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Abstract

We outline a new procedure for measuring free-form curves and surfaces using im-
plicit polynomial equations. Such equations have long been known to offer certain ad-
vantages over the more traditional parametric methods. However, the lack of general
procedures for obtaining implicit polynomial models of higher degree, which precise-
ly represent arbitrary 3-D shapes, have prevented their general use in many practical
applications, including rapid and precise metrology. Recent mathematical advances ob-
tained at Brown University, experimentally verified using a state-of-the-art Chameleon
coordinate measuring machine, have demonstrated potential advantages of implicit
methods for modeling and measuring a variety of manufactured objects.

1 Introduction

Free-form surfaces, which are also called sculptured, contoured or organic, are ubiquitous in
our daily lives. Examples include airfoils, automobile bodies, ship propellers, turbine blades,
geographical contours and animal organs. Such surfaces may be observed visually or sensed
tactily. They may exist only in the mind of a designer or in the memory of a computer.
In many different applications, such as reverse engineering, industrial design, inspection and
metrology, computer vision, and computer aided geometric design, free-form surfaces must be

modeled, identified, aligned, compared (to other objects), modified, fabricated and measured.

Unlike objects that are composed of simple geometric primitives, such as planes, lines,
spheres and cylinders, free-form objects often have no obvious feature points. Therefore, they
are more difficult to define and model mathematically than simple geometric objects. In most
cases today, parametric equations are used to model small patches of free-form surfaces, which
are then pieced together to insure certain smoothness conditions at the patch boundaries.

This modeling requires some rather involved and sophisticated mathematical techniques, such
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as Bézier curves and surfaces, Coons patches, B-splines and NURBS (non-uniform rational

B-splines)|[1, 2, 3].

Many researchers have studied the fitting of measured points to nominal geometries using
such procedures. Patrikalakis and Bardis [4] developed data localization for NURBS surfaces,
and proposed an algorithm to construct a tolerance zone on a NURB surface patch. Their
part conformation is done by a least squares fit and compared to the tolerance zone. Later,
Tuohy et al.[5] developed a representation based on interval B-splines to deal with uncertainty

on non-linear geometric models.

Wang proposed a minimum zone evaluation algorithm based on a minimax fit[6], subse-
quently proposing a method to estimate the critical parameters of manufactured part models
from CMM data based on the evaluation of form tolerances by model fitting. This procedure
employs a minimization of the sum of squared distances of the measured points from the
surface of the model with respect to the model parameters[7]. The shape of the constructed
model is allowed to vary within a prescribed domain in which the shape parameters are de-
fined. Choi and Kurfess present another zone evaluation algorithm which places the sampled
data points within a specified tolerance range[8]. They then extend the zone fitting to a

minimum zone evaluation[9].

Least squares and extreme fits are often used in numerical coordinate data analysis, and
various researchers have developed a number of numerical algorithms for three dimensional
data analysis. Sahoo and Menq formalized the uncertainty in measured data analysis and
proposed a data localization algorithm based on a least squares fit. They also addressed the
robustness of their algorithm[10]. Kurfess and Banks formulated the underlying concept in
a more statistical approach by developing a statistical relationship to determine the validity
of geometric models[11]. In [12], Kurfess and Choi suggest a methodology to evaluate the
uncertainty in an extreme fit based on a method which estimates the extreme fit evaluation

error by re-sampling and a bootstrap replication of the extreme fit evaluations.

Generally speaking, there are problems associated with virtually any measurement al-

gorithms, and no single procedure can handle all of the problems associated with free-form



surfaces. In particular, precise alignment and measurement can be difficult[13], fabrication
may be questionable[14], modifications are generally local, rather than global[l], and the
measurement of surface points often requires iterative approximations. In this report, we
will present a new, alternative approach to free-form surface measurement which offers some
benefits compared to the more traditional methods noted above, especially from the point

of view of simplicity and computational speed.

2 Implicit Representations

In the past few years, implicit representations have been used more frequently, allowing a
better treatment of several problems. One example is the point classification problem, which
is easily solved with the implicit representation. It consists of a simple evaluation of the
implicit functions, although the determination of the distance error between the measured
and the model surface is considerably more involved. Furthermore, implicit representations
imply surfaces of desired smoothness with the lowest possible degree. Finally, when we
restrict ourselves to polynomial functions, the implicit representation is more general than
the parametric representation. Indeed, it is well known that parametric equations can be
converted to implicit ones through the process of implicitization[15, 16], but not always the

reverse.

Our ultimate goal in this report is to measure the error between points collected on a
model blade and corresponding points collected from other “identical” blades. Clearly, it is
difficult to compute such errors directly from the points, since it requires determining which
points on the model blade correspond to which points on the other blades. To ameliorate
this difficulty, we fit implicit polynomials to the points collected on the model blade and
compute the perpendicular distance from this implicit polynomial model to measured points
on the other blades. Although the implicit polynomial fit to the points on the model blade
does not “exactly” represent the curve that passes through these points, it is a very good
approximation, and certainly one that can be used to precisely determine the position errors

of the other blades relative to the model blade, as we will show.



We might note that there is very little in the literature on higher degree IP models for
large or entire free-form shapes because of the lack of tractable computational procedures for
obtaining and analyzing such models[17]. However, over the past two years, we have obtained
some significant new results relative to free-form objects defined by implicit polynomial (IP)

equations of (arbitrary) degree n, namely
Fo(z,y,2) = Z az‘jkfb"iyjzk =0
0<i+j+k<n
As a result of our investigations, we have developed several useful new procedures and com-
puter programs for describing and analyzing them[18, 19, 20, 21, 22, 23, 24]. Here, we extend

and embellish these earlier results to include the precise measurement of 3-D free-form sur-

faces.

Our measurement procedures are model-based, in the sense that they require initial IP
models of free-form surfaces. Unfortunately, the implicit polynomial equation(s) which de-
fine an arbitrary free-form surface are not easily determined. A “brute force” but highly
impractical method would be to alter the coefficients a;;;, of F,,(z,y, ) until a desired shape
is obtained. Alternatively, one could “fit” some mathematical equation to a set of data points
which outline the boundary of a given shape[25, 26, 27, 28]. The ability to obtain accurate
and robust mathematical expressions for given boundary data sets is a fundamental and
difficult problem in reverse engineering. Although several different fitting algorithms have
been proposed thus far, the computational cost of most of them is quite high because of the

nonlinear optimization procedures required to obtain acceptable fits.

Much recent research at Brown University has focused on fitting [P equations to 2-D and
3-D boundary data sets[25, 27]. These efforts have produced a new fitting algorithm, which
we will employ, called 3L fitting[25], which is relatively stable and fast, since it involves an
explicit, least-squares computation. 3L fitting also allows one to vary a level set on either

side of a set of planar boundary points until an optimal fitting accuracy is obtained.

In particular, consider an ordered, closed set, Iy, of Ny planar data points (z;,y;) which



one would like to model as the zero set of (say) a fourth degree implicit polynomial
F4($, y) = Z aljxly] = mT(xa y)a:
0<i+j<4

where the 15 component vector

m” (z,y) = [z y 2? zy v 23 2%y xy? v 2* 23y 22y® 2y® ¢,

and the corresponding 15 component vector

T
a= [aoo Q10 Qo1 G20 G11 Go2 30 A21 G12 Go3 G40 A31 22 Q13 ao4}

If each (i — th) row of the matrix My, is defined as m” (z;,y;), then as shown in [25], the

minimization of E =} Fy(x,y) is equivalent to the minimization of E = a” M, Mra.

J::y)EFO

Unfortunately, this “1L” minimization procedure often fails to produce an acceptable IP
fit to a set of data points, and much better results are obtained if one introduces two fictitious
data sets close to I'y, one set I',. of N . points an algebraic distance ¢ outside I'y and the

other set I'_, of N_, points an algebraic distance c¢ inside I'.

One next defines the (N_. + Ny + N_.) x 15 three level-set (3L) matrix

def My,

e

M3L = MFO ,
MF+0

and the corresponding N_. + Ny + N, . component column vector

wr €
b o],
+c
so that Mspa = b. It then follows[25] that the pseudo-inverse solution for the Fy(z,y)

coefficient vector

a= (M} Ms;)"* M b

generally implies a numerically stable and robust IP fit to the given data set I'y. A very

detailed development and explanation of this 3L fitting algorithm is given in [25].



3 Objects with Repetitive Shapes

One often must compare several (ideally) identical objects to each other or to a model object,
such as the turbine blades in a jet engine, the propeller blades of a ship, or the contoured
grooves in a gear. If the profile and tooth trace errors of a gear exceed tolerance errors,
the running qualities of the gear decrease significantly, causing increased tip wear that can
seriously degrade overall gear performance[29]. More serious consequences can occur if the

turbine blades in a jet engine are not precisely and identically fabricated.

A two step procedure will now be employed to quantify the differences between the three
blades of a ship propeller, the first being defined as the model blade. This would not be
necessary if one had the IP equations of a model blade to begin with. However, it is assumed
here that one does not have such a priori information, so that one of the propeller blades

must be measured then modeled to define an “ideal” IP model for all three.

Figure 1 depicts a Brown & Sharpe Chameleon coordinate measuring machine being used
to determine surface points on a 3-blade propeller. Initial measurements were used to obtain
2-D sets of (y, z) data points along five parallel profiles of the model blade A perpendicular to
the z axis. By varying the level sets on either side of the data sets, the 3L fitting algorithm[25]
was used to obtain the quartic (4th degree) IP equations that follow, whose zero sets closely

model points on the parallel profiles.

The (red) 3L fit of the (blue) measured points for profile 1 of blade A is defined by the
implicit polynomial equation: y* — 0.088y32 + 2.083y2%22 — 4.805y2% + 1.7412* + 14.531%° —
15.653y%2 —17.377y2? —2.70423 —87.629y* +4.574y 2 —201.26 22— 950.35y + 138.092 + 5146.7 =
0, and depicted in Figure 2.

The (red) fit of the (blue) measured points for profile 3 of blade A is defined by the implicit
polynomial equation: y* —1.038y%2z +3.041y%2? — 3.765y2> +1.9222* 4+ 15.833y% — 31.942y%2 +
29.537yz? — 25.7062% — 102.36y> + 29.709yz — 187.4932% — 1522.1y + 1811.32 + 9445.3 = 0,



Figure 1: A Closer View (Model) Blade A Measurements

and depicted in Figure 2.

The (red) fit of the (blue) measured points for profile 5 of blade A is defined by the implicit
polynomial equation: y* 4+ 1.453y%z — 7.594y?22 +6.431y2% +0.972* — 17.437y% 4 29.452y%2 +
7. Tyz? — 26.8452% + 371.463y? — 736.448yz — 20.3912% — 3088.1y + 2226.62 + 7559.2 = 0, and
depicted in Figure 2.

These 3 quartic IPs represent the equations that define the model blade A. The contours
of blades B and C will be compared to those of blade A by using these equations and those of
the other two profiles, 2 and 4, which are not given explicitly in this report. Unless otherwise
noted, the horizontal and vertical distance units depicted on all of these comparison figures

are in centimeters (cm).

To determine “how close” the measured points of all 3 blades fit the IP model, one must

determine the Euclidean distance from any measured point to the IP curve. As noted in
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Figure 2: Red 3L IP Fits of Blue Measured Profiles 1 (Top), 3 (Middle) and 5 (Bottom)
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Figure 3: Determining ~ 2-D L Distance Errors

[30], this distance cannot be computed directly. Therefore, one must use either an iterative
procedure? or an approximation. In [30], Taubin employs an approximate distance defined by
a “scaled” algebraic distance, namely |Fy,(z,y)|/ || VFn(z,y) ||- In this report, an alternative
approximation will be used because (a) it is faster than iteration and (b) it produced distance
approximation errors less than .001 mm in the experiments, while Taubin’s procedure could

yield distance errors greater than .01 mm.

To illustrate our distance approximation procedure, consider Figure 3, where (Y, zm)
denotes any measured point, and f,(y,z) = 0 represents any one of our red model IP ap-
proximations to the blue data points depicted in Figure 2. The points (yo, 2mm) and (Ym, 20)
are the perpendicular projections of the measured point onto the IP curve. To determine
these points, we substitute the measured z,, for z into f,(y,z) = 0, which implies a poly-
nomial function of y alone. We then solve for y, using Newton’s successive approximation

root-finding procedure, which converges very fast.

20ne such procedure, suggested by a reviewer, is to choose y1 = yo and 2; = 2z, as initial values in an
iterative scheme defined by yx+1 = Yr — Fn(Yk, 2k)/ Vy Fn(Yk, 2) and zx41 = 25 — Fn(yk, 21) [ V2 F2 Yk, 21)-



The line through (yo, zrm) and (Ym, 20) is then defined by:

Y=Y 22— 2Zm
det = (2m — 2 — o) + (ym — 2—2,) =0,
Ym — Yo %o — zm] ( 0) (Y = o) + (Ym — 0)( )

which implies that the line through (Y, 2z,,) perpendicular to this line is defined by:

Y= Ym _ moo (ym ?Jo) (W — v) + 2
Zm — 20 Ym — Yo Zm — R0

Substituting this value for z into f,(y, z) = 0 implies a polynomial function of y alone which
then is solved for y; using Newton’s successive approximation root-finding procedure, as

above. The corresponding z; point is then given by z; = (ym — y0)(Yr — %0)/(2m — 20) + Zm.

Since the point (yy, 2y) lies on both the IP curve and the perpendicular line from the
measured point to the line between (o, 2zm) and (ym, 20), our approximation to the distance

between (Ym, zm) and the IP curve is given by

d=\/Um = 99)? + (2m — 29)2
which is shown in Figure 3.

This procedure was used to determine the perpendicular distances from the measured
points on profiles 1, 3 and 5 of all three propeller blades to the red IP models defined by
blade A. Analogous, parallel profiles of all blades were obtained by consecutively rotating
our Cartesian coordinate system 120° about the vertical (z axis) and repeating measurement
trajectories in parallel (y, z)-planes 10 cm apart in the z direction (see Figure 1). Contour
differences between blades B and C, relative to the model blade A, were quantified in this

manner, as depicted in Figures 4, 5 and 6.

Clearly, the distance errors are the smallest for all three profiles of the model blade A.
These errors (centered at 0) are due more to the surface irregularities associated with the
actual propeller blades used in our experiments than to our distance approximation formula.
Also, inherent CMM measurement errors are always introduced because CMMs typically
record the probe location at the center of the stylus ball instead of the point where it actually

touches the surface.
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What is of primary significance, however, is how Figure 4 indicates that profile 1 of
blade B is slightly below (0.4mm) that of blade A, while profile 1 of blade C is slightly above
(0.4mm) that of blade A. Profiles 3 and 5 of blades B and C display a continual degradation
in these directions; i.e. profile 3 of blade B is approximately 0.8mm below that of the model
blade, and profile 5 of blade B is over 1mm below that the model. Profiles 3 and 5 of blade
C display that its shape diverges away from the model shape with increasing distance from

the vertical axis.

4 3-D Interpolated IP Surfaces

In certain situations, one might want to determine the distance errors for blades B and C,
relative to the model blade A, at arbitrary points or along arbitrary (z,y, z) trajectories on
the blade surface, and not only along the 5 previously defined (y, z) profiles. This objective
can be achieved using interpolation. In particular, by interpolating the 2-D IP equations of
a sequence of parallel, two-dimensional profiles of a 3-D surface, IP equations of the entire

surface can be obtained([31, 32, 14, 33, 34].

For example, a single IP equation can be used to model the entire 3-D surface of a
free-form object defined between (say) two profiles that are perpendicular to an z axis of
orientation. In particular, if

Fo(y, 2) = Z aiy'z’ =0

0<i+j<n

and

Fy(y,z) = Z bijyizj =0

0<i+j<n

define two adjacent parallel profiles, then the 3D implicit polynomial

Fn+1(x: y,Z) = Z (aij + mﬁij)yizj = 0,

0<i+j<n

where a;; = (a;;xp — bijxa)/(xp — o) and Bi; = (bij — asj)/(zp — x,), will define a linearly in-

terpolated surface between the profiles, because F,.1(z,,y, 2) = F,(y, 2z) and F,, 1 (2, y, 2) =

11
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Profile 3: Blade A (Red), Blade B (Green), Blade C (Blue)
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Figure 5: Profile 3 Perpendicular Distances
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Profile 5: Blade A (Red), Blade B (Green), Blade C (Blue)
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Figure 7: Determining ~ 3-D L Distance Errors

Fy(y,z). An entire 3-D model surface through several IP parallel profiles can be defined
using such an interpolation strategy, which is particularly useful when the parallel profiles

are relatively close to one another, as is the case here3.

This interpolation procedure was employed to obtain a model 3-D IP surface between the
five parallel profiles of blade A. Moreover, perpendicular measurement errors along arbitrary
3-D profiles then can be determined using such models and a 3-D “extension” of our 2-D

measurement strategy, as depicted in Figure 7.

In particular, the equation of the plane through (z¢, Ym, 2m), (Tm, Yo, 2m) and (T, Ym, 20)

is defined by
T — Zo Y—Ym 2 — Zm
det | Tm — ZTo Yo — Ym 0 =0,
Ty — To 0 20 — Zm

or

gym - yOZEZm - ZOl(x - .7)0) + S-Tm - xozr(zm - ZOl(y - ym)

a b
3In cases involving more complex shapes, quadratic, or higher order, interpolation procedures might be
used to produce more representative surfaces between the defined profiles.
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+£33m — 20) (Ym — Yo)(@m — o) =0,

-

'

c
where a, b and ¢ define the normal direction to the plane[35]. The line through the measured

point (%, Ym, 2m) perpendicular to this plane is then defined by

x_xm_y_ym Z = Zm

a b c

Substituting (x — x,)b/a+yp, for y and (x — x,,)c/a+ 2, for z into f,(z,y, z) = 0 implies
a polynomial equation in x alone which can readily be solved for x; using Newton’s root-
finding procedure, as in the 2-D case. The corresponding y; and z; are subsequently given
by (zf — xm)b/a + ym and (z; — Ty)c/a + zm, respectively, with the approximate distance

between (Zp,, Ym, zm) and the IP surface given by

d= \/(xm —25)2 + (Ym — ¥5)? + (2m — 25)?

This procedure was employed to determine the perpendicular distance errors from a 3-D
interpolated IP model of blade A to analogous (z,y, z) trajectories along all 3 blades. These
trajectories, which were chosen in a plane perpendicular to the (x,y)-plane and parallel to
the z axis, are depicted in Figure 8 looking down the z axis. Although they appear as

straight lines, because they lie in planes parallel to the z axis, they are curves.

The distance errors, which are plotted in Figure 9 using the IP surface equations obtained
by interpolation at the beginning of this section, confirm our earlier 2-D profile observations.
In particular, we again note that blade A has the smallest errors relative (of course) to its
own model. Moreover the blade B errors are slightly (0 - 1.7 mm) below those of blade A,
while the blade C errors are slightly (0 - 1.1 mm) above those of blade A.

5 Conclusions

We have now described the use of implicit polynomial models for modeling and measuring
free-form curves and surfaces, primarily those characterized by repetitive shapes. Our result-

s employed the 3L fitting algorithm in [25], which represents a fast and accurate fitting of

16
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measured 2-D points to corresponding implicit polynomial equations. Several parallel, two
dimensional IP profiles were used to quantify the perpendicular distance errors between a
model and measured propeller blades. The results were then extended to 3-D profiles using
IP interpolation and a fast perpendicular surface error measurement algorithm. In summary,
we illustrated how our new model-based measurement procedure can be used to quickly and
accurately determine the distance errors between model shapes and “identical” manufactured

shapes.
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