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Abstract

Segmenting image sequences into meaningful layers is foedil to many applications such
as surveillance, tracking, and video summarization. Bemkgd subtraction techniques are
popular for their simplicity and, while they provide a dengixelwise) estimate of fore-
ground/background, they typically ignore image motion ath¢an provide a rich source of
information about scene structure. Conversely, layerettomastimation techniques typi-
cally ignore the temporal persistence of image appearamt@rvide parametric (rather than
dense) estimates of optical flow. Recent work adaptively ines motion and appearance
estimation in a mixture model framework to achieve robustking. Here we extend mixture
model approaches to cope with dense motion and appeardimatemn. We develop a unified
Bayesian framework to simultaneously estimate the appearaf multiple image layers and
their corresponding dense flow fields from image sequenceth tBe motion and appearance
models adapt over time and the probabilistic formulatiomlmaused to provide a segmentation
of the scene into foreground/background regions. Thisnsibe of mixture models includes
prior probability models for the spatial and temporal cemee of motion and appearance. Ex-
perimental results show that the simultaneous estimafiappearance models and flow fields
in multiple layers improves the estimation of optical flonnaition boundaries.
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1 Introduction

The accuracy of dense optical flow techniques [9] has imutte¢he point where they are widely
used and accuracy is no longer the most pressing issue. deonfr example, domains such
as surveillance where optical flow algorithms must run cardusly and automatically adapt to
changes in lighting and motion over both short and long tiraengs. In such an application one
might be willing to trade absolute accuracy for stabilitgpdndability, and full automation. Tradi-
tional optical flow methods that rely on a simple assumptibbrightness constancy are at a dis-
advantage in such applications as they have no “memory”taheunotion in the scene over time
and no “model” of the objects in the scene and their appeardnacontrast, model-based tracking
methods achieve high accuracy and reliability by explgitirich appearance representation. Ad-
ditionally, optical flow methods lack an explicit model ofes@ structure or scene segmentation.
We argue that models of image appearance and scene straiturecessary for stable optical flow
estimation and that the description of appearance and stermture must adapt over time.

We propose a Bayesian framework for estimating dense ofibea over time that explicitly
estimates and exploits a persistent model of image appmararhe approach assumes that the
scene can be described by a number of layers but that themudtieach layer is highly flexible.
The approach also exploits prior models that express hoviomaind appearance may change
over time. To achieve this, we extend mixture model methodbt¢ case of dense (rather than
parametric) flow estimation and derive a mixture model fdatan that includes explicit spatial
and temporal priors.

The key contributions of this method are: 1) it extends roloytical flow methods; 2) it
estimates dense, subpixel-accurate, flow fields; 3) it preslan estimate of foreground and back-
ground appearance; 4) it can be used to segment the scenayiets; 5) the layers help localize

motion boundaries and reduce over-smoothing.
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Figure 1. Estimating dense motion in layers for an outdogusace. Comparison between the
horizontal flow obtained with a standard optical flow teclugigsharp motion boundaries but poor
detail) and the horizontal component of flow field estimatethwur approach (notice the fine
details associated with the head and foot). Right bottomdhaxvs the results of our approach: A
layer mask indicating the foreground ownership and appearenodels for two layers.

In an Expectation-Maximization framework, we alternaténmen solving for layer “owner-
ship” weights and estimates of motion and appearance. Tdmssarance and motion models are
simultaneously estimated in a maximum a posteriori (MARfework. First appearance models
are estimated, holding motion flow fields fixed and then appe models are fixed and flow
fields are refined. Figure 1 illustrates the method.

When compared with previous methods, the resulting motsbimates benefit from the stabi-
lizing effects of the appearance model and the motion baugglenore accurately correspond to

the object boundaries in the scene.

2 Related Work

While the obvious goal of motion estimation is to compute hbimgs move in images, the goal

is also to discern something about the structure of the sdéhas been suggested that knowing



the image motion would facilitate segmentation of the sdaatephysically meaningful regions.
Conversely, knowing the segmentation can facilitate theuete estimation of optical flow [2].
We address the problem of coupling these processes in adufrdimework.

Layered models of optical flow have been one of the key panaslifipr simultaneously seg-
menting the scene and estimating its motion [1, 10, 20]. hiqadar, mixture model frameworks
make a soft assignment of pixels to layers. Unfortunatélig $segmentation does not typically
enforce spatial coherence between neighboring pixels aag hence, be quite sparse. Addi-
tionally, these methods are typically limited to parantetriotion models or highly constrained
motions [20]. Here we extend the mixture model framework sbneate dense optical flow in
image layers. Each pixel can belong to one of a number of $aged consequently may have
multiple interpretations. Traditional optical flow pricase extended to this framework and result
in spatially coherent segmentations.

One of the perennial problems of optical flow estimation & pinecise localization of motion
boundaries. We argue that this problem is due, in part, ttattieof an appearance-based segmen-
tation. Image segmentation itself is a hard problem howawer mistakes in segmentation may
affect the optical flow estimates. Consequently, we seelupled solution.

There have been attempts to couple the motion and appearegicentation problems in var-
ious ways; for example, by exploiting explicit boundary tamur processes and the statistics of
image regions [17]. We take a different approach that drawrm the tracking literature. Optical
flow is typically viewed as a 2-frame (or-frame) problem where the assumption of brightness
constancy between the frames is exploited to compute matiban the next frames come along
the previous ones are forgotten. This is in contrast to treckpproaches that model the appear-
ance of an object and can, hence, track its motion over mamyefs. \We argue that optical flow

estimation suffers from not having any persistent appe&ramodel characterizing what is being



“tracked”.

Recent tracking work has exploited mixture models to tragkans over many frames while
incrementally estimating a model of the region’s appeadthd]. We extend these ideas to the
problem of dense flow estimation and adaptively estimatgelywise appearance model in multiple
layers. Having such an appearance model serves a numberpafses. First, (if it is correct) it
provides additional constraints on the optical flow thaphelduce the effects of noise. Second,
the temporal persistence of appearance aids in segmehgrgcéne into coherent regions. This
latter point aids in the precise localization of motion bdanes.

Previous approaches have had somewhat similar goalsetTalo[18] estimate layered para-
metric motion with foreground regions being modeled by Garsblobs. They learned a model
for the appearance of the layers and estimated this overitiradBayesian framework. This has
recently been extended to explicitly model the orderingheflayers and their occlusion [7]. While
our approach does not attempt to reason explicitly abouthdeqplering, we go beyond previous
work to model general, dense, optical flow and to formulategioblem of layered appearance
and motion estimation in a unified mixture model framework.

Similar goals have been pursued by [6,12, 13]. In contragtdo work, we formulate the ap-
pearance estimation and layer recovery problem in a gratiesed optical flow framework. This
allows us to exploit traditional techniques such as cotodae estimation, robust regularization,
and continuous optimization and thus to compute dense at&swf optical flow and appearance
in a relatively straightforward fashion.

Finally, we should note that our approach exploits a tempmiaerence prior for both motion
and appearance. Previous approaches have exploited &mpberence of flow [3, 4,16, 19] but
they did not also model appearance. We also formulate theday problem in a robust way and

the optimization then extends previous approaches to tapiigal flow estimation [8, 10, 15, 21].



3 Problem Formulation

In this section, we first model dense motion estimation in geB&n framework and then extend
it to appearance estimation and finally develop a unified Biayeframework to simultaneously
estimate the appearance of multiple image layers and tbeiesponding dense flow fields from

image sequences.

3.1 Standard Bayesian flow formulation

The optical flow problem can be formulated as the maximirediothe posterior probability

arg max P(UL,U,_)) Q)

whereU;, represents the horizontal and vertical components of tkieadlow field at timet and
I, = [y, I1, ..., I;_1, I;] are the image observations for tie. ., .

Using standard Markov assumptions and Bayes’ rule, we tewre posterior probability as
P<ut|it7ut—1> X P(It‘lt—laut) P(U-t|11t—1) P<ut‘ut(gx))

where, nowu; = (u(x), v(x)) is the horizontal and vertical flow at a pixeland G, is the set
of four neighbors for pixek. The global posterior in (1) is the product of this local @o&ir over
all image locations (assuming conditional independenaseajhbouring pixels). Her#J; is the
optical flow field over the whole image ang is the optical flow field at a particular pixel.

Note that above posterior probability holds at every pxeinless otherwise specified in the
rest of the text. We omik in our notation for the sake of simplicity.

Here P(I;|1,_1,w,;) is the observation likelihood that associates succeserageés with the
motion that is being sought. It corresponds to the imagehbmgss constancy assumption. The

temporal and spatial coherence of motion are representécivg prior probabilities? (u;|u;—1)



and P(u;|us(Gyx)) respectively. The temporal term simply enforces that the # the current
instant is similar to the flow at the previous instant (appiatply warped as described below). The
spatial term is a standard one based on the difference betwesghboring horizontal and vertical
flow values. All these terms are represented with a robuslitigod function [4]. For optimization
we minimize the negative log of the posterior and these tdér@e®me robust error terms. Details

are provided below.

3.2 Introducing an Appearance Model

Let A; be anappearance moddintensity-based model) at time that serves as a “memory” of

what is being tracked. It is introduced into the posterioicdlews:
P(Atyut‘At—lyitaut—l) X P<Itut—1>utaAt) P(At|At—1) P(ut|ut—1) P(ut|ut<gx>>-

Here P(I;|1;_1,u;, A;) is the likelihood term and(A;| A,_1) represents the temporal appearance
prior. The goal here is to incrementally estimate the appe=s modeld, by taking into account

the observed image, the past appearance and the motion efdiks avill be described below.

3.3 Introducing Layers

To model the complexity of natural images where objects namgeocclude each other, we intro-
duce the notion of layers into the dense flow formulation. drtipular, we introduce layers with
both appearance and motion and estimate these from an iraggerse. Without loss of gener-
ality, we focus on a simple case of two layers which can beghoaf (roughly) as “foreground”
and “background.”

The posterior is now written as

P(Ay, My|T;, Ay 1, M) (2)



whereA, = (4%(x), A/ (x)) are the appearance (intensity-based) models for foregrand back-
ground at every pixel locatior andM; = (u?, u{) are corresponding motion flow fields. Here
uw’ = (ul(x),v0(x)) andu! = (uf (x),v{(x)). The superscriptsand f stand for background and
foreground respectively.

Once again, the posterior probability can be simplified as
P(At7 Mt|it7 At—17 Mt—l) X P(It|At7 Mt7 ]t—l)P(At|At—17 Mt)P(Mt|Mt—1)P(Mt|Mt(gx))

The appearance of the layers is assumed to change gradndllyria temporal coherence is

modeled by

P(A A1, M) = [[ PAUX)[A; 4 (x), up) 3)

i=b,f

where the appearance model at the current time instantasiassd with the appearance model at
previous time instant via the motion of the correspondiygta

The temporal and spatial coherence of motion are represesgpectively by

P(My[M, ) = [ Pluy(x)ug_,(x)) 4)
i=b,f

P(M;|M(G.)) H P( U—t |ut Gx))- ()
i=b, f

Assuming that each image in the sequence can be separaiddreground and background

layers, the likelihood of observing imadecan be represented as a mixture model
P(L|A, My, 1) = mf p(It|A?7 u?v Iiq) + m{ p(It|A{, 11{7 Ii—1) +myi po(1y). (6)

The probability of each pixel belonging to different layargiven by the mixture probabilities?,

m! andmy; these mixing probabilities sum to 1, wher€ is a fixed outlier probability. In our

experiments, we set; =



For any pixel in the current image, the likelihood for eacfelais
P(L| A}, u, I-1) = P(L|Ti-1, ) - P(L]Ay). (7)

This likelihood simply enforces that the successive imagethe sequence look similar when
aligned using the motion of the corresponding layer and ¢hah appearance model be similar

to the current image in regions with high mixing probabiligince the likelihood for each layer

is multiplied by the corresponding mixing probability:{ or m{) as can be seen in (6) ). The

implementation details of these terms are provided below.

3.4 Optimization

Given images in a sequende, as well as flow fields and appearance models at the previoes ti
instant, we seek the appearance modélandA{ and their corresponding flow fieldg andu;

and the mixture probabilities? andm/ which provide a maximum a posteriori fit to the data set.
At every new time instant, we need to estimate the appeanaockels and their corresponding
motion. We use the Expectation-Maximization (EM) algaritf5] to solve for the( A%, u!) pairs.

A local maximum of the log posterior solution can be found taratively maximizing the

following function with respect tol: andu!
L(At, Mt) = lOg P(It|At, Mt, It—l) + lOg P(At|At_1, Mt)
+l0g P(Mt‘Mt_l) + lOg P(Mt‘Mt<gx))

+)\(1—mt°—mf—m{) (8)

Note that the constraint that the mixing probabilities sorarte is added with Lagrange multiplier.

At a local extremum it can be shown that the parametérand A, M; must satisfy

6i - 517 (log P(I,|A}) + a% (tog P(A}A;_;,u))) =0 9)

9
DA
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and

0 i d i) Ad i
“ o (509 P(Li| -, ut)) + oul (log P(At|At‘1’ut))

O (1og P(uifui_,)) + - (log P(uifui(Gy))) = 0. (10)

+—
ou} ou}

Hereq; represents thewnership probabilitythat is the probability that the observed image value
I, belongs to theé'" layer. These are defined by

mi . P(It|A7t', ui, it—l)

| L) (11)
Zj:b,f,omg ' P(It|Ai7uivIt—1)

q; =

These equations for a maximum likelihood fit have been preshoderived simply by requiring
that the partial derivative af (A, M;) with respect to the parameterg andA;, M; must vanish
[10, 14]. For the details of the derivations see the Appendix

Given an initial guess for motion and appearance models rateetimate the ownership prob-
abilities ¢; for each layer. This is the expectation step. Given theseewstiip probabilities, we
compute the appearance models and motions that optimize@()10) in the maximization step.

The likelihoods and priors are modeled biydistribution of degree 3. The robust error function
is given by the negative log.

plx,o,a) = —log [(%) ] (12)

(02 + x2

whereq is a parameter that determines the relative importanceabf ebthe likelihood and prior

terms. We define the derivative of this function@as:, o, «)

d —4x
U(x,0,a) = %,o(x,a, a) =« o

11



The equations in the M-step are then as follows

Ui(x)wrl = Ul(x)n — ¢i(z) - v(L(z) — Lo (x — Ui), O11is OI1;)
- @D(Ai(l’) - Ai—l(x - u;)v O AA, aAAi) - ’(/)(ui(l') - ui—l(x)v Otemp; s at@ml’i)

- Z @D(Ui(l") - ui(u)705pi’a5pi)

1eGy

and
Al(2)"™ = A'(2)" — gix) Y (T(x) — AY(), 0, apas) — Y(AL@) — AL (2 — u}), 040, Cani)

wherea; i, aaai, uemp,» sp; are then parameters for the image likelihood, appearance prior, and
temporal and spatial motion priors respectively.

Intuitively, the above equations (derived from (9) and (L€an be interpreted as follows: there
are two terms that contribute to the appearance models M ibiep for appearance optimization.
The first term indicates that the appearance model shoulpt adahe new information in the
current image, change appearance if necessary, and regitbrisigh ownership weights are more
likely to be adapted to the current image since the whole iermultiplied byg;. For regions
of low ownership weight, the second term dominates and &#gscsuccessive appearances using
the corresponding motion. Simply, this appearance prion teuggests that the appearance from
the previous time instant be maintained after being warpetthé layer motion. These two terms
compete with each other and pull the optimal solution towaneir extrema. The parameters used
in modeling these terms become crucial in determining wkech pulls the solution towards its
extremum.

The M-step for motion optimization has four terms. The fiesth aligns successive frames
in the sequence using the motion of the appropriate laye¢mily in regions of high ownership

weight. That is, background (foreground) motion should&ixpthe correspondence between two

12



successive images only in regions where background (fouegl) ownership is high. The second
term aligns successive appearance models using the madtioa appropriate layer. The third and
the fourth terms suggest that the motion at a pixel shouldrb@as to that of neighboring pixels

in space and time.

3.4.1 Details of Optimization

To cope with large motions and accelerate the convergertderarchical process is employed. A
P-level image pyramid is created and the estimation staots the coarsest level. At each level,
the current appearance estimates are warped by the flow &gidates and projected onto the
next lower level as an initial estimate. We alternate thenoigation of motion and appearance
models and computation of ownership weights with optimipathmeters at each level. Since it
is difficult to optimize (A, u!) pairs simultaneously, we adopt the strategy of improvingheat
them in turn with the other one fixed. This is a generalized HEd@hm and it can be proven that
it converges to a local minimum. The computational cost gragmately the number of layers
times the duration that standard optical flow [4] takes farg¥rame.

We obtained the background appearance modet, o0, by watching the scene long enough
with a static camera and taking the median of those obsenstiThe initial foreground appear-
ance is currently chosen manually by determining the boxghtiox of object of interest. Once
appearance models and corresponding flow fields are compttadet, we warp these appear-

ance models forward by the flow field estimates and use thenitad estimates at time+ 1.

3.5 Updating mixing probabilities

In our formulation, the mixing probabilities are simply tbemnership weights. Yet, we expect
these mixing probabilities, which represent the assigriroitie pixels to layers, to be stable over

time. To model this, we gradually update them as the ownesfubabilities change. Moreover,
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Figure 2: Intermediate results for the frames in Figure 1.
we expect the background motion to be slower than that ofaregfound and adding a prior that
models this assumption helps separate foreground and toacidylayers.
We initially setm? = m] = 0.5 and then the mixing probabilities for next time instant are

updated by a linear combination of ownership weights andangtriors as follows
mi., = (1—a; —az) m) +ay ¢; + oo p(u}) (13)

wherep(u}) = exp(|[u}]], Omotion_prior ) @NAp(uf) = 1 — exp(||uf||, Tmotion prior_). The mixing
probabilities of each layer act as a prior on every pixelespnting the probability of each pixel
belonging to that layer. In our experiments, = a, = 0.3. The remaining parameters are

specified in the Appendix.
4 Experimental Results

Figure 3 illustrates the method applied to a video of a mopegon and static background. The
appearance models, flow fields, ownership weights and mpiobabilities for the background
and foreground layers are shown. We also computed the bfiteafield by the approach in [4]

for comparison. Inclusion of appearance models and layemur approach visually improve
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Optimized appearance models for background (top row) and foreground (bottom row). Note that
the excessive regions of the crude initial foreground appearance get washed away very quickly.

Ownership welght (top row) and mixing probability (bottom row) for foreground appearance. Since
the weights for background are one-complementary of those of foreground, they are not shown.

R e e et L iy i S S R ) S O N = T ] e S il S e S P S R L
Horizontal (top) and vertical (bottom) components of flow field compuled by our approach.

D B e e e S T A~ T e e ——.

Horizontal (top) and vertical (bottom) components of flow field computed by
Black&Anandan’s publicly available code.

Figure 3: Results of our approach for a walking person sequence (ffrandes and then eveff” frame)
displayed. Note that the crude initial foreground appeagamproves quickly after first few frames. The
optical flow fields obtained by our approach are compared asetrcomputed by Black and Anandan’s
publicly available code.
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the optical flow results. Even in the case of a static camarajethod helps to deal with the
challenging problem of adapting the background appeararom®el and makes it more robust to
illumination variations. Although, traditional backgmdi subtraction techniques could have been
employed in this simple case of static background, thedetques typically exhibit false positive
and false negative detections which are treated with postfiltering. In contrast, our approach
addresses these problems in a Bayesian framework thatesfepatial and temporal continuity.
Moreover, the approach provides a dense estimate of themoti

The likelihoods that contribute to the ownership weight)(ahd adaptation of the mixing
probabilities (13) for frame 67 are illustrated in FigureThe ownership weights inherently act as
a mask when optimizing the appearance models: regions wgthdwnership weight are quickly
adapted to the current image whereas in regions of low owigergeight, this adapting occurs
gradually. For those regions, only the appearance modet pgrm that associates successive
appearance representations via the corresponding mdtibie ¢tayer is active. So, as the person
moves, the regions with high foreground ownership weigbhtiverge to the appearance of the
walking person whereas the appearance of the regions of Wavership weight are associated
with the appearance model at the previous time instant @ehoy the motion layer which is being
simultaneously computed). Since the mixing probabilites adapted over time, the ownership
weights do not diminish immediately after disocclusion #melappearance of disoccluded regions
maintains the values assigned to them previously. Modelitthintegrating some appearance prior

to deal with this disocclusion problem is an immediate esi@mfor future work.

5 Conclusions

We presented a Bayesian framework for computing denseabfiitev over time that explicitly es-

timates and exploits a persistent model of image appeardifealso exploited prior models that

16



express how motion and appearance may change over time. téfedex mixture model methods

to the case of dense (rather than parametric) flow estimatidrderived a mixture model formu-

lation that includes explicit spatial and temporal priofhe method is an extension of standard

robust optical flow methods and it estimates dense, subpo@irate, flow fields and foreground

and background appearance.

Future work involves estimating the number of layers anegrdting the ordering of the layers

into our framework, as well as experimenting with a movingeaa or dynamic background.
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6 Appendix
According to the generalized EM algorithm, a locally optirealution can be achieved by itera-

tively optimizing (8) wrt to parameterd! andu..

6.1 Derivation of M-step and E-steps for Appearance Optimiation

Taking derivative ofL(A;, M) (equation (8)) wrt the appearance models, we get

8L(At7Mt) _ m;’ aP(It‘Ai,u;/,]t_l)/aAi + a
04i Y imb ol - P(L|AL ], 1y) ~ OA]

(log P(Aj]4;_,, i)

18



ReplacingdP(I,| A}, u, I,_1) /0A; by

0

P(It|Ai,ui,It_1) aAZ

(log P(L] AL ul, ]t_l))

and rewriting the equation with this replacement, we get

i i ol d(log P(It Ai,ui,[hl
OL(A,, M,) _ miP(I;| AL ul, I,_q) (bog P alA;' ) (log PAIA ))
814% Zj:b,f,o mi : P(It|Ag7 uga ]t—l) aA e

The replacement trick above lets us define

(It|Azévuzé>It 1)
Z] bfomt' (It|At>ut7It 1)

q; = (14)

Here ¢; represents thewnership probability that is the probability that the observed imalge
belongs to the' layer. Given some initial values for the appearance modwdsnaotion, these
ownership weights are computed as the expectation, orfk-ste

Then, the M-step is formulated in compact form as

OL(As, M,) 0

54 = 4 g (log P(L| A, uj, I 1)) +

0 i
814 (log P(A ‘At 1 ut))
At a local extremum, the right hand side of the above equatitifbe equal to zero. Since the
likelihood is defined as in (7), the above equation reduces to

6i - 7 (log P(I|A}) + 5 (log P(A}| A}, ui)) = 0.

0 0
DA OAi
6.2 Derivation of M-step and E-steps for Motion Optimization

Similarly if we take derivative of (A, M) wrt u!, the M-step for motion optimization will be

OL(A;, M) 0
out - 8u

(log P(L|A},uy, I 1)) + ; (ZOQ P(Aj| A} 17ut>)

i
o (to9 Pl ) + 57 (1og P(ul]ui(G)

Since the likelihood is defined as in (7), at a local extremilnaabove equation reduces to

(log P(I|I- 1,ut)) 0 (ZOQ P<AZ|At 17ut>)

Qi‘a

uj
(zOg P(ujju;_)) + -~ (log P(uj|ui(dx))) = 0.

L9
oul

19



6.3 Parameters of Our Approach
The following parameters were used:
arrp = 3, arap = 3, aaap = 4,

arry = 6, Qraf = 3, QpAf = 1,
Agp, = 2.9, Atemp; = 2, Qmotion_prior_i = L,

or1; = 10, 074; = 10, 044 = 6, 0445 = 13,
Ospi = L Otemp; = 1.5, Omotion_prior_i = 0.1.
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