
INCA: A Software Infrastructure to Facilitate the
Construction and Evolution of Ubiquitous Capture &

Access Applications

Khai N. Truong and Gregory D. Abowd

Georgia Institute of Technology
College of Computing & GVU Center

Atlanta, GA 30332-0280, USA
{khai, abowd}@cc.gatech.edu

Abstract. People’s daily lives provide them with memories and records that
they often want to review later. They must expend time and effort to record
these experiences manually for future retrieval. To address this issue,
applications that automatically capture details of a live experience and provide
future access to that experience have become an increasingly common theme of
research in ubiquitous computing. In this paper, we present our experience
building a number of capture and access applications, sharing insights on the
successes and difficulties we encountered. These lessons inform the design of
the INCA toolkit (Infrastructure for Capture and Access), which supports the
construction of applications in this class. We will demonstrate how INCA
facilitates the rapid prototyping and simplified evolution of increasingly
complex capture and access applications.

1 Introduction

There are many everyday examples of people capturing information for later use.
People often take pictures to capture a moment or write notes to record the important
information from an experience. Reliance on manual methods of capturing
information is not foolproof; people often fail to capture necessary details in a timely
fashion. Many are not good at creating accurate records of an experience; as a result,
these records are often biased, incomplete, and in some cases may even contain errors.
The act of manual capture can distract people from fully engaging in the experience.

Increasingly, researchers are applying ubiquitous computing technology to capture
details of a live experience automatically and to provide future access to those
records. Automated capture and access applications leverage what computers do best
—record information. In return, humans are free to fully engage in the activity and to
synthesize the experience, without having to worry about tediously exerting effort to
preserve specific details for later perusal.

There are many examples of automated capture and access applications, but they
have explored only a few domains, such as the classroom, meetings, and other
generalized experiences. Though there are significant social and cultural barriers that

2 Khai N. Truong and Gregory D. Abowd

dictate against a world of continuous capture, experience shows many limited
situations in which the value of capture can outweigh its cost. Therefore, continued
rich exploration is appropriate, especially in a research context. Unfortunately, many
new capture systems simply revisit ideas already explored in earlier work, and
existing applications typically are not leveraged as platforms for further investigation
because of the challenges of managing and evolving them. These issues also have
prevented most researchers from evaluating their prototypes under authentic use and
then modifying them to include interesting functionalities according to continual
feedback from the user population.

To facilitate research in ubiquitous computing, advances are necessary to improve
the tools we provide ourselves and other creative designers who wish to improve upon
the vision of Mark Weiser. Many researchers have begun to provide such support for
the development of physical [12], tangible [15], and smart devices/applications [11]
and the collaboration between heterogeneous devices [28]. Previously, we created
tools to support context-aware computing [9] and human-assisted error correction
resulting from recognition-based interfaces [19]. In these previous cases, the common
method has been to present the relevant design abstractions for a well-defined class of
applications, develop an architectural solution to support the design and construction
of these applications, implement an infrastructure/toolkit that embodies these
abstractions and then validate the abstractions, architecture and toolkit by developing
interesting and complex applications within the design space and exploring critical
issues for deployed applications.

Using this research method, we introduce the Infrastructure for Capture and Access
(INCA) toolkit, which encourages a simplified model for designing, implementing
and evolving capture and access applications. We validate this infrastructure by
demonstrating how it addresses design challenges, and more importantly how it
supports the evolution of increasingly complex capture and access applications.

2 Related Work: The Capture & Access Design Space

We surveyed many of the existing and past projects that support the capture and
access of various experiences (for a full review, consult [30]). This body of work can
be organized based on the main domains/areas that have been explored: the
classroom, meetings, and other generalized experiences.

2.1 Capture & Access in the Classroom

Classroom capture systems have experienced much success because they
automatically record the activities of the instructor so a large number of students can
directly benefit from the work. The eClass/Classroom 2000 system [1,5], the Cornell
Lecture Browser [20], MANIC [24], AutoAuditorium [4], STREAMS [7], Authoring
on the Fly [2], and work from Microsoft Research [13,17] all capture with varying
degrees of automation significant streams of information presented during the lecture.
Commonly captured streams include the instructor’s presentations, audio, video, ink
written on a physical or electronic whiteboard, visited Web pages, and arbitrary

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 3

program executions. Access to these notes is typically provided through a Web
interface that integrates the various captured streams and allows users to index into
specific portions of the audio or video of the live experience.

A small number of projects support the capture of personal notes during lectures.
The Audio Notebook [25] is an augmented paper notebook that records and integrates
audio with ink written in the notebook. StuPad [29] and DEBBIE [3] are systems that
use video display tablets to examine the integration of public lecture notes with
private annotations. NotePals [8] is an example of a collaborative access system in
which different users take separate notes during the experience and those notes are
then merged during the access phase with the separately captured public presentation;
this sharing can enable users to easily recognize the important points presented during
class (as observed by multiple users at a time).

2.2 Capture & Access in Meetings

Meeting capture also has been a frequent subject of research in capture and access.
Like the classroom domain, many meeting systems provide similar capabilities for
reviewing presentations given during a meeting. Most support the public capture of
meetings. Some of these systems support the collaborative capture of information
using a shared whiteboard that a group of users may place and interact with artifacts.
Examples of this class of system are DOLPHIN [26], TeamSpace [23] and Tivoli
[22]. Dynomite [33] and FiloChat [32] are systems that support the recording and
integration of personal notes with audio or video streams of the meeting. The
NoteLook system [6] provides users control of an array of cameras to grab the images
of the meeting they wish to store in their personal notebook and perhaps annotate.

2.3 Capture & Access in Other Environments

The potential benefits of capture and access have been in a few other settings such as
offices, conferences, and museums. The Forget-Me-Not application [16] was perhaps
the first to demonstrate the continuous capture of information for a user as she moves
about an instrumented capture environment, the office, exhibiting the use of capture
and access as a general memory prosthesis. This concept of personal mobile capture
in a sensor-rich environment has been revisited in a number of recent applications.
The Conference Assistant [10] allows the user to capture personal notes using a
mobile device at a conference. Her notes are later integrated with content publicly
captured based on her automatically sensed location information. The Comic Diary
[27] automatically generates a comic strip recounting the conference attendee’s
experience based on sensed and manually inputted content. Similarly, the HP
Remember [14] system allows a museum visitor to author an automatically generated
Web page recounting her experience through both sensed and manually added
content. A museum visitor is provided the ability to control cameras for capturing
images of her during a museum experience is much like how a NoteLook user can
specify what image from a meeting to include in her notes.

4 Khai N. Truong and Gregory D. Abowd

2.4 Summary

This review of research systems shows that although there are many existing and past
projects in capture and access, only a small number of domains have been explored.
Software products distributed with the Mimio (http://www.mimio.com) and Silicon
Chalk (http://www.silicon-chalk.com/) reveal the same domains are investigated
commercially as well. Despite the number of research and commercial efforts, there
has been relatively little innovation in the past 5 years. Many new applications simply
revisit ideas that have been previously explored. Furthermore, there has been
relatively little research contribution in the way of understanding/evaluating these
systems under authentic use, with the notable exception of Tivoli and eClass.

3 Lessons Learned from Classroom Capture & Access Systems

In 1995, we began our investigation of the automated capture of live university
lectures so that students and teachers may later access them. In this section, we
present the lessons learned from the successes and difficulties we experienced
building these applications and evolving them to include necessary (and potentially
complex) behaviors over the course of a longitudinal study of use.

3.1 eClass: A Successful Motivation for Classroom Capture and Access

The eClass project (formerly known as Classroom 2000) was an experiment in which
we created a classroom environment to capture details from the university lecture
experience on behalf of the students, automatically generating a set of Web accessible
notes immediately available after class for student review [1, 5]. The task of capturing
the various streams of information was divided among several specialized machines.
An electronic whiteboard (such as the LiveBoard or SmartBoard) was used in place of
a traditional whiteboard, recording slides presented in class as well as the instructor’s
handwriting. A different machine running a proxy server to log HTTP requests
recorded the Web pages visited by the instructor during lecture. Finally, a separate
machine recorded the audio inside the classrooms.

A central server connected to each of these capture services to provide coordination
for each lecture, or capture session. This coordination included the collection of
prepared materials prior to a lecture, initiating and terminating the recording for all
services for a given lecture, and the integration and post-production of all captured
materials to create the Web-accessible notes. The application required some initial set
up and maintenance, which included the specification of all machines involved before
runtime. However, the system succeeded largely because this coordination was
transparent to the users, requiring very little extra instructor or student effort.

Over time, requests from users (both teachers and students) resulted in several
changes to the system, including an extended whiteboard application (i.e., additional
display surfaces showing the history of a lecture), video capture, and a database of
captured lectures to support server-side, dynamically generated Web notes and a

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 5

search function. This evolution in eClass was possible largely because initially we
adopted a structure to the capture problem that separated concerns into four phases:

• pre-production to prepare materials for a captured lecture;
• live recording to capture and timestamp all relevant streams;
• post-production to gather and temporally integrate all captured streams; and
• access to allow end-users to view the captured information.
Clear boundaries between the phases allowed us to evolve the prototype to include

the improved capabilities described above as small isolated changes to the software.

3.2 StuPad: Challenges in Extending eClass with Personal Capture & Access

One goal of eClass was to relieve students from the tedious task of copying notes
during class. However, we observed that some students continued to take small
amounts of notes on paper. To support the integration of each student’s notes with the
eClass notes, we added the Student Notepad (StuPad) system to the existing eClass
system [29]. StuPad provided students with an interface integrating the prepared
presentation, digital ink annotations and Web pages browsed from the public
classroom notes into each student’s private notebook for added personal annotations.

Unfortunately, certain aspects of the existing eClass system lead to challenges
implementing StuPad. Although the structuring of eClass into four phases facilitated
much evolution to the system, these extensions to the system resulted in
inconsistencies between how the eClass server communicated with the different
clients —further weakening a communications scheme that already was not
multithreaded. This communications structure prevented us from implementing
StuPad in the most obvious way, where each student notepad directly obtains the
various information streams in the classroom. Ultimately, we were able to create a
working StuPad system, but it required redistributing the different data streams in a
non-uniform manner that was considerably more difficult than anticipated.

Despite the student motivation to integrate their in-class personal notes with the
public capture of eClass, StuPad turned out to be a less useful application than
expected. When study occurred outside of class, additional note taking remained
difficult for students to integrate with the captured notes. At that time, the IBM
CrossPad presented an affordable solution that allowed one to work with pen and
paper while also capturing an electronic record. Such a platform would have enabled
students to capture inside or outside of the classroom. However, the eClass system
stored captured information in a rigid hierarchical structure that consisted of course
numbers, terms, and dates of the lectures. Records captured using the CrossPad
required a more flexible organizational scheme, so forcing them to fit inside the same
directory structure was not a logical solution. Furthermore, the storage scheme
employed by eClass suggested specific ways information is accessed; students could
identify the course and then the particular lecture date that they wish to review.
Personal notes created during a lecture easily can be synchronized with the notes
captured by eClass, but notes created outside of a lecture pertaining to topics
addressed in lecture needed to be integrated as well. Providing flexible methods for
reviewing the captured data proved to be a second difficult challenge, requiring the

6 Khai N. Truong and Gregory D. Abowd

integration of the private notes and the classroom notes to happen through other
contextual relationships beyond temporal synchronization.

3.3 Lessons Learned

The StuPad project eventually ended because the hurdles described above
overwhelmed the development efforts. Through many makeshift solutions, we were
able to avoid risky architectural changes involved in directly addressing the problems
presented by the underlying communication structure of eClass. However, this issue
could have been avoided if the essential application features were decoupled from this
concern, making the system easier to build and extend. The rigid hierarchical data
structure employed by eClass resulted in storage and access challenges that were too
difficult to overcome. We learned the importance of information storage being
flexible in order to support a growing set of captured information as the system
continues to evolve. Information integration also occurs due to different contextual
relationships between captured streams beyond just time. Both lessons may seem
obvious, but in the case of eClass, they were overlooked as key design issues.

A primary reason why our classroom research has relative success was because we
could evolve the system over a long period of evaluation. This was aided considerably
by early architectural decisions we made to structure the system into four phases: pre-
production, live capture, post-production/integration, and access. However, the phases
of eClass imply a sequential ordering of activities that does not always happens.
Instead, it is generally better to consider the functional components of the overall
architectural solution. We also observed that post-production/integration activity can
be further separated into: storage of information until it is later accessed; transduction
(or transformation) between different data types; and integration, in which
relationships between separately captured streams cause the multiple streams to be
delivered collectively during access. Additionally, access happens on varying time-
scales, depending on when information needs to be reviewed relative to when it was
captured; therefore, different forms of access methods and interfaces are desired.

4 INCA: Infrastructure for Capture & Access

To help designers focus the development effort on the essential features of the capture
and access application, we developed the INCA toolkit with a small set of key
architectural abstractions in mind.

• Part of the system is responsible for the capture of information as streams of data
that are tagged with relevant metadata attributes.

• Part of the system is responsible for the storage of information along with
metadata.

• When information needs to be converted into different formats and types, part of
the system must transduce the information.

• Part of the system is responsible for the access to multiple, related, or integrated,
streams of information that are gathered as response to context-based queries;

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 7

Figure 1. General architecture for systems built using INCA. A Registry runs at some well-known location
and any number of applications acting as Capturers, Accessors, Storers, or Transducers can connect to it
and share captured information through instances of specialized networked modules (such as a
CaptureModule, AccessModule, etc.).

i.e., support for the integration of information can be wrapped directly into
support for the access of the information, such that when information is
requested, related streams of information are jointly provided.

For any given application, there may be more than one instance of each of the
above functions. From the implementation perspective, INCA provides a direct way
to translate applications designed the following way into executable form. For each
functional component above, INCA provides an encapsulated module that a
programmer extends or uses as part of the application code. We next present the
different components within the infrastructure. There are additional features of INCA
that simplify other aspects of application development that stem from the inherent
distributed nature of these applications, and common data types and features that
allow programmers and end-users to inspect and control the run-time system.

4.1 Capturing and Tagging Information

INCA defines a CaptureModule object to support the capture of information; where
capture is defined as the act of collecting data from the physical environment. Data is
captured and digitized as raw bytes with tagged attributes that describe some
properties about the data (such as its data type or format) and the context of the
capture activity (such as when and where it was captured). These tags are used in later
stages to make the captured data automatically available to those parts of the system
that are responsible for storing, transducing, or otherwise accessing it.

The capture function defined in the CaptureModule is invoked when the
application attached to a device (such as a camera, microphone, or electronic
whiteboard) has data that is available to be tagged and stored, transduced or provided
to some access service. A CaptureModule can register various Tagger objects to add
metadata information automatically to the output objects from the capture function.

8 Khai N. Truong and Gregory D. Abowd

INCA provides a number of reusable Tagger objects in its toolkit library for adding
attributes specifying people present in a location, the current time, the data type being
captured and the location of the captured activity.

4.2 Storing Information

A StorageModule provides persistence for captured data. A StorageModule can
specify a list of attributes for the kind of captured information it is interested in
automatically receiving via a subscribe function. When the capture function in
a CaptureModule is invoked, the store callback function of any StorageModule that
has registered a satisfied set of attributes is provided with the captured data. Similarly,
a publish function announces to other components an attribute list describing the
kind of information it stores. When access to stored information is needed, the
retrieve function is called. How this information is actually stored and retrieved is
left up to the part of the application that actually extends the StorageModule.

A Repository service defines all the basic StorageModule functionality. It provides
a relational database and supports the storage and retrieval of any kind of data tagged
with attributes. A Repository can be launched and left running, so application
developers can have storage performed as an existing service without additional
development effort or modification. The Repository class can also be extended to
meet a specific application need, such as storing only personal information or
optimized for a specific captured data type. The Repository provided by INCA uses
MYSQL as the back-end database. A FileRepository service is also available and
provides the same functionality as the Repository object without using MYSQL.

4.3 Accessing Information

An AccessModule supports handle, subscribe and request functions. When
information is desired as it is being captured, an access interface can subscribe for
information it wants (e.g., subscribe for all data created by “John” originating from
“Building 4: Room 106”). As information is captured, an AccessModule’s handle
callback function is invoked providing that object with the captured data. A
request creates a context-based query to the INCA runtime system consisting of
attributes to be matched against stored metadata. Upon receiving this query, INCA
checks with all existing StorageModule and Repository instances for data matching
the specified query (by invoking the retrieve function in the storage components)
to obtain all matching data, resolves any cases of redundancy and then returns a list of
data found back to the object. Information is integrated based on how it is requested
through context-based queries. In its simplest form, the query match is based on
attribute name-value pairs and can grow to include more general data retrieval
operations that more effectively filter and mine large distributed repositories.

One example of INCA simplifying the programming task is seen in the relationship
between an AccessModule and the remaining run-time system. An AccessModule
makes context-based queries for information, but the application programmer does

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 9

not need to know the location of any of this captured data. The INCA run-time system
resolves the query and delivers the information to the requesting AccessModule.

4.4 Transducing Information

A TransductionModule supports the transformation of information between different
data types (such as from a video file to a series of image frames) and formats (such as
from a WAV file to an MP3 file). A TransductionModule instance subscribes
with a list of attributes specifying the metadata for information that it can convert.
When matching captured data is available, the transduce function of each
TransductionModule is automatically invoked by the INCA runtime system. The
transduced information is then passed on to those StorageModules, AccessModules or
TransductionModules that have matching subscriptions for the newly generated data.
Additional tagging of metadata to newly transduced data happens in a way similar to
that described for the CaptureModule. INCA provides a number of Transducer
services, such as transforming a video file into a series of image frames and vice
versa, transcribing handwritten ink, or converting text to speech.

4.5 Additional Abstractions & Features

The previous features of INCA provided abstractions meant to guide a designer’s
thinking about how to create a specific capture and access application. In addition to
those essential application features, there are a number of other concerns that INCA
supports to simplify the development and evolution process:

• Attribute-triggered automated garbage collection allows the system to discard
unwanted data.

• An ObserveModule provides a detailed description of the run-time state of the
system. A ControlModule allows for the modification of this run-time state.
Together, these features could allow for implementation of privacy and security
features, instrumentation for extended evaluation purposes and dynamic
adaptation of application features.

• An extensible library of reusable components supports the capture and access
common data types, currently including audio, video, ink and Web visits.

As seen with eClass, the communications structure of a system cuts across all the
architectural concerns of a capture and access application and is an important factor in
evolving these applications. We implemented a network abstraction layer to separate
network concerns from the application code. This layer supports a general client-
server architecture, where the server binds to two ports. The server uses one of the
ports to support connections for synchronous communication between the clients and
the server. The second port is used to support asynchronous communication. We build
the four functional modules described previously (the CaptureModule, AccessModule,
etc.) as clients in this architecture. A Registry object is built as a server maintaining a
list of the available modules that handle the capture, storage, transduction and access
of information (see Figure 2). The Registry and all the specialized network modules

10 Khai N. Truong and Gregory D. Abowd

are implemented with a watchdog thread which monitors its network connectivity,
increasing reliability and self-maintenance.

To support a variety of applications designed for different domains, the server and
it clients exchange serialized message objects. By viewing captured data as only raw
bytes with tagged attributes, the infrastructure is able to handle many different kinds
of data in the same fashion.

Figure 2. INCA includes a network abstraction layer on which the specialized networked modules (such as
the CaptureModule, AccessModule, etc.) and the Registry are built. Developers create applications without
worrying about details of the underlying network code.

5 Building a Simple Capture & Access Application with INCA

Now that we have defined the key architectural abstractions and other useful services
provided by INCA, we will demonstrate how this infrastructure can be used to
develop a simple audio capture application that supports the access of near-term
recorded conversations (shown in Figure 3). This Personal Audio Loop application
(PAL) is intended to run on a single, mobile device that travels with its user. Unlike a
tape recorder, this service continues to capture audio even when playback of
previously recorded information is accessed. Furthermore, the application
automatically discards portions of the captured audio that are older than fifteen
minutes.

To begin, we instantiate a Registry component in our main program:

Registry registry = new Registry();

Capture behavior
We use a predefined WaveCapturer component, an extended CaptureModule from
INCA, to capture audio and register Tagger objects to add attributes facilitating the
future retrieval of the captured audio (e.g. time stamps). Once initialized, we start the
WaveCapturer.

WaveCapturer wave_capturer = new WaveCapturer();
CaptureModule capture_module = new CaptureModule(wave_capturer);

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 11

capture_module.addTagger(new TimeStampTagger());
wave_capturer.startCapture();

Storage behavior
To store the audio, we simply instantiate a Repository.

Repository repository = new Repository();

Access behavior
We use a predefined AudioPlayer component, an extended AccessModule from
INCA, to play back requested audio.

AudioPlayer audio_player = new AudioPlayer();

We developed a GUI for the user to specify the time in seconds, t, back from the

present, at which audio should begin playback (see Figure 3). We developed our
application to request 1 minute of audio from that point for playback.

Query q_start_time = new Query();
q_start_time.greaterThan(new Attribute(“TimeStamp”,new Long(t).toString()));
Query q_stop_time = new Query();
q_stop_time.lessThan(new Attribute(“TimeStamp”, new Long(t+(1*60*1000)).toString()));
Query q_main = new Query();
q_main.and(q_start_time);
q_main.and(q_stop_time);
audio_player.playback(q_main);

To discard audio, we create a special GarbageCollector object that periodically

discards information.

class AudioGarbageCollector extends GarbageCollectionModule implements Runnable {
protected Thread thread;
public AudioGarbageCollector() {

thread = new Thread(this);
thread.start();

}
public void run() {

while(true) {
try {

Thread.sleep(1000 * 60);
Query q_time = new Query();
q_time.lessThan(new Attribute(“TimeStamp”,

Figure 3. The Personal Audio Loop application’s high-level architecture (left) and user interface (right).

Figure 3. The Personal Audio Loop application’s high-level architecture (left) and user interface (right).

12 Khai N. Truong and Gregory D. Abowd

new Long(System.currentTimeMillis() – (15 * 60* 1000)).toString()));
gc(q_time); // remove data older than a certain time from storage

} catch(Exception e) {}
}

}
}

6 Uses of INCA

We now present three more complex systems built with INCA and evolved to
investigate interesting issues and new features. Finally, we discuss applications built
by others using INCA as evidence to support the general applicability of this toolkit
and its value to the ubiquitous computing community.

6.1 Building & Evolving a Classroom System

The foundation of the classroom capture and access experience is that of the public
information available before, during, and after the actual lecture. A minimally useful
system must capture the instructor’s writing and prepared notes, the instructor’s
speech while communicating with the class, and outside information brought into the
lecture in the form of visited web pages. Furthermore, all of this raw data must be
stored in a logical manner for easy access at a later time. When users choose to access
the information from any particular lecture, they must be able to do so from any other
location and using a variety of techniques.

To support the capture of the instructor’s writing, we developed a custom
application, known as e-Board (see Figure 4a) that is installed on an electronic
whiteboard in the classroom. For instructors who teach with prepared presentations,
the e-Board application allows users to load a presentation for display on the
electronic whiteboard. e-Board is built with a BoardSurface component, a specialized
CaptureModule. BoardSurface provides a blank writing surface that listens to pen
events and also displays a slide image. As the instructor creates a new blank slide or
chooses an existing slide to present, BoardSurface captures that slide and
automatically tags it with a unique ID (a string containing the name of the machine
and the time the slide was loaded or created in the classroom capture and access
system). Similarly when an instructor visits a slide, BoardSurface captures a visit
event tagged with that slide’s unique ID. BoardSurface also tags ink strokes captured
during the slide’s presentation with the slide’s unique ID. Tagger objects, registered
by e-Board, automatically associate time, physical location (e.g., classroom number),
relevant course information (e.g., class name and instructor name), and relevant
system information (e.g., application name and IP address of the machine running the
application) to the captured ink strokes, slides, and slide visits. BoardSurface is
distributed with INCA, so other developers can use and extend it as desired.

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 13

INCA includes WaveCapturer, a reusable CaptureModule specialized for capture
of low-bandwidth audio in the .WAV format. An instance of WaveCapturer is
installed on a suitable machine attached to a recording device in a particular space (a
classroom, in this case). The INCA Registry is informed automatically of this
instance. The e-Board application uses an ObserveModule to determine the list of
available nearby capture services and a ControlModule to start those services. Starting
and stopping the audio recording can be coupled with the starting and stopping of the
e-Board application. It also can be tailored to start and stop recording at different
times during the use of e-Board, either automatically or through human intervention.

WebMemex is a specialized CaptureModule provided by INCA to record Web
pages requested by a client browser. Acting as a Web proxy, it handles the HTTP
requests and logs pages visited. INCA provides this Web proxy application as a
general capture service. In eClass, WebMemex helps capture pages viewed in class.

All captured classroom activity is stored in the property-based Repository. The
access application runs as a standard Web interface (see Figure 4e) allowing users the
freedom to access classroom data from any web-enabled machine. The application,
composed of custom built Java Server Pages (JSP), instantiates an AccessModule to
request captured information tagged with the course name and date specified by the
student reviewing the lecture. It then presents the lecture as a sequence of discrete
slides in the same order used by the instructor during the lecture, regardless of what
ordering might have existed in the prepared slides. Users can examine a timeline that
indicates the important events taking place during the lecture, such as a slide being
created or visited or a Web page being viewed. For further details, a user may click

Figure 4. The simplified architecture of the basic eClass system. (a) The e-Board application built using the
BoardSurface capture module provides a writable presentation surface that allows the instructor to present
prepared slides and/or write on a blank surface. (b) A separate component built using the WaveCapturer
capture module records audio during the lecture. (c) The ExtendedSurface application shows a history of
slides captured during the lecture. (d) A Web access interface that includes an audio player, a timeline of
the captured lecture, and the slides and their annotations automatically generate using JSP allows students
to review the captured lecture. (e) A generic Repository object stores all the captured data.

14 Khai N. Truong and Gregory D. Abowd

any portion of the timeline or the handwritten ink to begin playback of the audio
corresponding to that portion of the lecture. In this case, the AudioPlayer, a toolkit
component for playing back audio (using an AccessModule) requests audio chunks
and begins playback until the user clicks the stop button.

Playback of the ink stream at variable speed is also a desirable application feature
[21]. INCA supplies this functionality with a reusable NotesPlayer component that
provides an interface for requesting captured slides and ink annotations and methods
for invoking and stopping playback. Using an AccessModule, the NotesPlayer object
requests the information specified by the user. INCA delivers information back to the
NotesPlayer in time sequential order allowing custom rendering over time. A Clock
object is used to control the playback of the captured notes in the NotesPlayer. This
Clock object can be paused or even programmed to run at different rates. The
AudioPlayer and the NotesPlayer can share a Clock object to synchronize playback of
the captured notes augmented with audio.

A useful near-term access application in the classroom to both students and
teachers is an extended whiteboard to show the history of the lecture. INCA provides
a reusable ExtendedSurface component. This specialized AccessModule provides an
interface supporting the subscription queries for captured slides and ink annotations.
When slides are created or visited, they are added to the surface. The surface can be
defined to show the current slide, the previous slide, the current and previous three
slides or the previous four slides (see Figure 4c). The surface displays not only the
slides but any ink annotations of the slides as well.

A potential evolution of the system is to change the technique to capture
presentation slides and ink annotations. While most of the related public capture
systems support the explicit capturing of information through electronic whiteboards,
the Cornell Lecture Browser demonstrates the ability to do this capture with cameras
and vision techniques [20]. INCA supports this behavior through a component that
frequently captures frames from a camera or display signal to a projector. This
component uses an algorithm that performs image differencing on specified regions of
the frames representing the actual presentation slides. By scaling the captured frames
to 1/8th of their original resolution and computing the percent of pixels that are
different between the two frames, this component is able to determine a new slide or a
slide visit event. The separation of concerns supported by INCA minimizes the impact
of the change in the underlying capture technique to the rest of system.

Not all instructors have electronically prepared presentation slides. As a result, the
hurdle for using eClass can be lowered with support for scanning materials and
making it available on a blank slide that an instructor could then annotate. This
feature is also desirable at times during class when illustrations or examples are
written on paper and needs to be integrated with the rest of the captured electronic
lecture notes. We developed a custom application, eScanner to run on the computer
connected to a scanner. This application continuously scans material until a blank
image is detected. As images are scanned in, they are captured and made available to
any application interested in it. This application publishes that it is a scanner
application and it is located in a particular room. The e-Board application is modified
to use an AccessModule and subscribes for slides created in the classroom. We added
to the e-Board application a GUI button that activates the loading of slides from the

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 15

scanner. The e-Board application uses an ObserveModule and ControlModule pair to
request the scanning of any material the instructor has placed on the scanner.

Finally, most instructors occasionally want the ability to suspend audio recording.
We modified the e-Board application to include in its interface a button to stop and
resume audio recording when it observes than an audio capture service is available.
The button invokes the ControlModule to control audio capture in this way.

6.2 Capturing & Sharing Web Experiences

To facilitate a content and/or context based history search mechanism, we used the
WebMemex component to capture an annotated Web history. We registered a number
of existing and custom Tagger objects to help associate the user’s ID, time and
location to each captured Web visit (in addition to the keywords). The access interface
consisted of custom Java Server Pages that used an AccessModule to handle search
queries for previously captured Web visits.

This annotated Web history also enables a number of other access features, such an
automatic recommendation capability. As a user browses new Web pages, a different
access application suggests related URLs that the user has visited from the past. An
AccessModule requests the last Web visit handled by the proxy server (which is
currently viewed by the client browser). By taking the keywords of this Web page, the
access application can query for previous URLs that she visited with matching
keywords. This information is displayed in a pop-up window.

Although we originally developed this service to support individual users as they
surf the Web, it has since been extended to investigate the sharing of Web histories
within a social network [18]. We developed a component that communicates with
Yahoo’s Messenger service to authenticate the user’s login and obtain her list of
friends, which we considered the user’s social network. This component simply
replaced the less sophisticated user authentication component we previously used in
the system; i.e., this modification happened as an isolated change from the rest of the
capture and access application. We then modified the access behavior to allow
information sharing between users if they exist in each other’s buddy list.

6.3 Recording & Analyzing Developmental Behavioral Patterns

To better support the collection and analysis of developmental behavioral data of
children with autism or other disorders, we developed a mobile capture application
that runs on a Tablet PC and integrates the notes taken during an observation session
with the corresponding video clip automatically captured [31]. Using an InkSurface
component, which the WhiteBoard component used in the classroom system extends,
we recreated the paper forms used by the teachers. We added the ability to tag the
markings the teachers create on this form with their semantic meaning (such as if a
behavior is observed, not observed, etc.) by recognizing the gestures. This electronic
form includes a VideoCapturer component that automatically records video clips
during a session. After each session, the captured information is stored and then made
available again when the teacher reviews the data with the parents. We used an

16 Khai N. Truong and Gregory D. Abowd

AccessModule to query for all behaviors captured over time based on their tagged
values (if a behavior is observed, not observed, etc.). This data is color-coded and
then plotted on two timelines to provide a macro view of all the behaviors observed
by the teacher and a micro view that shows details of a particular session. Clicking on
marks in the micro timeline causes a VideoPlayer component embedded in the access
interface to access a video clip of that behavior.

By iteratively designing this application with members of the Emory Autism
Centers, we uncovered major usability problems in the capture application. Writing
on a Tablet PC was too different from writing on paper in two important ways:
calibration and resolution. Furthermore, imperfect gesture recognition resulted in too
much time and effort spent correcting the data. As a result, we needed to modify the
capture interface. We replaced the InkSurface components found in the capture
interface with buttons that users can push to specify an observed behavior. This event
is captured and tagged with the same semantic meaning as the strokes were before.

6.4 Other Uses of INCA

INCA was developed as part of a joint research effort between the Georgia Institute of
Technology and Universidade de São Paulo (USP). We provided INCA to developers
at our own institution and at the partner university. In addition to the applications
described above, developers at Georgia Tech used INCA for the following projects:

• An e-Board application for another department on campus.
• A very large-scale input surface, covering two entire walls of a meeting room

using six chained mimio recording devices.
• A video recording application that automatically captures and tags home videos

based on room-level entry and exit of individuals in the home.
At the partner university, Universidade de São Paulo, the following uses of INCA
were reported:

• The iClass system (http://iclass.icmc.usp.br) to support the capture of lectures and
seminars in order to generate a varied of web-based multimedia documents.

• An application to facilitate exchange of notes between a Palm-based PDA and the
normal electronic whiteboard.

• A component for Web capture that could do specialized processing on the content
of the URL. The same student built an ink capture module linked with a
handwriting recognition engine he implemented. This represents an interesting
use of the transduction capabilities of INCA.

• A distributed XML service that handles transparent storage and retrieval of XML
documents reporting session-level information of captured data.

7 Conclusions

Previous research demonstrated the value of automated capture and access as a
significant class of ubiquitous computing systems. Despite this, we observe that
features of capture and access have not been sufficiently explored in many domains.

INCA: A Software Infrastructure to Facilitate the Construction and Evolution of
Ubiquitous Capture & Access Applications 17

We researched and identified key architectural insights into the creation of this class
of applications. Designing in terms of these architectural features—capture of
attribute-tagged data streams, storage, transduction and access of related and
integrated streams—allows a designer to focus on key distinguishing features of any
capture and access applications. We introduce the INCA toolkit as a software
infrastructure for transforming high-level designs into implementations while hiding
from the programmer details of certain development tasks incidental to the software.
INCA separates various application concerns into individual functional building
blocks and decouples features that cut across all aspects of the application from
system code. We validated that INCA simplifies the development and evolution of
complex capture and access capabilities through use in a number of applications. The
successful uses of INCA by us and others demonstrated that we identified the proper
software structuring for this class of applications and gives us confidence that we
created an important tool for others to build upon.

Acknowledgments

This material is based upon work supported by the National Science Foundation under
Grants No. 0070345 and 0121661. The authors thank Maria da Graça Pimentel, Tom
Barnwell and Lonnie Harvel for their continued collaboration on this work. We also
deeply appreciate the endless help and support provided by Anind Dey, Gillian Hayes,
Elaine Huang and members of the Georgia Tech’s Ubiquitous Computing group.

References

1. Abowd, G.D., Classroom 2000: An Experiment with the Instrumentation of a Living Educational
Environment. IBM Systems Journal. 38(4) (1999) pp.508-530.

2. Bacher, C., Muller, R., Ottmann, T., and Will, M. Authoring on the Fly. A New Way of Integrating
Telepresentation and Courseware Production. In the Proceedings of International Conference on
Computers in Education (ICCE'97). Kuching, Sarawak, Malaysia (1997)

3. Berque, D. Using a Variation of the WYSIWIS Shared Drawing Surface Paradigm to Support
Electronic Classrooms. In the Proceedings of HCI International 1999. Munich, Germany (1999)

4. Bianchi, M. AutoAuditorium: A Fully Automatic, Multi-Camera System to Televise Auditorium
Presentations. In the Proceedings of DARPA/NIST Smart Spaces Technology Workshop. (1998)

5. Brotherton, J.A. Enriching Everyday Activities through the Automated Capture and Access of Live
Experiences - eClass: Building, Observing and Understanding the Impact of Capture and Access in an
Educational Domain.Ph.D. Thesis, College of Computing, Georgia Institute of Technology (2001)

6. Chiu, P., Kapuskar, A., Reitmeier, S., and Wilcox, L. NoteLook: Taking Notes in Meetings with
Digital Video and Ink. In the Proceedings of ACM Multimedia'99. Orlando, FL (1999) pp.149-158.

7. Cruz, G. and Hill, R. Capturing and Playing Multimedia Events with STREAMS. In the Proceedings
of ACM Multimedia ’94. San Francisco, CA (1994) pp.193-200.

8. Davis, R.C., Landay, J.A., Chen, V., Huang, J., Lee, R.B., Li, F.C., Lin, J., III, C.B.M., Schleimer, B.,
Price, M.N., and Schilit, B.N. NotePals: Lightweight Note Sharing by the Group, for the Group. In the
Proceedings of CHI'99. Pittsburgh, PA (1999) pp.338-345.

9. Dey, A.K., Salber, D. and Abowd, G.D. A Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction (HCI) Journal.
16(2-4) (2001) pp.97-166.

18 Khai N. Truong and Gregory D. Abowd

10. Dey, A.K., Futakawa, M., Salber, D., Abowd, G.D. The Conference Assistant: Combining Context-
Awareness with Wearable Computing, In the Proceedings of the 3rd International Symposium on
Wearable Computers (ISWC '99). San Francisco, CA (1999) pp.21-28.

11. Gellersen, H.W., Schmidt, A. and Beigl, M. Multi-Sensor Context-Awareness in Mobile Devices and
Smart Artefacts.. Mobile Networks and Applications (MONET). 7(5) (2002) pp.341-351.

12. Greenberg, S. and Fitchett, C. Phidgets: Easy Development of Physical Interfaces through Physical
Widgets. In the Proceedings of UIST 2001. Orlando, FL (2001) pp.209-218.

13. He, L., Sanocki, E., Gupta, A., and Grudin, J. Auto-Summarization of Audio-Video Presentations. In
the Proceedings of ACM Multimedia 1999. Orlando, FL (1999) pp.489-498.

14. Fleck, M., Frid, M., Kindberg, T., O'Brien-Strain, E., Rajani, R. and Spasojevic M. Rememberer: A
Tool for Capturing Museum Visits. In the Proceedings of UBICOMP 2002. Goteberg, Sweden (2002)
pp.48-55.

15. Klemmer, S.R., Li, J., Lin, J. and Landay, J.A. Papier-Mâché: Toolkit Support for Tangible Input. In
the Proceedings of CHI 2004. Vienna, Austria (2004)

16. Lamming, M., and Flynn, M. "Forget-me-not" Intimate Computing in Support of Human Memory. In
the Proceedings of FRIEND21: Symposium on Next Generation Human Interfaces. Tokyo, Japan
(1994)

17. Liu, Q., Rui, Y., Gupta, A., and Cadiz, J.J. Automating Camera Management for Lecture Room
Environments. In Proceedings of CHI 2001. Seattle, WA (2001)

18. Macedo, A.A., Truong, K.N., Pimentel, M.G.C., and Camacho, J.A. Automatically Sharing Web
Experiences through a Hyperdocument Recommender System. In the Proceedings of ACM HyperText
2003. Nottingham, UK (2003)

19. Mankoff, J.C., Hudson, S.E. and Abowd, G.D. Interaction Techniques for Ambiguity Resolution in
Recognition-Based Interfaces. In the Proceedings of UIST 2000. San Diego, CA (2000) pp.11-20.

20. Mukhopadhyay, S. and Smith, B. Passive Capture and Structuring of Lectures. In the Proceedings of
ACM Multimedia'99. Orlando, FL (1999) pp.477-487.

21. Omoigui, N., He, L., Gupta, A., Grudin, J., and Sanocki, E. Time-Compression: Systems Concerns,
Usage, and Benefits. In the Proceedings of CHI'99. Pittsburgh, PA (1999) pp.136-143.

22. Pedersen, E. McCall, K., Moran, T.P. and Halasz F. Tivoli: An Electronic Whiteboard for Informal
Workgroup Meetings. In the Proceedings of INTERCHI’93. Amsterdam, The Netherlands. (1993)
pp.391-398.

23. Richter, H., Abowd, G.D., Geyer, W., Fuchs, L., Daijavad, S. and Poltrock, S. Integrating Meeting
Capture within a Collaborative Team Environment. In the Proceedings of UBICOMP 2001. Atlanta,
GA (2001) pp.123-138.

24. Stern, M., Steinberg, J., Lee, H., Padhye, J., and Kurose, J. MANIC: Multimedia Asynchronous
Networked Individualized CourseWare. In the Proceedings of Educational multimedia and
Hypermedia. (1997).

25. Stifelman, L.J. The Audio Notebook.Ph.D. Thesis, Media Laboratory, MIT (1997)
26. Streitz, N.A., Geibler, J., Haarke, J., and Hol. J. DOLPHIN: Integrated meeting Support across Local

and Remote Desktop Enviroments and LiveBoards. In the Proceedings of CSCW’94. Chapel Hill, NC.
(1994) pp. 345-357.

27. Sumi,Y., Sakamoto,R., Nakao,K., and Mase,K. ComicDiary: Representing Individual Experiences in
a Comics Style. In the Proceedings of UBICOMP 2002. Goteberg, Sweden (2002) pp.16-32.

28. Tandler, P. Software Infrastructure for Ubiquitous Computing Environments: Supporting
Synchronous Collaboration with Heterogeneous Devices. In the Proceedings of UBICOMP 2001.
Atlanta, GA (2001) pp.96-115.

29. Truong, K.N., Abowd, G.D., and Brotherton, J.A. Personalizing the Capture of Public Experiences. In
the Proceedings of UIST'99. Asheville, NC (1999) pp.121-130.

30. Truong, K.N., Abowd, G.D., and Brotherton, J.A. Who, What, When, Where, How: Design Issues of
Capture & Access Applications. In the Proceedings of UBICOMP 2001. Atlanta, GA (2001) pp.209-
224.

31. White, D.R., Camacho-Guerrero, J.A., Truong, K.N., Abowd, G.D, Morrier, M.J., Vekaria, P.C. and
Gromala, D. Mobile Capture and Access for Assessing Language and Social Development in Children
with Autism. In the Extended Abstracts of UBICOMP 2003. Seattle, WA (2003) pp.137-140.

32. Whittaker, S., Hyland, P. and Wiley, M., FiloChat: Handwritten Notes Provide Access to Recorded
Conversations. In the Proceedings of CHI’94. Boston, MA (1994) pp.271-276.

33. Wilcox, L., Schilit, B.N., and Sawhney, N. Dynomite: A Dynamically Organized Ink and Audio
Notebook. In the Proceedings of CHI'97. Atlanta, GA (1997) pp.186-193.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

