
The Dense Estimation of Motion and Appearance in Layers

Hulya Yalcin
Division of Engineering

Brown University
Providence, RI 02912
hy@lems.brown.edu

Michael J. Black
Computer Science
Brown University

Providence, RI 02912
black@cs.brown.edu

Ronan Fablet
LASAA

IFREMER
Plouzane, France
rfablet@ifremer.fr

Abstract

Segmenting image sequences into meaningful layers is fundamental to many applications such
as surveillance, tracking, and video summarization. Background subtraction techniques are
popular for their simplicity and, while they provide a dense(pixelwise) estimate of fore-
ground/background, they typically ignore image motion which can provide a rich source of
information about scene structure. Conversely, layered motion estimation techniques typi-
cally ignore the temporal persistence of image appearance and provide parametric (rather than
dense) estimates of optical flow. Recent work adaptively combines motion and appearance
estimation in a mixture model framework to achieve robust tracking. Here we extend mixture
model approaches to cope with dense motion and appearance estimation. We develop a unified
Bayesian framework to simultaneously estimate the appearance of multiple image layers and
their corresponding dense flow fields from image sequences. Both the motion and appearance
models adapt over time and the probabilistic formulation can be used to provide a segmentation
of the scene into foreground/background regions. This extension of mixture models includes
prior probability models for the spatial and temporal coherence of motion and appearance. Ex-
perimental results show that the simultaneous estimation of appearance models and flow fields
in multiple layers improves the estimation of optical flow atmotion boundaries.

Keywords: motion estimation, appearance models, tracking, optical flow.





1 Introduction

The accuracy of dense optical flow techniques [9] has improved to the point where they are widely

used and accuracy is no longer the most pressing issue. Consider, for example, domains such

as surveillance where optical flow algorithms must run continuously and automatically adapt to

changes in lighting and motion over both short and long time frames. In such an application one

might be willing to trade absolute accuracy for stability, dependability, and full automation. Tradi-

tional optical flow methods that rely on a simple assumption of brightness constancy are at a dis-

advantage in such applications as they have no “memory” about the motion in the scene over time

and no “model” of the objects in the scene and their appearance. In contrast, model-based tracking

methods achieve high accuracy and reliability by exploiting a rich appearance representation. Ad-

ditionally, optical flow methods lack an explicit model of scene structure or scene segmentation.

We argue that models of image appearance and scene structureare necessary for stable optical flow

estimation and that the description of appearance and scenestructure must adapt over time.

We propose a Bayesian framework for estimating dense optical flow over time that explicitly

estimates and exploits a persistent model of image appearance. The approach assumes that the

scene can be described by a number of layers but that the motion of each layer is highly flexible.

The approach also exploits prior models that express how motion and appearance may change

over time. To achieve this, we extend mixture model methods to the case of dense (rather than

parametric) flow estimation and derive a mixture model formulation that includes explicit spatial

and temporal priors.

The key contributions of this method are: 1) it extends robust optical flow methods; 2) it

estimates dense, subpixel-accurate, flow fields; 3) it produces an estimate of foreground and back-

ground appearance; 4) it can be used to segment the scene intolayers; 5) the layers help localize

motion boundaries and reduce over-smoothing.

3



Figure 1: Estimating dense motion in layers for an outdoor sequence. Comparison between the
horizontal flow obtained with a standard optical flow technique (sharp motion boundaries but poor
detail) and the horizontal component of flow field estimated with our approach (notice the fine
details associated with the head and foot). Right bottom boxshows the results of our approach: A
layer mask indicating the foreground ownership and appearance models for two layers.

In an Expectation-Maximization framework, we alternate between solving for layer “owner-

ship” weights and estimates of motion and appearance. Theseappearance and motion models are

simultaneously estimated in a maximum a posteriori (MAP) framework. First appearance models

are estimated, holding motion flow fields fixed and then appearance models are fixed and flow

fields are refined. Figure 1 illustrates the method.

When compared with previous methods, the resulting motion estimates benefit from the stabi-

lizing effects of the appearance model and the motion boundaries more accurately correspond to

the object boundaries in the scene.

2 Related Work

While the obvious goal of motion estimation is to compute howthings move in images, the goal

is also to discern something about the structure of the scene. It has been suggested that knowing
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the image motion would facilitate segmentation of the sceneinto physically meaningful regions.

Conversely, knowing the segmentation can facilitate the accurate estimation of optical flow [2].

We address the problem of coupling these processes in a unified framework.

Layered models of optical flow have been one of the key paradigms for simultaneously seg-

menting the scene and estimating its motion [1, 10, 20]. In particular, mixture model frameworks

make a soft assignment of pixels to layers. Unfortunately, this segmentation does not typically

enforce spatial coherence between neighboring pixels and may, hence, be quite sparse. Addi-

tionally, these methods are typically limited to parametric motion models or highly constrained

motions [20]. Here we extend the mixture model framework to estimate dense optical flow in

image layers. Each pixel can belong to one of a number of layers and consequently may have

multiple interpretations. Traditional optical flow priorsare extended to this framework and result

in spatially coherent segmentations.

One of the perennial problems of optical flow estimation is the precise localization of motion

boundaries. We argue that this problem is due, in part, to thelack of an appearance-based segmen-

tation. Image segmentation itself is a hard problem howeverand mistakes in segmentation may

affect the optical flow estimates. Consequently, we seek a coupled solution.

There have been attempts to couple the motion and appearancesegmentation problems in var-

ious ways; for example, by exploiting explicit boundary contour processes and the statistics of

image regions [17]. We take a different approach that draws from the tracking literature. Optical

flow is typically viewed as a 2-frame (orn-frame) problem where the assumption of brightness

constancy between the frames is exploited to compute motion; when the next frames come along

the previous ones are forgotten. This is in contrast to tracking approaches that model the appear-

ance of an object and can, hence, track its motion over many frames. We argue that optical flow

estimation suffers from not having any persistent appearance model characterizing what is being
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“tracked”.

Recent tracking work has exploited mixture models to track regions over many frames while

incrementally estimating a model of the region’s appearance [11]. We extend these ideas to the

problem of dense flow estimation and adaptively estimate a pixelwise appearance model in multiple

layers. Having such an appearance model serves a number of purposes. First, (if it is correct) it

provides additional constraints on the optical flow that help reduce the effects of noise. Second,

the temporal persistence of appearance aids in segmenting the scene into coherent regions. This

latter point aids in the precise localization of motion boundaries.

Previous approaches have had somewhat similar goals. Taoet al. [18] estimate layered para-

metric motion with foreground regions being modeled by Gaussian blobs. They learned a model

for the appearance of the layers and estimated this over timein a Bayesian framework. This has

recently been extended to explicitly model the ordering of the layers and their occlusion [7]. While

our approach does not attempt to reason explicitly about depth ordering, we go beyond previous

work to model general, dense, optical flow and to formulate the problem of layered appearance

and motion estimation in a unified mixture model framework.

Similar goals have been pursued by [6, 12, 13]. In contrast totheir work, we formulate the ap-

pearance estimation and layer recovery problem in a gradient-based optical flow framework. This

allows us to exploit traditional techniques such as coarse-to-fine estimation, robust regularization,

and continuous optimization and thus to compute dense estimates of optical flow and appearance

in a relatively straightforward fashion.

Finally, we should note that our approach exploits a temporal coherence prior for both motion

and appearance. Previous approaches have exploited temporal coherence of flow [3, 4, 16, 19] but

they did not also model appearance. We also formulate the Bayesian problem in a robust way and

the optimization then extends previous approaches to robust optical flow estimation [8,10,15,21].
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3 Problem Formulation

In this section, we first model dense motion estimation in a Bayesian framework and then extend

it to appearance estimation and finally develop a unified Bayesian framework to simultaneously

estimate the appearance of multiple image layers and their corresponding dense flow fields from

image sequences.

3.1 Standard Bayesian flow formulation

The optical flow problem can be formulated as the maximization of the posterior probability

arg max
Ut

P (Ut|Īt,Ut−1) (1)

whereUt represents the horizontal and vertical components of the optical flow field at timet and

Īt = [I0, I1, ..., It−1, It] are the image observations for time0, ..., t.

Using standard Markov assumptions and Bayes’ rule, we rewrite the posterior probability as

P (ut|Īt,ut−1) ∝ P (It|It−1,ut) P (ut|ut−1) P (ut|ut(Gx))

where, now,ut = (ut(x), vt(x)) is the horizontal and vertical flow at a pixelx andGx is the set

of four neighbors for pixelx. The global posterior in (1) is the product of this local posterior over

all image locations (assuming conditional independence ofneighbouring pixels). HereUt is the

optical flow field over the whole image andut is the optical flow field at a particular pixel.

Note that above posterior probability holds at every pixelx unless otherwise specified in the

rest of the text. We omitx in our notation for the sake of simplicity.

HereP (It|It−1,ut) is the observation likelihood that associates successive images with the

motion that is being sought. It corresponds to the image brightness constancy assumption. The

temporal and spatial coherence of motion are represented with the prior probabilitiesP (ut|ut−1)
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andP (ut|ut(Gx)) respectively. The temporal term simply enforces that the flow at the current

instant is similar to the flow at the previous instant (appropriately warped as described below). The

spatial term is a standard one based on the difference between neighboring horizontal and vertical

flow values. All these terms are represented with a robust likelihood function [4]. For optimization

we minimize the negative log of the posterior and these termsbecome robust error terms. Details

are provided below.

3.2 Introducing an Appearance Model

Let At be anappearance model(intensity-based model) at timet, that serves as a “memory” of

what is being tracked. It is introduced into the posterior asfollows:

P (At,ut|At−1, Īt,ut−1) ∝ P (It|It−1,ut, At) P (At|At−1) P (ut|ut−1) P (ut|ut(Gx)).

HereP (It|It−1,ut, At) is the likelihood term andP (At|At−1) represents the temporal appearance

prior. The goal here is to incrementally estimate the appearance modelAt by taking into account

the observed image, the past appearance and the motion. The details will be described below.

3.3 Introducing Layers

To model the complexity of natural images where objects moveand occlude each other, we intro-

duce the notion of layers into the dense flow formulation. In particular, we introduce layers with

both appearance and motion and estimate these from an image sequence. Without loss of gener-

ality, we focus on a simple case of two layers which can be thought of (roughly) as “foreground”

and “background.”

The posterior is now written as

P (At,Mt|Īt,At−1,Mt−1) (2)
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whereAt = (Ab
t(x), Af

t (x)) are the appearance (intensity-based) models for foreground and back-

ground at every pixel locationx andMt = (ub
t ,u

f
t ) are corresponding motion flow fields. Here

u
b
t = (ub

t(x), vb
t (x)) andu

f
t = (uf

t (x), vf
t (x)). The superscriptsb andf stand for background and

foreground respectively.

Once again, the posterior probability can be simplified as

P (At,Mt|Īt,At−1,Mt−1) ∝ P (It|At,Mt, It−1)P (At|At−1,Mt)P (Mt|Mt−1)P (Mt|Mt(Gx)).

The appearance of the layers is assumed to change gradually and this temporal coherence is

modeled by

P (At|At−1,Mt) =
∏

i=b,f

P (Ai
t(x)|Ai

t−1(x),ui
t) (3)

where the appearance model at the current time instant is associated with the appearance model at

previous time instant via the motion of the corresponding layer.

The temporal and spatial coherence of motion are represented respectively by

P (Mt|Mt−1) =
∏

i=b,f

P (ui
t(x)|ui

t−1(x)) (4)

P (Mt|Mt(Gx)) =
∏

i=b,f

P (ui
t(x)|ui

t(Gx)). (5)

Assuming that each image in the sequence can be separated into foreground and background

layers, the likelihood of observing imageIt can be represented as a mixture model

P (It|At,Mt, It−1) = mb
t p(It|A

b
t ,u

b
t , It−1) +mf

t p(It|A
f
t ,u

f
t , It−1) +mo

t po(It). (6)

The probability of each pixel belonging to different layersis given by the mixture probabilitiesmb
t ,

mf
t andmo

t ; these mixing probabilities sum to 1, wheremo
t is a fixed outlier probability. In our

experiments, we setmo
t = 0.
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For any pixel in the current image, the likelihood for each layer is

P (It|A
i
t,u

i
t, It−1) = P (It|It−1,u

i
t) · P (It|A

i
t). (7)

This likelihood simply enforces that the successive imagesin the sequence look similar when

aligned using the motion of the corresponding layer and thateach appearance model be similar

to the current image in regions with high mixing probability(since the likelihood for each layer

is multiplied by the corresponding mixing probability (mb
t or mf

t ) as can be seen in (6) ). The

implementation details of these terms are provided below.

3.4 Optimization

Given images in a sequence,Īt, as well as flow fields and appearance models at the previous time

instant, we seek the appearance modelsAb
t andAf

t and their corresponding flow fieldsub
t andu

f
t

and the mixture probabilitiesmb
t andmf

t which provide a maximum a posteriori fit to the data set.

At every new time instant, we need to estimate the appearancemodels and their corresponding

motion. We use the Expectation-Maximization (EM) algorithm [5] to solve for the(Ai
t,u

i
t) pairs.

A local maximum of the log posterior solution can be found by iteratively maximizing the

following function with respect toAi
t andu

i
t

L(At,Mt) = log P (It|At,Mt, It−1) + log P (At|At−1,Mt)

+log P (Mt|Mt−1) + log P (Mt|Mt(Gx))

+λ(1 −mo
t −mb

t −mf
t ) (8)

Note that the constraint that the mixing probabilities sum to one is added with Lagrange multiplier.

At a local extremum it can be shown that the parametersmi
t andAt,Mt must satisfy

qi ·
∂

∂Ai
t

(

log P (It|A
i
t)
)

+
∂

∂Ai
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)

= 0 (9)
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and

qi ·
∂

∂ui
t

(

log P (It|It−1,u
i
t)
)

+
∂

∂ui
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)

+
∂

∂ui
t

(

log P (ui
t|u

i
t−1)

)

+
∂

∂ui
t

(

log P (ui
t|u

i
t(Gx))

)

= 0. (10)

Hereqi represents theownership probability, that is the probability that the observed image value

It belongs to theith layer. These are defined by

qi =
mi

t · P (It|A
i
t,u

i
t, Īt−1)

∑

j=b,f,om
j
t · P (It|A

j
t ,u

j
t , Īt−1)

. (11)

These equations for a maximum likelihood fit have been previously derived simply by requiring

that the partial derivative ofL(At,Mt) with respect to the parametersmi
t andAt,Mt must vanish

[10,14]. For the details of the derivations see the Appendix.

Given an initial guess for motion and appearance models, we first estimate the ownership prob-

abilities qi for each layer. This is the expectation step. Given these ownership probabilities, we

compute the appearance models and motions that optimize (9)and (10) in the maximization step.

The likelihoods and priors are modeled by at-distribution of degree 3. The robust error function

is given by the negative log.

ρ(x, σ, α) = −log

[(

2σ3

π(σ2 + x2)2

)α]

(12)

whereα is a parameter that determines the relative importance of each of the likelihood and prior

terms. We define the derivative of this function asψ(x, σ, α)

ψ(x, σ, α) =
d

dx
ρ(x, σ, α) = α

−4x

σ2 + x2
.
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The equations in the M-step are then as follows

ui(x)
n+1

= ui(x)
n
− qi(x) · ψ(It(x) − It−1(x− ui

t), σIIi, αIIi)

− ψ(Ai
t(x) −Ai

t−1(x− ui
t), σAAi, αAAi) − ψ(ui

t(x) − ui
t−1(x), σtempi

, αtempi
)

−
∑

µεGx

ψ(ui
t(x) − ui

t(µ), σspi
, αspi

)

and

Ai(x)
n+1

= Ai(x)
n
− qi(x) · ψ(It(x) − Ai

t(x), σIAi, αIAi) − ψ(Ai
t(x) − Ai

t−1(x− ui
t), σAAi, αAAi)

whereαIIi, αAAi, αtempi
, αspi

are theα parameters for the image likelihood, appearance prior, and

temporal and spatial motion priors respectively.

Intuitively, the above equations (derived from (9) and (10)) can be interpreted as follows: there

are two terms that contribute to the appearance models in theM-step for appearance optimization.

The first term indicates that the appearance model should adapt to the new information in the

current image, change appearance if necessary, and regionswith high ownership weights are more

likely to be adapted to the current image since the whole termis multiplied byqi. For regions

of low ownership weight, the second term dominates and associates successive appearances using

the corresponding motion. Simply, this appearance prior term suggests that the appearance from

the previous time instant be maintained after being warped by the layer motion. These two terms

compete with each other and pull the optimal solution towards their extrema. The parameters used

in modeling these terms become crucial in determining whichterm pulls the solution towards its

extremum.

The M-step for motion optimization has four terms. The first term aligns successive frames

in the sequence using the motion of the appropriate layer, but only in regions of high ownership

weight. That is, background (foreground) motion should explain the correspondence between two
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successive images only in regions where background (foreground) ownership is high. The second

term aligns successive appearance models using the motion of the appropriate layer. The third and

the fourth terms suggest that the motion at a pixel should be similar to that of neighboring pixels

in space and time.

3.4.1 Details of Optimization

To cope with large motions and accelerate the convergence, ahierarchical process is employed. A

P -level image pyramid is created and the estimation starts from the coarsest level. At each level,

the current appearance estimates are warped by the flow field estimates and projected onto the

next lower level as an initial estimate. We alternate the optimization of motion and appearance

models and computation of ownership weights with optimizedparameters at each level. Since it

is difficult to optimize(Ai
t,u

i
t) pairs simultaneously, we adopt the strategy of improving each of

them in turn with the other one fixed. This is a generalized EM algorithm and it can be proven that

it converges to a local minimum. The computational cost is approximately the number of layers

times the duration that standard optical flow [4] takes for every frame.

We obtained the background appearance model, fort = 0, by watching the scene long enough

with a static camera and taking the median of those observations. The initial foreground appear-

ance is currently chosen manually by determining the bounding box of object of interest. Once

appearance models and corresponding flow fields are computedat timet, we warp these appear-

ance models forward by the flow field estimates and use them as initial estimates at timet+ 1.

3.5 Updating mixing probabilities

In our formulation, the mixing probabilities are simply theownership weights. Yet, we expect

these mixing probabilities, which represent the assignment of the pixels to layers, to be stable over

time. To model this, we gradually update them as the ownership probabilities change. Moreover,
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Figure 2: Intermediate results for the frames in Figure 1.

we expect the background motion to be slower than that of the foreground and adding a prior that

models this assumption helps separate foreground and background layers.

We initially setmb
t = mf

t = 0.5 and then the mixing probabilities for next time instant are

updated by a linear combination of ownership weights and motion priors as follows

mi
t+1 = (1 − α1 − α2) m

i
t + α1 qi + α2 p(u

i
t) (13)

wherep(ub
t) = exp(||ub

t||, σmotion prior b) andp(uf
t ) = 1− exp(||uf

t ||, σmotion prior f ). The mixing

probabilities of each layer act as a prior on every pixel representing the probability of each pixel

belonging to that layer. In our experiments,α1 = α2 = 0.3. The remaining parameters are

specified in the Appendix.

4 Experimental Results

Figure 3 illustrates the method applied to a video of a movingperson and static background. The

appearance models, flow fields, ownership weights and mixingprobabilities for the background

and foreground layers are shown. We also computed the optical flow field by the approach in [4]

for comparison. Inclusion of appearance models and layers in our approach visually improve
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Figure 3: Results of our approach for a walking person sequence (first 3frames and then every7th frame)
displayed. Note that the crude initial foreground appearance improves quickly after first few frames. The
optical flow fields obtained by our approach are compared to those computed by Black and Anandan’s
publicly available code.
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the optical flow results. Even in the case of a static camera, our method helps to deal with the

challenging problem of adapting the background appearancemodel and makes it more robust to

illumination variations. Although, traditional background subtraction techniques could have been

employed in this simple case of static background, these techniques typically exhibit false positive

and false negative detections which are treated with post-hoc filtering. In contrast, our approach

addresses these problems in a Bayesian framework that enforces spatial and temporal continuity.

Moreover, the approach provides a dense estimate of the motion.

The likelihoods that contribute to the ownership weight (11) and adaptation of the mixing

probabilities (13) for frame 67 are illustrated in Figure 2.The ownership weights inherently act as

a mask when optimizing the appearance models: regions with high ownership weight are quickly

adapted to the current image whereas in regions of low ownership weight, this adapting occurs

gradually. For those regions, only the appearance model prior term that associates successive

appearance representations via the corresponding motion of the layer is active. So, as the person

moves, the regions with high foreground ownership weight, converge to the appearance of the

walking person whereas the appearance of the regions of low ownership weight are associated

with the appearance model at the previous time instant (warped by the motion layer which is being

simultaneously computed). Since the mixing probabilitiesare adapted over time, the ownership

weights do not diminish immediately after disocclusion andthe appearance of disoccluded regions

maintains the values assigned to them previously. Modelingand integrating some appearance prior

to deal with this disocclusion problem is an immediate extension for future work.

5 Conclusions

We presented a Bayesian framework for computing dense optical flow over time that explicitly es-

timates and exploits a persistent model of image appearance. We also exploited prior models that
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express how motion and appearance may change over time. We extended mixture model methods

to the case of dense (rather than parametric) flow estimationand derived a mixture model formu-

lation that includes explicit spatial and temporal priors.The method is an extension of standard

robust optical flow methods and it estimates dense, subpixel-accurate, flow fields and foreground

and background appearance.

Future work involves estimating the number of layers and integrating the ordering of the layers

into our framework, as well as experimenting with a moving camera or dynamic background.

References

[1] S. Ayer and H. Sawhney. Layered representation of motionvideo using robust maximum
likelihood estimation of mixture models and mdl encoding. In ICCV95, pages 777–784,
1995.

[2] Michael J. Black and Allan D. Jepson. Estimating opticalflow in segmented images using
variable-order parametric models with local deformations. PAMI, 18(10):972–986, 1996.

[3] M.J. Black and P. Anandan. Robust dynamic motion estimation over time. InCVPR91, pages
296–302, 1991.

[4] M.J. Black and P. Anandan. A framework for the robust estimation of optical flow. In
ICCV93, pages 231–236, 1993.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via
the em algorithm.Journal of Royal Statistical Society B, 39:1–38, 1977.

[6] B.J. Frey, N. Jojic, and A. Kannan. Learning appearance and transparency manifolds of
occluded objects in layers.CVPR03, I:45–52, 2003.

[7] E. Hayman and H. Tao. A backgorund layer model for object tracking through occlusion. In
ICCV03, pages 1079–1085, 2003.

[8] F. Heitz and P. Bouthemy. Multimodal estimation of discontinuous optical flow using markov
random fields.PAMI, 15(2):1217–1232, 1993.

[9] B. Horn and B. Schunck. Determining optical flow.Artificial Intelligence, 17(1-3):185–203,
1981.

[10] A. Jepson and M.J. Black. Mixture models for optical flowcomputation. InCVPR93, pages
760–761, 1993.

17



[11] A. Jepson, D. Fleet, and T. El-Maraghi. Robust online appearance models for visual tracking.
In CVPR01, pages 415–422, 2001.

[12] N. Jojic and B. Frey. Learning flexible sprites in video layers. InCVPR01, 2001.

[13] N. Jojic, B.J. Frey, and A. Kannan. A generative model ofdense optical flow in layers.
University of Toronto TR PSI-2001-11, August 2001.

[14] G.J. McLachlan and K.E. Basford. Mixture models: inference and applications to clustering.
Marcel Dekker Inc., 1988.

[15] E. Memin and P. Perez. A multigrid approach for hierarchial motion estimation. InICCV98,
pages 933–938, 1998.

[16] D. W. Murray and B. F. Buxton. Scene segmentation from visual motion using global opti-
mization.PAMI, 9(2):220–228, 1987.

[17] N. Paragios and R. Deriche. Geodesic active regions formotion estimation and tracking. In
ICCV, pages 688–694, 1999.

[18] H. Tao, H.S. Sawhney, and R. Kumar. Object tracking withbayesian estimation of dynamic
layer representations.PAMI, 24(1):75–89, 2002.

[19] J. Weickert and C. Schnorr. Variational optic flow computation with a spatio-temporal
smoothness constraint.Journal of Mathematical Imaging and Vision, 14(3):245–255, 2001.

[20] Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture estima-
tion. In CVPR97, pages 520–526, 1997.

[21] M. Ye, R. Haralick, and L.G. Shapiro. Estimating optical flow using a global matching
formulation and graduated optimization.PAMI, 25(12):1625–1630, 2003.

6 Appendix

According to the generalized EM algorithm, a locally optimal solution can be achieved by itera-
tively optimizing (8) wrt to parametersAi

t andu
i
t.

6.1 Derivation of M-step and E-steps for Appearance Optimization

Taking derivative ofL(At,Mt) (equation (8)) wrt the appearance models, we get

∂L(At,Mt)

∂Ai
t

=
mi

t · ∂P (It|A
i
t,u

i
t, It−1)/∂A

i
t

∑

j=b,f,om
j
t · P (It|A

j
t ,u

j
t , It−1)

+
∂

∂Ai
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)
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Replacing∂P (It|A
i
t,u

i
t, It−1)/∂A

i
t by

P (It|A
i
t,u

i
t, It−1) ·

∂

∂Ai
t

(

log P (It|A
i
t,u

i
t, It−1)

)

and rewriting the equation with this replacement, we get

∂L(At,Mt)

∂Ai
t

=
mi

tP (It|A
i
t,u

i
t, It−1)

∂(log P (It|Ai

t
,ui

t
,It−1))

∂Ai

t

∑

j=b,f,om
j
t · P (It|A

j
t ,u

j
t , It−1)

+
∂

∂Ai
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)

.

The replacement trick above lets us define

qi =
mi

t · P (It|A
i
t,u

i
t, It−1)

∑

j=b,f,om
j
t · P (It|A

j
t ,u

j
t , It−1)

. (14)

Here qi represents theownership probability, that is the probability that the observed imageIt
belongs to theith layer. Given some initial values for the appearance models and motion, these
ownership weights are computed as the expectation, or E-step.

Then, the M-step is formulated in compact form as

∂L(At,Mt)

∂Ai
t

= qi ·
∂

∂Ai
t

(

log P (It|A
i
t,u

i
t, It−1)

)

+
∂

∂Ai
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)

.

At a local extremum, the right hand side of the above equationwill be equal to zero. Since the
likelihood is defined as in (7), the above equation reduces to

qi ·
∂

∂Ai
t

(

log P (It|A
i
t)
)

+
∂

∂Ai
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)

= 0.

6.2 Derivation of M-step and E-steps for Motion Optimization

Similarly if we take derivative ofL(At,Mt) wrt ui
t, the M-step for motion optimization will be

∂L(At,Mt)

∂ui
t

= qi ·
∂

∂ui
t

(

log P (It|A
i
t,u

i
t, It−1)

)

+
∂

∂ui
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)

+
∂

∂ui
t

(

log P (ui
t|u

i
t−1)

)

+
∂

∂ui
t

(

log P (ui
t|u

i
t(Gx))

)

.

Since the likelihood is defined as in (7), at a local extremum,the above equation reduces to

qi ·
∂

∂ui
t

(

log P (It|It−1,u
i
t)
)

+
∂

∂ui
t

(

log P (Ai
t|A

i
t−1,u

i
t)
)

+
∂

∂ui
t

(

log P (ui
t|u

i
t−1)

)

+
∂

∂ui
t

(

log P (ui
t|u

i
t(Gx))

)

= 0.
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6.3 Parameters of Our Approach

The following parameters were used:

αIIb = 3, αIAb = 3, αAAb = 4,
αIIf = 6, αIAf = 3, αAAf = 1,
αspi

= 2.5, αtempi
= 2, αmotion prior i = 1,

σIIi = 10, σIAi = 10, σAAb = 6, σAAf = 13,
σspi

= 1, σtempi
= 1.5, σmotion prior i = 0.1.
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