
Robotics and Computer Integrated Manufacturing 18 (2002) 125–133

Visual processing and classification of items on a moving conveyor:
a selective perception approach$
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Abstract

Many industrial applications require some sort of automated visual processing and classification of items placed on a moving

conveyor. In this paper, we present a selective perception based approach to visual processing. The novelty of this approach is that

instead of processing the whole image, only areas that are deemed ‘‘interesting’’ and hence calling for attention are analyzed. The

attentional sequences thus constructed can then be used for a variety of tasks including shape determination. Since only a small

portion of the whole image is processed, visual processing can be real-time and flexible without requiring special hardware. Two

different applications based on this approach are described. In a defective item detection task, we explain in detail how attentional

sequences can be used. As a second application, the approach has been implemented in an automated remote controller sorter in a

TV manufacturing plantFthus confirming its practical applicability. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

Many industrial applications require some sort of
automated visual processing and the classification of
items placed on a moving conveyor [1]. A typical process
comprises of (i) looking at the items on the conveyor via
some type of sensor such as a camera, (ii) localizing any
single item, (iii) classifying the item based on a set of
features such as shape and (iv) performing the necessary
action depending on the classifications made. In quality
control applications, the classification output may be
binary as ‘‘ pass vs. defective’’ while in sorting tasks, the
classification output may refer to the category of the
particular item.
A typical setup is as shown in Fig. 1. Consider

itemsFarbitrarily positioned and orientedFto be
moving on a conveyor. A camera located above the
conveyor views the items orthographically. We assume
that there is an item separator placed before the camera
so that the incoming items are not overlappingFwhich
is a realistic assumption in many manufacturing
environments. A sensing device signals the presence of

a new item, its image is taken and an analysis is
performed. Note that despite the item separator, the
items may be arbitrarily positioned and there usually is
some amount of perspective distortion on the image
plane. The goal of the classification is to determine the
shape of an item under view and whether there are any
deviations from its ‘‘golden’’ model. For automated
classification to be feasible, the following issues must be
addressed effectively [2]:

* The items to be inspected may be odd-shapedFcon-
taining holes and extrusions;

* Items’ shapes may not be regular;
* Items’ positions and orientations may be arbitrary;
* Real-time visual processing;
* Minimal special hardware requirements and
* New items may be added frequently.

Under the strong assumptions regarding the first three
issues, a variety of approaches have been proposed in
the literature. However, when the items may come at
arbitrary positions and be arbitrarily shaped, most of
the methods turn out to be computationally too
expensive and thus require special processing hardware.
In this paper, we present an approach that allows
the items to be arbitrarily located and be of arbitrary
shape, yet does not require special hardware. The
novelty of the approach is that it is based on selective
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perceptionFthat is instead of processing the whole
image, only areas that are deemed ‘‘interesting’’ and
thus calling for attention are analyzed [29,30]. Since only
a small part of the incoming visual data is processed,
simple hardware suffices for real-time visual processing.
Finally, it is simple enough so that new items may be
easily added.

1.1. Related work: industrial object recognition

There have been hundreds of articles describing
various methods for 2D object recognition in industrial
applications [3–5]. Systems with extremely robust
performance are available commercially for a wide
variety of tasks including automobile, electronics and
metal industries. Despite these developments, auto-
mated visual processing has been penetrating at a
comparatively slow pace in many manufacturing in-
dustries [6,7]. The reasons are related to the require-
ments regarding (i) highly structured environments such
as exact item positioning, (ii) the sufficiency of a small
set of distinguishing features such as area, perimeter, etc.
for identification, and (iii) specialized and usually
expensive hardware [2]. This has motivated us to
develop a method that may alleviate some of these
problems.

1.2. Related work: selective perception

Studies in vision science have revealed that biological
systems work by allocating limited computational
resources to only the interesting parts of an incoming
image [8–12]. This is done by saccades, rapid eye
movements that direct the optical axis to a target
fixation point such that the high resolution area around
the fixation pointFthe foveaFoverlaps with this
interesting area [13–15,33–35]. The fovea contains
almost the same number of photoreceptors as the rest
of the retina and therefore can provide detailed visual
information. Hence detailed processing occurs only in
these regions and the features thus computed are used to
solve the visual task being performed [32]. The rest of
the visual fieldFcalled the periphery is much lower in
resolution and serves in finding the next fixation point.
Vision researchersFmotivated by these findingsF

have then proposed selective perception systems that
mimic this type of visual processing [16–21,31,36,38–40].

Interestingly, few studies have focused on employing
selective perception mechanisms in higher level tasks
[37]. In this paper, we extend these ideas to automated
visual processing and classificationFa task assumed to
be simple, yet still posing problems in real-time and
robust applicability in manufacturing settingsFand
investigate the possibility of overcoming these problems
using a selective perception based approach.

2. Selective visual processing

In selective perception systems, the processing con-
sists of a continual repetition of pre-attention and
attention stages along with cognition as shown in Fig. 2.
The aim of the pre-attention stage is to determine where
to look next in the visual field. After pre-attention stage,
visual resources are allocated to process only a small
part of the whole scene and the system goes into an
attentive mode. In this mode, only this region is
subjected to further processingFin order to extract
more complex features. These two consecutive stages
occur repeatedlyFcollecting data in space and time.
The attentional sequences thus collected are subjected to
further processing to accomplish the given visual
taskFeventually forming a model of the item. The
cognition stage has two possible modes: (1) LearningF
where the system is instructed that it is presented with a
new item so that it saves this model in its memory; and
(2) Classification where the system compares this model
to the models in its memory and decides whether the
item is close to any of those in its memory.

2.1. Fovea, periphery and visual field

Let It be an incoming image at time t: The fixation
point at time t is the point of intersection of the optical
axis with the image plane. At iteration k; a small region
of I t centered around the fixation point sized Xf � Yf

and having high acuity is designated as the fovea Ik
f :

Around the fovea is a region of low resolutionF
referred to as the periphery Ik

p : The fovea Ik
f and the

periphery together constitute the visual field Ik
v : A small

region Ik
h containing fovea ensures that the same region

is not looked twice. Let dIk
h be the set of pixels on the

boundary of the Ik
h : The memory M is the union of all

Pre-attention Attention Cognition

New fovea k
fI State

ks

New visual field
k
vI

Fig. 2. General flow of processing.

Fig. 1. Visual classification setup in an industrial setting.
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inhibition regions of the foveas that have been looked at
and thus enables and allows past foveas to be recalled.

2.2. Pre-attention: where to look next

The aim of pre-attention is to determine where to look
next in the image I t: Each next fovea Ikþ1

f in a fovea
sequence is found by applying simple computations on
the periphery Ik

p of the current fovea Ik
f : The periphery is

an adaptive sized window around the inhibition region.
If no new fovea can be found, the fovea sequence ends
and a new sequence begins by randomly fixating on a
region not previously looked. As a result, a series of
fovea sequences If ¼ ðI1f ;y; IK1

f ; IK1þ1
f ;y; IK2

f ;yÞ: The
set F contains the iteration indexes of the first fovea of
each fovea sequence. Finally, if all the image has been
explored, the system stops. The pseudo-code for the pre-
attention mechanism is

1. Initialization: Get the current image I t: Initialize M ¼
Ø: Set F ¼ Ø: Set the iteration index k ¼ 0:

2. Finding a first fovea: Randomly fixate on an image
point in I t � M and determine the fovea Ik

f and the
inhibition region Ik

h : Add index k as the index of the
first fovea in this sequence via F ¼ F,fkg

3. Current periphery: Set periphery size n ¼ maxðXf ;Yf Þ:
Set the periphery Ik

p ¼ NnðdIk
h Þ where NnðdIk

h Þ is the
set of image points which are n-connected to dIk

h :
4. Candiate next foveas: Let the set of candidate foveas

CðIk
f Þ consist of all the Xf � Yf regions in the

periphery Ik
p with an ox � oy% overlap as seen in

Fig. 3. In order to avoid looking around the same
fovea, the inhibition region Ik

h is excluded from
consideration and thus CðIk

f Þ is determined from
Ik
p � Ik

h :
5. Saliency measure: For each candidate fovea Ic

fACðIk
f Þ

an attention criteria a : Ic
f-RþFa scalar valued

function of interest based on the presence of simple
features with low computational requirementsFis
computed. In our case, saliency is defined as the
weighted sum of (i) the distance between the current
fixation point and ‘‘candidate’’ next fixation point,
(ii) the difference in their a priori selected features
and (ii) the variance of these features in 8-neighbor-
hood of the candidate next fixation point. Let us note

that depending on the application, different saliency
measures can easily be adopted.

6. Next fovea: Compute maxIc
f
ACðIk

f
ÞaðI

c
f Þ: If this value

exceeds a prespecified threshold t; then the next fovea
is determined by

Ikþ1
f ¼ arg max

Ic
f
ACðIk

f
Þ

aðIc
f Þ if max

Ic
f
ACðIk

f
Þ

aðIc
f Þ > t:

Compute Ikþ1
h : In order to recall that this fovea has

been previously looked at, the inhibition region is
added to the memory M ¼ M,Ikþ1

h : Increment the
iteration index k’k þ 1: Start loop again by going to
step 3.

7. Periphery Enlargement: If the maximum saliency
max Ic

f
ACðIk

f
ÞaðI

c
f Þ does not exceed the threshold t;

increment the periphery size n’n þ 1: Provided that
n is less than a max neighborhood bound U ; go to
step 4. If U is exceeded and if all the image has not
been looked (MaI t), increment the iteration index
k’k þ 1 and go to step 2 to start a new fovea
sequence. Otherwise all interesting points have been
looked and the process stops.

2.3. Attention

The aim of attention is to determine the state sk of
each fovea found in pre-attention. Associated with each
sequence of foveas, there is a sequence of statesFwhich
we refer to as an attentional sequence. Hence, attention
generates a series of attentional sequences. Attentive
processing is determined by the task at hand and is
much more detailed in nature than that of the pre-
attentive stage. Consider N different features and let the
set of values of mth feature be denoted by Om: The value
of each feature is obtained via an operator fm : I t

f-Om

acting on the fovea I t
f : If Om is a finite set with Nm

elements, then let Om ¼ fvm1
; vm2

;?; vmNm
g denote the

set of values that fm can take. Let O denote the feature
space as O9O1 �y� ON : Note that

Oj j ¼
YN
m¼1

Nm:

Each observation skAO then becomes a N-vector of
feature values:

sk ¼ ½ f1½Ik
f �;y; fN ½Ik

f ��:

The pseudo-code for the attention mechanism is

1. Initialization: get the current k; Ik
f and Ik

h from the
pre-attentive stage.

2. Fovea state: apply the set of operators fm

m ¼ 1;y;N and determine sk:
3. Adding to the attentional sequence: add sk to the

sequence ðs1;y; sk�1Þ:

In the results reported in this paper, we are interested
in 2D shape. Thus a very simple feature set O ¼ O1

Fixation Point

Fovea

Inhibition Region

Periphery

Candidate
foveas
with             %

overlapping
yo×xo

Fig. 3. Visual field and its components.
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suffices. The set O1 is defined as O19fiji ¼ 0;y; 7g
where each value i indicates an edge oriented i � 451: In
general, more complicated features [22–24] that may be
required by the task can easily be used.

3. Using attentional sequences

Each attentional sequence thus formed is input to the
cognition module. In our case, since we are interested in
shape-based classification, this module should generate
a shape description as a first step. Recall that the items
to be inspected may be odd-shapedFcontaining holes
and extrusions. Thus, shape description should include
both the items’ outer shape and the shapes of all its inner
parts, respectively. It turns out that since attentional
sequences are based on only edge feature, each sequence
in essence contains the most significant cues of a
contourFof either the outer shape or an inner
partFalbeit perhaps partially. Thus, contour segments
can be easily extracted from the attentional sequences.
Furthermore, contour segments may be easily merged
together to form complete and closed contoursFin
cases this is required. Then using a translationally and
rotationally invariant transformation, each complete
contour can be represented compactly by a set of few
parameters. Furthermore, the geometrical relation
between the outer shape and the inner parts can also
be determined. Finally, depending on the modality of
operationFlearning or decision-making, either the
generated shape description is stored in model library
for future reference or compared to the stored models in
order to identify the current item.

3.1. Identifying contours

Contour identification consists of two stages: (1)
finding a contour segment passing through all the
fixation points in an attentional sequence and (2)
merging different attentional sequencesFif necessaryF
and hence forming the maximal contour segment. The
pseudo-code for contour identification is

1. Initialization: Get the index set F, the fovea sequence
If ¼ ðI1f ;y; IK1

f ; IK1þ1
f ;y; IK2

f ;yÞ and the attentional
sequence S ¼ ðs1;y; sK1 ; sK1þ1;y; sK2 ;yÞ from the
attention stage.

2. Forming contour segments:
2.1. Set iAF such that 8jAF ; ipj:
2.2. Let ieAF ; ie > i and 8kAF ; kai; iepk be start-

ing index of the next fovea sequence. If no such ie
exists, all the foveas have been considered. Skip
to 3.

2.3. Let j’i þ 1: Find a set of image points
connecting the fixation point of fovea i to the
the fixation point of fovea j as illustrated in

Fig. 4 (left). Two image points are connected to
each other if there is an 8-connectivity path from
one to the other and all the image points along
the path are in similar states.

2.4. i’i þ 1: If ioie; go to step 2.3. Otherwise, set
i’ie and go to step 2.2.

3. Merging contour segments:
3.1. Set Contours Merged=False,
3.2. For each iAF

3.3. For each ieAF ; ieai: Merge the corresponding
contour segments if their endpoints are located
close to each other as shown in Fig. 4 (Right).
Remove the index of the merged fovea sequence
from F by setting F ¼ F � f jg: Set Con-
tours Merged=True.

3.4. If Contours Merged=True, go to step 3.1
Otherwise stop.

As a result of this stage, a set of contours is generated.
Each contour is a connected sequence of image points.
In the next step, a translational and rotational invariant
representation of each contour is generated.

3.2. Shape representation

Once contours are extracted, the next step is to
represent them in a translationally and rotationally
invariant manner. For this, we use elliptic Fourier
descriptors [25,26]. Elliptic Fourier descriptors represent
a shape weighted sum of ellipsoids. Using elliptic
Fourier descriptors, each shape i is defined by a vector
qiAR4kþ2 where k is the number of harmonics:

qi ¼ ½ai0bi0ai1bi1; ci1di1yaikbik; cikdik�T:

The order of harmonics k represents the accuracy of
the model. Given a sequence of points forming a
complete contour, a simple procedure can be used to
compute the elliptic Fourier parameters [26]. A very
brief description of this procedure is given in Appendix
A. In order to be positionally and rotationally invariant,
a set of invariants computed piAR2k from the elliptic
Fourier descriptors computed as described in Appendix
A are used as shape parameters [28].

Fig. 4. Contour construction (left); merging (right).
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3.3. Relation between outer and inner shapes

Once the shape parameters are extracted, the next
stage is to generate a model R for the shape of the item
along with all of its inner parts. As an example, an item
with four inner parts is shown in Fig. 5. Note that as the
item may be randomly positioned and oriented, the item
model must be also positionally and rotationally
invariant. A graph representation is used for this
purpose. The item representation is generated as
follows:

1. The shape parameter p0 of the item is added to R:
2. A subpart assumed to be always present is found and

a reference vector using the center of the item and the
center of an inner part is constructed as shown in
Fig. 5 (left).

3. Each inner part p is added to R using the radial
coordinates ðrp; ypÞ of its center point as shown in
Fig. 5 (right).

3.4. Learning or identification

After the model of the incoming item is constructed,
two different modes of operation is possibleFdepend-
ing on prior user choice. In the learning mode, the
system assumes that it is presented with a new type. In
this case, the item representation is stored in its memory
as a ‘‘golden’’ model for future useFRm ¼ R: Suppose
C different item types are presented to the system. Then
C different models Rm

i ; i ¼ 1;y;C are stored in
memory. Let PL denote the number of parts of item L:
Then each model consists of outer shape parameters,
and PL inner shape parameters. In the decision-making
mode, a ‘‘to-be-classified’’ item is presented to the
system and a check regarding whether the item matches
a model L from the memory is made. The comparison is
based on (1) comparing the outer shape parameters and
(2) identifying corresponding subparts on each respec-
tively and then (3) using a measure of proximity to
determine whether the positioning and shape of each
subpart on the item is as it should be. The values of all
the thresholds are experimentally determined. The

pseudo-code is

1. Initialization: Find R for the current item. Let L
denote the type of current item. L is initialized to be 0
which means that type is unknown. Set i ¼ 1:

2. Comparison:
2.1. Compute jpm

i0 � p0jFthe Euclidean norm of the
difference between the item’s shape parameter
vector and that of the ith model.

2.2. If jpm
i0 � p0j > l; try next model by incrementing

the model no i’i þ 1: If ipC; go to 2.1 else
stop. All models have been tried and item cannot
be identified.

2.3. If jpm
i0 � p0jpl; L ¼ i and the current item is said

to be of type L:
2.4. For each inner part p of the model L; find an

inner part jpAf1;y;PLg of the item that best
matches in the graph representation as

SSCpj9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr
p cosðypÞ � rm

Lj cosðyLjÞÞ
2

q

þ ðr
p sinðypÞ � rm
Lj sinðyLjÞÞ

2;

jpAarg min
jAf1;y;PLg

SSCpj :

Here ðrp; ypÞ and ðrm
Lj ; y

m
LjÞ are the radial coordi-

nates of pth and jth inner parts in R and Rm
L

respectively: If no such jp can be found, note p as
a missing part. Otherwise if the shape parameters
are not similar by checking jpm

p � pjpj > lp; note
part p as having problematic shape.

2.5. Compute average position error ASSC:

ASSC ¼
1

PL

XPL

p

SSCpjp :

If ASSCrk where k is a preset threshold, then
perfect match. Otherwise, missing subparts.
The ASSC value is almost invariant for a item
no matter what its orientation is. Due to a
missing subpart (i.e. a missing hole), the value of
ASSC will change considerably compared with
the model’s ASSC. Having matched the sub-
parts, we can easily determine the item matches
its memory model or not.

4. Application results

This approach has been implemented in two applica-
tionsFa defective item identification task and a
classification task. The first development is done
for a subcontracting firm producing door parts for
auto industry. The second application is done
for a remote controller manufacturing line in the TV
industry.

Fig. 5. Reference vector (left); Graph representation (right).
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4.1. Defective item identification

This application is done for a subcontracting firm
manufacturing metal door parts for auto industry. Items
are odd-shapedFsimilar to that of Fig. 7. Items have
several drilled holes inside them and the goal is to do
100% inspection to determine whether any has missing
holes or notFand if so, to find out the missing hole. A
big motivation is that due to tediousness of the task
human inspectors tend to become fatigued very fast. The
setup is as shown in Fig. 6. The illumination system
consists of four lamps located so as to minimize the
shadowing effects of each lamp. Visual processing is
done on the Smarteye Vision System which is designed
around a high performance DSP chip TMS320C31PQL.
Computationally intensive parts of the program are
directly programmed in TI assembly language.
First, we consider the item shown in Fig. 7(a) This

item has four inner parts. In this item, defective items
are missing a drilled hole labelled b in Fig. 7(a). If this
hole has been drilled, it appears as a black small hole.

On the other hand, if it is missing, only a dent is seen
similar to that of Fig. 7(c). First the item is taught to the
system and a model Rm

1 is stored in memory. The inner
part labelled c is used to construct the reference vector.
Then ‘‘good’’ items are placed with varying orienta-

tion and ASSC values are computed. The results are
displayed in Fig. 8Fwhere each point represents the
mean of ten sample inspections. It is observed that
ASSC varies between 0 and 6. Observe that somewhere
around 3001, ASSC goes down to zero which means the
model Rm

1 was generated with an item oriented roughly
at 3001. For the remaining orientations, ASSC is slightly
different from zero since our items have extrusions and
holes on them, foreshortening effects come into play and
distort the image very slightlyFthus causing variation
of the ASSC.
ASSC values for varying orientations of the defective

item are shown in Fig. 9Fwhere again each point
represents the mean of ten sample inspections. The
ASSC value varies between 10 and 15. Hence a
threshold value about l; kD627 can be used for
classifying defective items.
Similar experiments were held for another more

complicated item shown in Fig. 10. This item has ten
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Fig. 8. ‘‘Good’’ Item 1FASSC vs. orientation.
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Fig. 6. Experimental setup for defective item identification.

(a) (b) (c) (d)

Fig. 7. Item 1F(a) and (b) Good item: item with inner parts and graph

representation; (c) and (d) Defective item: defective item with missing

drilled hole b and graph representation.

(a) (b) (c) (d)

Fig. 10. ITEM 2F(a) and (b) Good item: item with inner parts and

graph representation; (c) and (d) Defective item: defective item with

holes b and f missing and graph representation. Note that in its graph

representation arcs ending at b and f are missing.
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inner holesFlabelled ‘‘a’’–‘‘h’’ as seen in Fig. 10(a). One
or several of these holes may be missing. In our
experiments, defective items have holes labelled b and
missing as seen in Fig. 10(c). Fig. 11 shows the mean
ASSC values for 10 sample inspections for each
orientation. The model of the industrial item is
constructed using a ‘‘good’’ item with a randomly
selected orientation at 2701. For the remaining orienta-
tions, again ASSC is slightly different from zero again
due to foreshortening effects. Next ‘‘defective’’ items
Fwhere there are two holes missingFare presented to
the system in varying orientations. Fig. 12 shows
average ASSC values for 10 experiments. The observa-
ble difference in ASSC values between good and
defective items can be used to determine a threshold l
and k for deciding whether a given item is acceptable or
not. In our case, this value is about l; kD4: In addition
to detecting faulty items, the system easily identifies the
faulty subparts. The experiment is repeated for items
with many different types of faults. As expected, as the
number of faults of type ‘‘missing holes’’ increases,
ASSC also increases.

4.2. Automated sorting

In our second application, an automated remote
controller sorting system has been developed for a TV
manufacturing plantFcurrently operational as shown
in Fig. 13. There are five different types of remote
controllers with about ten different colors. Each type of
remote controller can be distinguished based solely on
the outer shape. In this application, all the different
types of remote controllers are being manufactured on
the same assembly line. After being manufactured, they
are subjected to functional testingFwhich varies
according to their type. Hence, an automated visual
sorter stationFplaced on the assembly lineFensures

that an incoming remote controller is sent to the
appropriate control station. First, the system is pre-
sented with a sample of each remote controller type. It
selectively attends to the imageFthus coming up with a
sequence of fixation points as shown in Fig. 14 (left). It
then finds the contour segments going through these
fixation points and then merges them to find the closed
outer shape as outlined in Sections 2.3. It is then set to
learning mode where the parametric representation pm

i0

of this outer shape is retained for future use. This is
repeated for each type i ¼ 1;y; 5: After being presented
with samples of all the types, the system is ready to
operate in the sorting mode. When a ‘‘to-be-sorted’’
remote controller comes to the sorting station, it is
selectively attended and the attentional sequence thus
generated is used to eventually generate the invariant
parameters p0 of its outer shape. Since the outer shape is
sufficient for determing its type, only steps 2.1–2.2 of the
comparison step of Section 3.4 are applied. First, this
parameter set is then compared with those of the
modelsFpreviously taught to the system using Eucli-
dean metric jpm

i0 � p0j as discussed in Section 3.4. The
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Fig. 14. Left: A remote controller and a sequence of fixation points in

white dots; Right: Directing to one of the control stations.
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Fig. 13. Automated sorting system (courtesy of Beko A.-S.). From the

right part, remote controllers are fed automatically one-by-one from

the assembly line. A camera acquires their image and visual processing

determines their type. Accordingly, the remote controllers are directed

to one of the control stations. Those whose types are unidentified are

directed to a basket as seen in the front.
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type L of model that minimizes jpm
i0 � p0jpl is

designated to be type of the remote controller. Accord-
ing to this value, the remote controller is directed to one
of the possible control stations through an electro-
mechanical setup as shown in Fig. 14(right). If no such
L can be found, the system cannot assign the incoming
remote controller to any of the five classes and the
situation is announced as a miss. In this case, the remote
controller is sent to a basket. With extensive testing,
false detection rates have been reduced to 0% for all
types and misses to 0.5%.1

5. Conclusion

Within the general problem of automated classifica-
tion on a moving conveyor, this work proposes a novel
approach to visual processing based on selective
perception. Here instead of processing the whole
incoming camera image, only ‘‘interesting’’ regions are
processed. Thus the required computational resources
for being flexible and real-time at the same time are
reduced considerably. In this approach, the visual
processing consists of a continuum of pre-attentive
and attentive stages. An attentional sequence thus
generated represents the visual data spatio-temporally.
This processing is occasionally followed by cognition,
where attentional sequences are processed according to
the demands of the task at hand. Two applications
based on this approach are described. Both applications
require real-time decision making. In an defective item
detection task, attentional sequences are used to
construct a representation of an incoming item. The
average similarity measure ASSC between the model
previously stored and the ‘‘to-be-inspected’’ item is
computed in order to distinguish between good and
defective items. ASSC values lying above a threshold are
labelled as being defective. In the second application, an
implementation of this approach for the automated
sorting of remote controllers in a TV manufacturing
plant is described. Here, with an extensive development
and experimental evaluation, nearly 100% reliability is
achieved. Furthermore, selective visual processing
allows inspection times of about 100ms. As future
work, we plan to work on extending this framework to
incorporate more complex features in order to be able to
detect other types of defects.
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Appendix A. Computational details for elliptic Fourier

descriptors

In this Appendix, we describe a simple procedure
described in detail [26] in order to compute the elliptic
Fourier parameters for ith object. Each shape i is
defined by a vector qiAPDR4kþ2 using EFDs, where k is
the number of harmonics:

qi ¼ ½ai0bi0ailbil ; cildilyaikbik; cikdik�T:

The EFDs are computed as follows:

aik ¼ ð1=ðpoik
2ÞÞ

XP

p¼1

ðDxip=DtipÞðcosðkoitipÞ � cosðkoiti;p�1ÞÞ;

bik ¼ ð1=ðpoik
2ÞÞ

XP

p¼1

ðDxip=DtipÞðsinðkoitipÞ � sinðkoiti;p�1ÞÞ;

cik ¼ ð1=ðpoik
2ÞÞ

XP

p¼1

ðDyip=DtipÞðcosðkoitipÞ � cosðkoiti;p�1ÞÞ;

dik ¼ ð1=ðpoik
2ÞÞ

XP

p¼1

ðDyip=DtipÞðsinðkoitipÞ � sinðkoiti;p�1ÞÞ:

Dxip and Dyip are incremental changes of the ith contour
in x and y directions during the time Dtip: Ti is the period
to trace the ith contour once. oi is defined as 2p=Ti:
The Euclidean invariants can be defined as follows:

Iik ¼ a2ik þ b2ik þ c2ik þ d2
ik;

Jik ¼ jaikdik � bikcikj:

Iik being the square sum of two semi-axis lengths of the
kth ellipse and Jik being the area of kth ellipse.
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