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Abstract
In this paper, we attempt to represent audio as a sequence of
acoustic units using unsupervised learning and use them for
multi-class classification. We expect the acoustic units to repre-
sent sounds or sound sequences to automatically create a sound
alphabet. We use audio from multi-class Youtube-quality mul-
timedia data to converge on a set of sound units, such that each
audio file is represented as a sequence of these units. We then
try to learn category language models over sequences of the
acoustic units, and use them to generate acoustic and language
model scores for each category. Finally, we use a margin based
classification algorithm to weight the category scores to predict
the class that each test data point belongs to. We compare dif-
ferent settings and report encouraging results on this task.
Index Terms: audio representation, sound alphabet, unsuper-
vised sound units

1. Introduction
With the rapid growth in the amount of multimedia data avail-
able on the web, the ability to efficiently, and effectively, re-
trieve information from audio or video files is crucial to the
success of search engines. Current approaches for multimedia
retrieval often rely heavily on the analysis of video, or on an-
notations or tags provided by users. We believe that the audio
also contains significant information that can be leveraged to
understand the content. In this paper, we work on analysing and
characterizing audio in multimedia recordings. Specifically, we
address the problem of automatically identifying which of a set
of semantic categories a recording belongs to, based on audio.

Automatic content analysis for audio has been the subject
of a significant amount of research in the past, motivated by the
task of audio search and retrieval. The most common approach
is to use a vocabulary of sounds, comprising clearly characteriz-
able sounds such as gunshots, laughter, speech, animal sounds,
music, crowd sounds etc. Audio is analyzed by detecting the
presence of sounds from this vocabulary in it. Additional anal-
ysis builds on top of such detection. For instance, Chang et.
al. [1] identify the presence of sounds from a vocabulary and
combine this information with evidence from video. Slaney [2]
describes a system that could be used to map between regular
vocabulary and sounds of this kind by association. Friedland
[4] navigates Seinfeld episodes taking advantage of traditional
sitcom artifacts, such as music indicating scene changes and
laughter following punchlines. Other analyses detect repeated
sequences in a television broadcast stream [3], with the intent
of identifying jingles, advertisements and so forth.

In the above, the basic mechanism involves spotting a set of
known sound types in audio. Higher-level descriptions of audio
must be obtained by further inference or by human supervision,

after the sounds are detected. In this paper, we take a different
approach. We model all audio as being composed of a sequence
of a relatively small set of atomic sound units. The contents of
an audio recording are represented by the specific sequence of
units that compose it. All recordings of any category of sound
are have similar compositions in terms of these units.

To characterize the audio, we must therefore automatically
learn the sound units, which we christen acoustic unit descrip-
tors or “AUDs”. We must also learn the distribution of AUD
sequences for different categories of recordings that we wish
to identify. To do so, we model AUDs with Hidden Markov
models. Learning the sound units is equivalent to learning the
parameters of the HMMs for the AUDs. We model the distri-
butions of AUD-sequences for different categories as category-
specific n-gram language models over the vocabulary of AUDs.

We propose a maximum-likelihood solution that jointly es-
timates the parameters of the HMMs for the AUDs and the lan-
guage models for the categories of audio from a training corpus.
The solution is analogous to the unsupervised and semisuper-
vised automatic learning of sub-word units in speech e.g. [9]
[10]. The AUD-HMMs and category LMs can be employed to
decide which category any new recording belongs to. We also
propose a new classification algorithm for this purpose.

We evaluate the proposed analysis on the MED-10 data pro-
vided by NIST. These data comprise several Youtube quality
recordings of several categories of events. The task we eval-
uate on is that of identifying the correct category for a given
recording. Although, in principle, we could also employ evi-
dence from the video in the recordings, we perform our classi-
fication based only on the audio, since our goal is analyze the
amount of evidence derivable from the audio alone. Our exper-
iments reveal that the proposed methodology is able to classify
the recordings with remarkably high accuracy, given the com-
plexity of the task.

The rest of the paper is arranged as follows. In Section 2
and 3 we describe the learning algorithm used to discover sound
units from training data. In Section 4, we describe the algorithm
to classify recordings into one of the categories. Section 5 de-
scribes the data we use for our experiments, and we describe
our results in Section 6 and conclude with our findings.

Finally, we note that proposed approach has applications
well beyond the application evaluated here. The ability to dis-
cover sound units in data is potentially useful in a variety of ap-
plications, such as segmentation, classification, indexing, and
text- and example-based retrieval of audio data.

2. Modeling Sound Units
Consider sounds from a baseball video of a hitter batting in a
run. Fig. 1 shows three video frames from an example of such
a recording. The bat makes contact with the ball, producing a



sharp metallic sound. This is followed by sounds of footsteps
running, and muted exclamations from spectators. Finally, there
is cheering and teammates congratulating the player once a run
is scored. A listener familiar with baseball would be able to in-
fer from the sequence of sounds that a baseball game is likely
to be in progress, and that a hit or a run may have occurred. Al-
though the precise sounds produced (bat hitting the ball, foot-
steps, cheering) may vary in nature, and the precise manner in
which these sounds follow one another may vary, the overall
pattern of sounds is still characteristic of the event.

This example illustrates the primary intuition behind our
formulation. The acoustic events in the example – the sound of
the ball being hit, footsteps, cheering, etc. are all atomic sound
events that characterize the larger event of the run being batted
in. Moreover, in addition to these key events there are other
individual nondescript atomic events such as pauses, rustling,
silence, etc. which occur in the recording. In fact, every instant
of the audio may be considered to be a part of one such atomic
event. The overall pattern of occurrence of these atomic events
characterizes the larger event.

Following this intuition, we model all audio as a sequence
of atomic sound units, or AUDs. Note that AUDs do not merely
spot specific events in the audio stream – the entire audio stream
can be transcribed in terms of these units, i.e. every segment of
audio is part of some AUD. In principle, if every AUD were to
have distinct semantic identity, the number of AUDs required to
represent all audio would be very large. Instead, we hypothe-
size that if we represented the audio using just a small number of
AUDs that represent generalized units, the patterns in the tran-
scriptions of audio recordings in terms of these AUDs will still
be characteristic of the larger events in the audio.

In the following discussion, we will not use the term atomic
event, instead referring to them as AUDs. All reference to events
refer only to larger-level events such as the above example of
batting in a run. Patterns of AUD sequences characterize events.

The problems we must address now are twofold: A) Learn-
ing: i. Given a set of training audio recordings, we must learn
the set of AUDs, and ii) In order to categorize or classify record-
ings into events, we must learn statistical characterizations of
the patterns of AUD sequences for audio from different cate-
gories. B) Classification: Given the set of AUDs and statistical
characterizations of categories, we need an algorithm to classify
test recordings into categories. We address these issues below.

3. Learning Model Parameters
We model AUDs by hidden Markov models. Since we are pri-
marily interested in characterizing the AUDs, rather than in-
terpreting their semantics, learning the AUDs is equivalent to
learning the parameters of the HMMs for the AUDs. We model
the distribution of the AUD sequences for audio categories as
N -gram language models over the vocabulary of AUDs.

We cast the learning problem as one of maximum likelihood
estimation. We are given a collection of audio recordings D.
Assigned to each recording Di in D is a class label Ci ∈ C,
where C represents the set of all classes. Although not neces-
sary, we will assume that each recording is entirely assigned
to only one class. Each audio recording Di has an unknown
transcription Ti as a sequence of AUDs. The AUDs are mod-
elled by HMMs, whose parameters we collectively represent as
Λ. The transcriptions of all recordings belonging to a class C
are assumed drawn from an N -gram language model H(C).
The HMM parameters Λ and the set of language models for all
classes H = {H(C) ∀C} are unknown and must be estimated

Figure 1: Example of a sequence from a baseball video.

from the data. We assume that the total number of AUDs K is
known. In realityK is a hyperparameter that may be optimized.

We assume the dependencies shown by the graphical model
in Fig 2: the acoustic realization of any recording depends on
its transcription and not directly on the language model for the
class. So also, the transcriptions only govern the acoustic real-
ization and do not directly relate to HMM parameters.

Figure 2: Graphical model for each data point D. Circles repre-
sent random variables and rectangles represent parameters.

The maximum likelihood estimate for Λ andH is given by:

Λ∗,H∗ = argmaxΛ,HP (D|C(D); Λ,H) (1)

Here C(D) represents the classes assigned to each D in D. In
the notation above terms to the right of the semicolon are pa-
rameters, while remaining terms are random variables.

In principle, the above estimator must consider all possible
transcriptions for any D. Instead we will approximate it by
only considering the most likely transcription for any D. Also
assuming that individual recordingsD are independent, and that
the class is represented primarily through the language model
for the class, the estimator changes to:

argmaxΛ,H

Y
C

Y
Di:Ci=C

max
T

P (Di, T ; Λ, H(C)) (2)

We obtain the above estimate using the iterative algorithm
in Algorithm 1. In the figure superscripts appearing against the
parameters indicate the iteration in which the estimate for the
parameter was obtained.

It is simple to show that Algorithm 1 is a hill-climbing pro-
cedure that results in ever increasing likelihood for the data:
Equation 3 ensures that

P (Di, T
r+1; Λr, H(C)r) ≥ P (Di, T

r; Λr, H(C)r)

and Equations 4 and 5 ensure that

P (Di, T
r+1; Λr+1, H(C)r+1) ≥ P (Di, T

r+1; Λr, H(C)r)

Equation 3 simply represents the automatic recognition of
Di using HMMs with parameters Λr and can be performed



Algorithm 1 Algorithm for learning AUDs and LMs

T r+1
i = argmaxTP (T |Di;H(Ci)

r; Λr) (3)

λr+1 = argmaxλ
Y
Di

P (Di|T r+1
i ; Λ) (4)

H(C)r+1 = argmaxH
Y

Di:Ci=C

P (T r+1
i ;H) (5)

with the Viterbi decoder of a speech recognizer. Equation 4
is the learning procedure for HMM parameters Λ, given the
recordings Di and their transcriptions T r+1

i , and can be per-
formed using the Baum-Welch training module of any recog-
nizer. Equation 5 represents the procedure for learning an N -
gram language model H(C) from the set of all transcriptions
T r+1
i of all recordings belonging to class C.

In order to model the data as proposed, we first represent all
recordings as a sequence of mel-frequency cepstral vectors. Al-
gorithm 1 requires an initial transcription for all recordings. We
obtain this by segmenting all recordings by merging adjacent
analysis frames, and finally clustering the obtained segments
into K clusters. The sequence of cluster identities correspond-
ing to the segments composing any recording form the initial
transcription for that recording.

4. Classification
Given the HMM parameters Λ for all AUDs, and the set of lan-
guage models H(C) for all classes C ∈ C, we can now classify
a new audio recording D into one of the classes by Bayesian
classification:

C∗ = argmaxCP (D|C;H(C),Λ)P (C)

To compute P (D|C) we must sum over all possible transcrip-
tions of D, which is generally computationally intractable. In-
stead, we can employ the common approximation of only con-
sidering the most likely transcription:

argmaxC logP (C) max
T

logP (D, |T ; Λ) + logP (T ;H(C))

(6)
Here maxT logP (D, |T ; Λ)+logP (T ;H(C)) is the log like-
lihood of the most likely transcription of D for class C for
and can be computed by the decoder of a speech recognizer.
logP (D, |T ; Λ) is the acoustic score A(D,C) for class C and
logP (T ;H(C)) is the language score L(D,C) for the class.

However, we do not use the above procedure directly for
classifying the recordings. Instead we employ a second-level
classifier that uses the acoustic and language scores for the class
as features. Let F (D,C) = [A(D,C) L(D,C)]> be a feature
vector representing the acoustic and language scores for the data
D computed for class C. For each class C we define a two-
dimensional weights vector WC . Classification is performed
using the following classification rule:

C∗ = C : WC .F (D,C) > WC′ .F (D,C′) ∀ C 6= C′ (7)

To train the classifier we learn weights WC for each class
as follows: For each training instance D belonging to class CD
we decodeD usingH(C) to obtain F (D,C) for every classC.
A training instance is correctly classified if:

WCD .F (D,CD) > WC .F (D,C) ∀ C 6= CD (8)

The weights WC can be learned to maximize classification ac-
curacy on the training data.

We optimize an objective function with an iterative algo-
rithm that follows the MIRA update rules, as described in [8].
Let us assume that for each training instance (D), the features
scores (features) have been computed, and the label (yj) is
known, and there are τ such training instances.

Algorithm 2 Learning weights for each class
M = maxiter; i = 0; v = 0
wc = (0, 0), ∀c ∈ C
w(0) = {w1, w2, ..., w|C|}
for m = 1 to M do

for j = 1 to τ do
w(i+1) = minw ||w||
s.t. S(xj , yj) ≥ S(xj , yc), ∀yc
v = v + w(i+1)

i = i + 1
end for

end for
w = v/(N × τ)

In the algorithm, the score S(xj , yc) = Wyc .F (D, yc)
denotes the weighted score when using the weights for label
yc. Thus, the constraint requires that for all possible labels, the
score should be less than with the true label yj . It is possible to
modify this formulation to include a margin by which the score
of the true label should be greater than the score of other labels.

5. Data description
For our experiments in this paper, we use the TRECVid 2010
Multimedia Event Detection dataset (MED, henceforth) [5],
from the NIST MED10 evaluation task. The MED data com-
prises 1746 total clips of training data, totaling about 56 hours
in length, and the 1724 clips of test data about 59 hours long.
The recordings are publicly available, user-generated multime-
dia content uploaded to internet hosts. Each video is annotated
with one of 4 labels – making a cake, batting in run, assem-
bling shelter and other, identifying the kind of activity being
performed in it. The class other appears to be a catch-all class
consisting of all videos that do not belong to the first 3 classes.
Participants in the NIST MED evaluation were required to re-
trieve recordings from the testset that included a queried activ-
ity or event. Participants largely focused on the video features
available. The use of the audio features was usually limited to
speech transcriptions [6], and detection of pre-specified sound
types in the audio [7].

In this paper we only use the audio in the recordings, since
our objective is to evaluate our ability to characterize the au-
dio. While these characterizations could potentially be com-
bined with the video, we have not attempted that in this paper.
We do not use any annotations besides the basic four activity
labels provided, and use no other external data of any kind.

6. Experimental Results
For our experiments, we used the CMU Sphinx toolkit for
HMM training and decoding, and the SRILM toolkit for es-
timating n-gram language models. We used 39 dimensional
MFCC features to represent the audio, including the ∆ and ∆∆.
AUDs were modeled with 5-state HMMs with a Bakis topology.



Table 1: Classification based on Viterbi decoding scores

System 3-class 4-class
64 symbols 2-gram 76.51% 64.79%
64 symbols 3-gram 75.00% 53.10%

200 symbols 2-gram 41.88% 67.42%
Class-specific HMM 36.88% 43.56%

Random 33.33% 25%

Table 2: Classification using MIRA classifier

System 3-class 4-class
64 symbols 2-gram 81.61% 73.61%
64 symbols 3-gram 80.30% 59.72%

200 symbols 2-gram 55.63% 77.08%

We evaluated n-gram language models for the classes with dif-
ferent n values.

We learned models for the classes from the MED10 train-
ing data and attempted to identify the class for each of the
test recordings. The 4-class classification task contains an ex-
tremely skewed majority class: the other class has far more
recordings than the other classes. In order to experiment with a
more balanced dataset, we also experimented with 3 class clas-
sification, leaving out the data from the other class.

Table 1 reports accuracy (recall) for the 3 best settings ob-
tained by classifying data directly using their Viterbi decode
scores. We also compare with a simple baseline model, where
we simply model each of the four classes with an ergodic HMM
and perform Bayesian classification. The HMMs and the a
priori class probabilities employed were tuned for best perfor-
mance in the last case. Table 2 reports results using weighted
MIRA classifier.

Overall, our experiments indicate that bigram language
models outperform both unigram and trigram models on this
task. Further, using 64 sound units appears to outperform sys-
tems that use more sound units on the 3 class classification task,
but it doesn’t do as well on the 4-class task. This supports the
intuition that more units better capture a larger set of sounds.
The MIRA classifier is generally significantly superior to clas-
sification based on Viterbi scores alone.

Employing our approach on the MED dataset involves sig-
nificant challenges. For instance, the other class is not con-
sistent in content, and contains a wide array of different audio
and video. Besides the other class, the remaining 3 classes are
not all well-structured. Events in the batting in run class have
audio structure to them, as discussed earlier, but the audio in
the assembling shelter and making cake classes are widely var-
ied. Table 3 compares the accuracy for each class for the 200
symbol bigram models with the simple baseline class-specific
HMM models on 4 class data.

It is not clear to us why the making cake class is better pre-
dicted with class-specific HMMs, but we believe it may have
something to with the fact that audio corresponding to making
a cake class appears to contain speech only in most cases and
non-speech sounds do not have any class-specific interpretation,
or do not occur sufficiently close for the sequence information
to be used by our model. Our system does a very good job
of identifying the other class, which is useful in reducing the
number of false positives for the other classes, and makes this
approach higher precision than the baseline.

Qualitatively, on analyzing the transcriptions generated on

Table 3: Category specific accuracy for the various classes

Class Class-specific HMM 200 symbol 2-gram
assembling shelter 31.11% 44.00%

batting in run 34.62% 59.62%
making cake 43.86 % 24.14%

other 64.67% 94.70%

the training data by the iterative learning procedure, we find that
it does a consistent job in identifying some sounds, such as the
sound of a baseball bat hitting the ball or clapping, but runs
into trouble when encountering other sounds, such as speech.
Speech information appears to be distributed among various
units. A couple of things could be done to improve this in fu-
ture work- first, identifying speech segments as a step before
sound unit learning, possibly in a supervised manner to help the
system focus on non-speech acoustic events, or use a speech de-
tector to ensure that speech events are constrained within a few
sound units; second, we could start with a small amount of su-
pervised data, that specify class-specific characteristic sounds to
help the system converge to a better solution instead of building
a sound dictionary from scratch.

In conclusion, we would like to note that the method to au-
tomatically learn sound units is a potent one. In the context of
audio data, it is perhaps necessary to add in a layer of supervi-
sion in order to help add semantic information. Detection and
recognition of speech and using the transcripts to help distin-
guish between categories should produce significant improve-
ments in performance.
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