

SEGMENTATION, CLUSTERING, AND DISPLAY IN A

PERSONAL AUDIO DATABASE FOR MUSICIANS

Guangyu Xia Dawen Liang Roger B. Dannenberg Mark J. Harvilla

Carnegie Mellon University
{gxia, dawenl, rbd, mharvill}@andrew.cmu.edu

ABSTRACT

Managing music audio databases for practicing musicians

presents new and interesting challenges. We describe a sys-

tematic investigation to provide useful capabilities to musi-

cians both in rehearsal and when practicing alone. Our goal

is to allow musicians to automatically record, organize, and

retrieve rehearsal (and other) audio to facilitate review and

practice (for example, playing along with difficult passag-

es). We introduce a novel music classification system based

on Eigenmusic and Adaboost to separate rehearsal record-

ings into segments, an unsupervised clustering and align-

ment process to organize segments, and a digital music dis-

play interface that provides both graphical input and output

in terms of conventional music notation.

1. INTRODUCTION

Music Information Retrieval promises new capabilities and

new applications in the domain of music. Consider a per-

sonal music database composed of rehearsal recordings.

Music is captured by continuously recording a series of re-

hearsals, where the music is often played in fragments and

may be played by different subsets of the full ensemble.

These recordings can become a valuable resource for musi-

cians, but accessing and organizing recordings by hand is

time consuming.

To make rehearsal recordings more useful, there are

three main processing tasks that can be automated. The first

is to separate the sound into music and non-music seg-

ments. The music segments will consist of many repetitions

of the same material. Many if not most of the segments will

be fragments of an entire composition. We want to organize

the segments, clustering them by composition, and aligning

them to one another (and possibly to other recordings of the

music). Finally, we want to coordinate the clustered and

aligned music with an interface to allow convenient access.
We see these capabilities as the foundation for an integrated

system in which musicians can compare their intonation,

tempo, and phrasing to existing recordings or to rehearsal

data from others. By performing alignment in real time, the

display could also turn pages automatically.

The next section presents a novel method to do mu-

sic/non-music classification and segmentation. Section 3

describes how to organize the segments. Section 4 de-

scribes a two-way interface to the audio.

2. CLASSIFICATION AND SEGMENTATION

2.1 Related Work

Much work has been done in the area of classification and

segmentation on speech and music. For different tasks,

people extract different features. Some focus on back-

ground music detection [6], while others detect speech or

music sections in TV programs or broadcast radio. Many

features have been tested in the realm of speech/music clas-

sification [8][17] . Two frequently used ones are Spectral-

Centroid and Zero-Crossing Rate. Also, different statistical

models have been used. Two of them, long window sam-

pling [7] and the HMM segmentation framework [1][14],

are especially relevant to our work. Other approaches in-

clude using decision trees [16] and Bayesian networks [5].

However, the particular problem of variations in the

sound source seems to be largely ignored. In reality, sound

is not standardized in volume or bandwidth and may even

contain different kinds of noise. In these cases, more robust

features and methods are needed. This section will concen-

trate on new feature extraction and model design methods

to achieve music/non-music classification and segmentation

on realistic rehearsal audio.

2.2 Eigenmusic Feature Extraction

The concept of Eigenmusic is derived from the well-known

representation of images in terms of Eigenfaces [12]. The

process of generating Eigenmusic can be performed in both

the time and frequency domains, and in either case, simply

refers to the result of the application of Principal

Component Analysis (PCA) to the audio data [3]. Therefore,

Eigenmusic refers to the eigenvectors of an empirical

covariance matrix associated with an array of music data.

The array of music data is structured as a spectrogram and

hence contains the spectral information of the audio in

those time intervals. When expressing non-music data in

terms of Eigenmusic, the coefficients are generally

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page.

© 2011 International Society for Music Information Retrieval

expected to be outlying based on the fundamentally

different characteristics of music and non-music.

In practice, we use about 2.5 hours of pure music in the

training data collection to extract the Eigenmusic in the fre-

quency domain. First, let X = [x1, x2, … , xT] be a spectro-

gram, a matrix consisting of, in its columns, magnitude

spectra corresponding to 1.25 second non-overlapping win-

dows of the incoming music data. Second, the correspond-

ing empirical covariance matrix, Cx, and its Eigenvectors

are computed. Ultimately, we retain the first 10 eigenvec-

tors corresponding to the largest eigenvalues. If P is the

matrix of column-wise eigenvectors of Cx, given a new

magnitude spectrum column vector x, we can represent its

Eigenmusic coefficients by P
T
x, which will be a 10 dimen-

sional vector.

2.3 Adaboost Classifier

Adaboost [18] is a very interesting classification algorithm,

which follows a simple idea: to develop a sequence of hy-

potheses for classification and combine the classification

results to make the final decision. Each simple hypothesis is

individually considered a weak classifier, h(P
T
x), and the

combined complex hypothesis is considered to be the

strong classifier. In the training step, each weak classifier

focuses on instances where the previous classifier failed.

Then it will obtain a weight, t, and update the weight of

individual training data based on its performance. In the

decoding step, the strong classifier is taken to be the sign of

the weighted sum of weak classifiers:

 H(x) sign(tht (P
T
x))

t (1)

By training a sequence of linear classifiers, each one of

which merely compares individual Eigenmusic coefficient

against a threshold that minimizes the weighted error, Ada-

boost is able to implement a non-linear classification sur-

face in the 10 dimensional Eigenmusic space.

2.3.1 Data Collection and Representation

The Adaboost training data is a collection of about 5 hours

of rehearsal and performance recordings of western music;

while the testing data is a collection of 2.5 hours of Chinese

music. For the music parts, each data collection contains

different combinations of wind instruments, string instru-

ments, and singing. For the non-music parts, each data col-

lection contains speech, silence, applause, noise, etc. Both

data collections are labeled as music or non-music at the

frame level (1.25 seconds). From Section 2.2, we know that

each frame is a point in the 10 dimensional Eigenmusic

space. Therefore, we have about 5 (hours) × 3600 (s/hour) /

1.25 (s/frame) = 14,400 frames for training and 7,200

frames for testing.

2.3.2 Implementation and Evaluation

We train 100 weak classifiers to construct the final strong

classifier. The testing accuracy is shown in Figure 1. The

results were obtained in terms of the percentage of error at

the frame level. Two different statistics have been

calculated: the percentage of true music identified as non-

music, shown as the solid line, and the percentage of true

non-music identified as music, shown as the dotted line.

Figure 1. The testing error of music and non-music.

From Figure 1, it can be seen that the proposed Ada-

boost classifier in the Eigenmusic space is capable of

achieving a low error rate (about 5.5%) on both music and

non-music data, even when the testing data comes from a

completely different sound source than the training data.

2.3.3 Probabilistic Interpretation

We can improve the frame level classification by consider-

ing that state changes between music and non-music do not

occur rapidly. We can model rehearsals as a two-state hid-

den Markov model (HMM) [13]. Formally, given a vector x,

let y {-1,1} represent its true label. Here, -1 stands for

non-music and 1 stands for music. And let w(x) represent

the weighted sum of weak classifiers:

 w(x) tht (P
T
x)

t (2)

In Equation (1), we took the sign of w(x) as the decision,

but we can modify this approach to compute the a posterio-

ri probability of y = 1, given the weighted sum, which we

denote as the function F:

F(w(x)) P(y 1|w(x)) (3)

According to the discussion in [15], F(w(x)) is a logistic

function, as shown in Equation 4:

F(w(x))
1

1 exp(2 w(x))
 (4)

In Figure 2, the small circles show P(y = 1 | w(x)) estimated

from training data sorted into bins according to w(x). The

logistic function is shown as the solid curve. It can be seen

that our empirical data matches the theoretical probability

quite well.

Figure 2. The logistic function estimation on training data.

We note that the idea of linking Adaboost with HMMs is

not new, but very little work has been done to implement it

[4][19]. As far as we know, this is the first attempt of a

probabilistic interpretation of Adaboost when linked with

HMMs.

2.4 HMM Smoothing for Segmentation

The significance of smoothing is that even a very low error

rate at the frame level cannot guarantee a satisfying seg-

mentation result overall (i.e. at the piece level). For exam-

ple, suppose a relatively low 5% error rate is obtained at the

frame level. If the segmentation rule is to separate the target

audio at every non-music frame, a 10 minute long pure mu-

sic piece would be cut into about 25 pieces in this case. Ul-

timately, this is an undesirable result.

Based on typical characteristics of rehearsal audio data,

we assume that: (1) music and non-music frames cannot

alternate frequently, and (2) short duration music and non-

music intervals are less likely than longer ones. By utilizing

these assumptions in conjunction with the HMM, low (but

possibly deleterious) frame-level error rates can be further

reduced. We use a fully-connected HMM with only two

states, representing music and non-music. The HMM ob-

servation corresponding to every frame x is a real number

w(x), as in Equation (2), given by the Adaboost classifier.

2.4.1 HMM Training

The training data collection mentioned in Section 2.3.1 is

used to estimate the HMM parameters. Formally, let S =

[S1, S2,…,ST] be the state sequence and let O = [O1,

O2,…,OT] be the observation sequence. Since it is a super-

vised learning problem, we do Maximum Likelihood Esti-

mation (MLE) by counting or just manually setting the pa-

rameters for initial state probabilities and transition proba-

bilities. For emission probabilities, we use Bayes’ rule:

P(Ot | St 1)
P(St 1 |Ot) P(Ot)

P(St 1)
 (5)

Remember that in our model Ot = w(xt) and P(Ot) is a con-

stant. Therefore, if we plug in function F according to

Equation (3), we obtain the estimate of the emission proba-

bility of music where C denotes a constant scalar multiplier:

P(Ot | St 1) C
F(w(xt))

P(St 1)
 (6)

Using the same method, we obtain the estimate of the emis-

sion probability of non-music:

P(Ot | St 1) C
1 F(w(xt))

P(St 1)
 (7)

Here, we set the a priori probability of both music and non-

music to 0.5 and then apply the Viterbi algorithm [13] to

efficiently find the best possible state sequence for a given

observation sequence.

2.4.2 Implementation and Evaluation

At the frame level, HMM smoothing reduced the error rate

from about 5.5% to 1.8% on music and 2.2% on non-music.

This is same as the best result the references claimed,

which is tested on cleaner data sets and not related to our

application. Since the piece level evaluation has been large-

ly ignored in previous works on music/non-music segmen-

tation, we adopt an evaluation method from speech seg-

mentation [20] called Fuzzy Recall and Precision. This

method pays more attention to insertion and deletion than

boundary precision. We get a Fuzzy Precision of 89.5% and

Fuzzy Recall of 97%. The high Fuzzy Recall reflects that

all true boundaries are well detected with only some impre-

cision around the boundaries. The lower Fuzzy Precision

reflects that about 10% detected boundaries are not true

ones.

3. CLUSTERING OF MUSIC SEGMENTS

Assuming perfect classification results from the previous

step, the clustering task is a distinct problem. Our goal is to

cluster the musical segments belonging to the same piece.

3.1 Feature Extraction

Chroma vectors [2] have been widely used as a robust har-

monic feature in all kinds of MIR tasks. The chroma vector

represents the spectral energy distribution in each of the 12

pitch classes (C, C#, D,… A#, B). Such features strongly

correlate to the harmonic progression of the audio.

Considering the objective that our system should be ro-

bust to external factors (e.g. audience cheering and ap-

plause), the feature cannot be too sensitive to minor varia-

tions. Therefore, as suggested by Müller, we first calculate

12-dimensional chroma vectors using 200ms windows with

50% overlap, then compute a longer-term summary by

windowing over 41 consecutive short-term vectors and

normalizing, with a 10-vector (1s) hop-size. These long-

term feature vectors are described as CENS features

(Chroma Energy distribution Normalized Statistics)

[10][11]. The length of the long-term window and hop size

can be changed to take global tempo variations into ac-

count.

3.2 Audio Matching and Clustering

Given the CENS features, audio matching can be achieved

by simply correlating the query clip Q = (q1, q2, … qM) with

the subsequences of musical segments P = (p1, p2, … pN) in

the database (assume N > M). Here, all lower case letters

(e.g. qi, pi) represent 12-dimensional CENS vectors. Thus,

Q and P are both sequences of CENS vectors over time. As

in [11], the distance between the query clip Q and the sub-

sequence P
(i)

 = (pi, pi+1,… pi+M-1) is:

dist(Q, P(i)) = 1-
1

M
qk , pik1

k1

M

 (8)

Here <qk, pi+k-1> denotes the dot product between these two

CENS vectors. All of the distances for i = 1, 2, ... N−M+1

together can be considered a distance function ∆ between

query clip Q and each of the musical segments P in the da-

tabase. If the minimum distance is less than a preset thresh-

old γ, then Q can be clustered with P.

One problem with this decision scheme is that, unlike a

traditional song retrieval system which has a large reference

database in advance, our system has no prior information

about the rehearsal audio stream. We are only given a

stream of potentially unordered and unlabeled audio that

needs to be clustered. To solve this problem, we construct

the database from the input audio dynamically. The inputs

are all the music segments obtained from Section 2, and the

algorithm is:

1. Sort all the music segments according to their length.

2. Take out the longest segment S.

i) If database D is empty, put S into D as a cluster.

ii) Otherwise match S with every segment in D by
calculating distance function ∆. Let Dm be the
segment in D with the best match.

(1) If the distance function ∆ of Dm with S has a
minimum less than γ, cluster S with Dm.

(2) Otherwise make S a new cluster in D.

iii) Repeat step 2 until all segments are clustered.

Here we made a critical assumption: the longest segment

is most likely to be a whole piece or at least the longest

segment for this distinct piece, so it is reasonable to let it

represent a new cluster. At every step of the iteration, we

take out a new segment S which is guaranteed to be shorter

than any of the segments in database D. This implies it can

either be part of an existing piece in the database (in which

case we will cluster it with a matching segment) or it is a

segment for a new piece which does not yet exist in the da-

tabase (in which case we will make it a new cluster).

We also need to consider the possibility that tempo vari-

ation causes misalignment between sequences. We can ob-

tain different versions of CENS features (for example, from

10% slower to 10% faster) for the same segment to repre-

sent the possible variations. This is achieved by adjusting

the length of the long-term window and the hop size as

mentioned in Section 3.1. During matching, the version of

the segment with the lowest distance function minimum

will be chosen.

3.2.1 Segment Length vs. Threshold Value

While time scaling compensates for global tempo variation,

it does not account for local variation within segments. It is

interesting to consider the length of the query clip that is

used to correlate with the segments in the database. Intui-

tively, longer clips will be more selective, reducing spuri-

ous matches. However, if the length is too large, e.g. two

segments both longer than 5 minutes, sequence misalign-

ments due to tempo variation will decrease the correlation

and increase the distance. If longer segments lead to greater

distance, one might compensate with larger threshold val-

ues. However, larger γ values may not prove strict enough

to effectively filter out noise, leading to clustering errors.

We will compare two pairs of configurations: longer seg-

ments with larger γ and shorter segments with smaller γ.

3.2.2 Experiments and Evaluation

We have two parameters to control: γ, which determines if

the two segments are close enough to be clustered together,

and t, the length of the segments. We use hours of rehearsal

recordings as test data, with styles that include classical,

rock, and jazz. We also use live performance recordings,

which are typically even longer. To evaluate the clustering

results, we use the F-measure as discussed in [9]:

P
TP

TP FP
, R

TP

TP FN

 (9)

F

(2 1)PR

 2P R

 (10)

Here, P (precision) and R (recall) are determined by 4 dif-

ferent variables: TP (true positive) which corresponds to

assigning two similar segments to the same cluster, TN

(true negative) corresponding to assigning two dissimilar

segments to the different clusters, FP (false positive) corre-

sponding to assigning two dissimilar segments to the same

cluster, and FN (false negative) which corresponds to as-

signing two similar segments to different clusters. β is the

tuning parameter used to adjust the emphasis on precision

or recall. In our case, it is more important to avoid cluster-

ing segments from different pieces into one cluster than it is

to avoid “oversegmenting” by creating too many clusters.

The latter case is more easily rectified manually. Thus, we

would like to penalize more on false positives, which leads

to choosing β < 1. Here, we use β = 0.9. Considering the

possible noise near the beginning and the end of the record-

ings, we choose the middle t seconds if the segment is

shorter than the original recording.

As seen in Figure 3, for segments longer than 3 minutes,

the relatively larger γ = 0.25 outperforms others, while for

shorter segments around 20s to 60s, the smaller γ = 0.15 has

the best performance. It is also shown that if γ is set too

large (0.35), the performance drops drastically. Overall,

shorter segments and smaller γ give us better results than

longer segments and larger γ. Finally, since calculating cor-

relation has O(n
2
) complexity, shorter segment lengths can

also save significant computation. Thus, our current system

uses a segment length t = 40s and γ = 0.15. K-means was

also tested and did not work as well as our algorithm, be-

cause of the non-uniform segment length and pre-unknown

clusters number (details omitted for reasons of space).

Figure 3. Experimental results with different segments of

length t and matching threshold γ.

4. USER INTERFACE

Ultimately, we plan to integrate our rehearsal audio into a

digital music display and practice support system (see Fig-

ure 4). While listening to a performance, the user can tap on

music locations to establish a correspondence between mu-

sic audio and music notation. Once the music has been an-

notated in this manner, audio-to-audio alignment (a by-

product of clustering) can be used to align other audio au-

tomatically. The user can then point to a music passage in

order to call up a menu of matching audio sorted by date,

length, tempo, or other attributes. The user can then prac-

tice with the recording in order to work on tempo, phrasing,

or intonation, or the user might simply review a recent re-

hearsal, checking on known trouble spots. One of the excit-

ing elements of this interface is that we can make useful

audio available quickly through a natural, intuitive interface

(music notation). It is easy to import scanned images of no-

tation into the system and create these interfaces.

5. CONCLUSIONS

We have presented a system for automated management of

a personal audio database for practicing musicians. The

system segments recordings and organizes them through

unsupervised clustering and alignment. An interface based

on common music notation allows the user to quickly re-

trieve music audio for practice or review. Our work intro-

duces Eigenmusic as a music detection feature, a probabil-

istic connection between Adaboost and HMMs, an unsu-

pervised clustering algorithm for music audio organization,

and a notation-based interface that takes advantage of au-

dio-to-audio alignment. In the future, we will fully integrate

these components and test them with actual users.

Figure 4. Audio database is accessed through a common

music notation interface. The user has selected the begin-

ning of system 3 as a starting point for audio playback, and

the current audio playback location is shown by the thick

vertical bar at the beginning of system 4.

6. ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation

under Grant No. 0855958.

7. REFERENCES

[1] J. Ajmera, I. McCowan and H. Bourlard: “Speech/Music

Segmentation Using Entropy and Dynamism Features in a

HMM Classification Framework,” Speech Communi-

cation 40 (3), pp. 351-363, 2003.

[2] M. Bartsch and G. Wakefield: “To Catch a Chorus: Using

Chroma-Based Representations for Audio Thumbnailing,”

IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics, pp. 15-18, 2001.

[3] D. Beyerbach, H. Nawab: “Principal Components

Analysis of Short-Time Fourier Transform,” International

Conference on Acoustics, Speech, and Signal Processing,

1991.

[4] C. Dimitrakakis and S. Bengio: “Boosting HMMs with

an Application to Speech Recognition,” International

Conference on Acoustics, Speech, and Signal Processing,

Montreal, Canada, 2004.

[5] T. Giannakopoulos, A. Pikrakis and S. Theodoridis: “A

Speech/Music Discriminator for Radio Recordings Using

Bayesian Networks,” International Conference on

Acoustics, Speech, and Signal Processing, 2006.

[6] T. Izumitani, R. Mukai, and K. Kashino: “A Background

Music Detection Method Based on Robust Feature

Extraction,” International Conference on Acoustics,

Speech, and Signal Processing, 2008.

[7] K. Lee and D. Ellis: “Detecting Music in Ambient Audio

by Long-Window Autocorrelation,” International

Conference on Acoustics, Speech, and Signal Processing,

Las Vegas, USA, 2008.

[8] G. Lu and T. Hankinson: “A Technique Towards

Automatic Audio Classification and Retrieval,”

Proceedings of ICSP, Beijing, China, 1998.

[9] C. D. Manning, P. Raghavan, and H. Schütze:

Introduction to Information Retrieval, Cambridge

University Press, 2008.

[10] M. Müller, S. Ewert, and S. Kreuzer: “Making Chroma

Features More Robust to Timbre Changes,” International

Conference on Acoustics, Speech, and Signal Processing,

pp. 1869-1872, Taipei, Taiwan, 2009.

[11] M. Müller, F. Kurth, and M. Clausen: “Audio Matching

via Chroma-Based Statistical Features,” in Proceedings of

the 6th International Conference on Music Information

Retrieval, pp. 288-295, 2005.

[12] D. Pissarenko: “Eigenface-based facial recognition,”

2002.

[13] L. Rabiner: “A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition,”

Proceedings of the IEEE, 77(2), pp. 257-287, 1989.

[14] C. Rhodes, M. Casey, S. Abdallah, and M. Sandler: “A

Markov-chain Monte-Carlo approach to musical audio

segmentation,” International Conference on Acoustics,

Speech, and Signal Processing, 2006.

[15] J. Riedman, T. Hastie, and R. Tibshirani: “Additive

Logistic Regression: A Statistical View of Boosting,” The

Annals of Statistics, vol 208, No.2, pp. 337-407, 2000.

[16] A. Samouelian, J. Robert-Ribes, and M. Plumpe: “Speech,

Silence, Music and Noise Classification of TV Broadcast

Material,” Proceedings of International Conference on

Spoken Language Processing, vol. 3, pp. 1099-1102,

Sydney, Australia, 1998.

[17] J. Saunders: “Real Time Discrimination of Broadcast

Speech/Music,” International Conference on Acoustics,

Speech, and Signal Processing, pp. 993-996, 1996.

[18] R.E. Schapire: “A Brief Introduction to Boosting,”

Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence, 1999.

[19] H. Schwenk: “Using Boosting to Improve a Hybrid

HMM/Neural Network Speech Recognizer,” International

Conference on Acoustics, Speech, and Signal Processing,

pp. 1009-1012, 1999.

[20] Bartosz i , Suresh Manandhar, and Richard C. Wilson:

“Fuzzy Recall and Precision for Speech Segmentation

Evaluation,” Proceedings of 3rd Language & Technology

Conference, Poznan, Poland, 2007.

