number of EFD harmonics used to de-
fine an object exceeds six. We believe that alternative,
numerical matrix computations may well solve this
problem, and we are investigating such a possibility.

As noted earlier, the application of numerical in-
variants, curvature computations and perpendicular
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distance approximations, all derived from accurate and
robust IP models obtained using matrix annihilation
method, can offer significant benefits in many different
vision-based applications.

Notes

1. The coefficients of coskt and sinkt in (3.1) can be uniquely de-
termined from an ordered sequence of points which describe the
boundary of a curve using the relations given in Chapter 2 of
Lestrel (1997). We will assume here that this operation has been
performed and, therefore, that the Fourier coefficients are known.

2. The coefficients of the implicit polynomial equation which define
this and the remaining curves in this paper can be obtained from
the authors.
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