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ABSTRACT 

Managing music audio databases for practicing musicians 

presents new and interesting challenges. We describe a sys-

tematic investigation to provide useful capabilities to musi-

cians both in rehearsal and when practicing alone. Our goal 

is to allow musicians to automatically record, organize, and 

retrieve rehearsal (and other) audio to facilitate review and 

practice (for example, playing along with difficult passag-

es). We introduce a novel music classification system based 

on Eigenmusic and Adaboost to separate rehearsal record-

ings into segments, an unsupervised clustering and align-

ment process to organize segments, and a digital music dis-

play interface that provides both graphical input and output 

in terms of conventional music notation. 

1. INTRODUCTION 

Music Information Retrieval promises new capabilities and 

new applications in the domain of music. Consider a per-

sonal music database composed of rehearsal recordings. 

Music is captured by continuously recording a series of re-

hearsals, where the music is often played in fragments and 

may be played by different subsets of the full ensemble. 

These recordings can become a valuable resource for musi-

cians, but accessing and organizing recordings by hand is 

time consuming. 

To make rehearsal recordings more useful, there are 

three main processing tasks that can be automated. The first 

is to separate the sound into music and non-music seg-

ments. The music segments will consist of many repetitions 

of the same material. Many if not most of the segments will 

be fragments of an entire composition. We want to organize 

the segments, clustering them by composition, and aligning 

them to one another (and possibly to other recordings of the 

music). Finally, we want to coordinate the clustered and 

aligned music with an interface to allow convenient access.  
We see these capabilities as the foundation for an integrated 

system in which musicians can compare their intonation, 

tempo, and phrasing to existing recordings or to rehearsal 

data from others. By performing alignment in real time, the 

display could also turn pages automatically. 

The next section presents a novel method to do mu-

sic/non-music classification and segmentation. Section 3 

describes how to organize the segments. Section 4 de-

scribes a two-way interface to the audio. 

2. CLASSIFICATION AND SEGMENTATION 

2.1 Related Work 

Much work has been done in the area of classification and 

segmentation on speech and music. For different tasks, 

people extract different features. Some focus on back-

ground music detection [6], while others detect speech or 

music sections in TV programs or broadcast radio. Many 

features have been tested in the realm of speech/music clas-

sification [8][17] . Two frequently used ones are Spectral-

Centroid and Zero-Crossing Rate. Also, different statistical 

models have been used. Two of them, long window sam-

pling [7] and the HMM segmentation framework [1][14], 

are especially relevant to our work. Other approaches in-

clude using decision trees [16] and Bayesian networks [5]. 

However, the particular problem of variations in the 

sound source seems to be largely ignored. In reality, sound 

is not standardized in volume or bandwidth and may even 

contain different kinds of noise. In these cases, more robust 

features and methods are needed. This section will concen-

trate on new feature extraction and model design methods 

to achieve music/non-music classification and segmentation 

on realistic rehearsal audio.   

2.2 Eigenmusic Feature Extraction  

The concept of Eigenmusic is derived from the well-known 

representation of images in terms of Eigenfaces [12]. The 

process of generating Eigenmusic can be performed in both 

the time and frequency domains, and in either case, simply 

refers to the result of the application of Principal 

Component Analysis (PCA) to the audio data [3]. Therefore, 

Eigenmusic refers to the eigenvectors of an empirical 

covariance matrix associated with an array of music data. 

The array of music data is structured as a spectrogram and 

hence contains the spectral information of the audio in 

those time intervals. When expressing non-music data in 

terms of Eigenmusic, the coefficients are generally 
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expected to be outlying based on the fundamentally 

different characteristics of music and non-music.  

In practice, we use about 2.5 hours of pure music in the 

training data collection to extract the Eigenmusic in the fre-

quency domain. First, let X = [x1, x2, … , xT] be a spectro-

gram, a matrix consisting of, in its columns, magnitude 

spectra corresponding to 1.25 second non-overlapping win-

dows of the incoming music data. Second, the correspond-

ing empirical covariance matrix, Cx, and its Eigenvectors 

are computed. Ultimately, we retain the first 10 eigenvec-

tors corresponding to the largest eigenvalues. If P is the 

matrix of column-wise eigenvectors of Cx, given a new 

magnitude spectrum column vector x, we can represent its 

Eigenmusic coefficients by P
T
x, which will be a 10 dimen-

sional vector. 

2.3 Adaboost Classifier  

Adaboost [18] is a very interesting classification algorithm, 

which follows a simple idea: to develop a sequence of hy-

potheses for classification and combine the classification 

results to make the final decision. Each simple hypothesis is 

individually considered a weak classifier, h(P
T
x), and the 

combined complex hypothesis is considered to be the 

strong classifier. In the training step, each weak classifier 

focuses on instances where the previous classifier failed. 

Then it will obtain a weight, t, and update the weight of 

individual training data based on its performance. In the 

decoding step, the strong classifier is taken to be the sign of 

the weighted sum of weak classifiers: 

 H(x)  sign( tht (P
T
x))

t  (1) 

By training a sequence of linear classifiers, each one of 

which merely compares individual Eigenmusic coefficient 

against a threshold that minimizes the weighted error, Ada-

boost is able to implement a non-linear classification sur-

face in the 10 dimensional Eigenmusic space. 

2.3.1 Data Collection and Representation 

The Adaboost training data is a collection of about 5 hours 

of rehearsal and performance recordings of western music; 

while the testing data is a collection of 2.5 hours of Chinese 

music. For the music parts, each data collection contains 

different combinations of wind instruments, string instru-

ments, and singing. For the non-music parts, each data col-

lection contains speech, silence, applause, noise, etc. Both 

data collections are labeled as music or non-music at the 

frame level (1.25 seconds). From Section 2.2, we know that 

each frame is a point in the 10 dimensional Eigenmusic 

space. Therefore, we have about 5 (hours) × 3600 (s/hour) / 

1.25 (s/frame) = 14,400 frames for training and 7,200 

frames for testing. 

2.3.2 Implementation and Evaluation  

We train 100 weak classifiers to construct the final strong 

classifier. The testing accuracy is shown in Figure 1. The 

results were obtained in terms of the percentage of error at 

the frame level. Two different statistics have been 

calculated: the percentage of true music identified as non-

music, shown as the solid line, and the percentage of true 

non-music identified as music, shown as the dotted line. 

 

Figure 1. The testing error of music and non-music. 

From Figure 1, it can be seen that the proposed Ada-

boost classifier in the Eigenmusic space is capable of 

achieving a low error rate (about 5.5%) on both music and 

non-music data, even when the testing data comes from a 

completely different sound source than the training data. 

2.3.3 Probabilistic Interpretation  

We can improve the frame level classification by consider-

ing that state changes between music and non-music do not 

occur rapidly. We can model rehearsals as a two-state hid-

den Markov model (HMM) [13]. Formally, given a vector x, 

let y  {-1,1} represent its true label. Here, -1 stands for 

non-music and 1 stands for music. And let w(x) represent 

the weighted sum of weak classifiers: 

 w(x)  tht (P
T
x)

t  (2) 

In Equation (1), we took the sign of w(x) as the decision, 

but we can modify this approach to compute the a posterio-

ri probability of y = 1, given the weighted sum, which we 

denote as the function F: 

F(w(x))  P(y 1|w(x))                         (3) 

According to the discussion in [15], F(w(x)) is a logistic 

function, as shown in Equation 4: 

F(w(x)) 
1

1 exp(2 w(x))
                     (4) 

In Figure 2, the small circles show P(y = 1 | w(x)) estimated 

from training data sorted into bins according to w(x). The 



  

 

logistic function is shown as the solid curve. It can be seen 

that our empirical data matches the theoretical probability 

quite well. 

 

Figure 2. The logistic function estimation on training data. 

We note that the idea of linking Adaboost with HMMs is 

not new, but very little work has been done to implement it 

[4][19]. As far as we know, this is the first attempt of a 

probabilistic interpretation of Adaboost when linked with 

HMMs.  

2.4 HMM Smoothing for Segmentation  

The significance of smoothing is that even a very low error 

rate at the frame level cannot guarantee a satisfying seg-

mentation result overall (i.e. at the piece level). For exam-

ple, suppose a relatively low 5% error rate is obtained at the 

frame level. If the segmentation rule is to separate the target 

audio at every non-music frame, a 10 minute long pure mu-

sic piece would be cut into about 25 pieces in this case. Ul-

timately, this is an undesirable result.  

Based on typical characteristics of rehearsal audio data, 

we assume that: (1) music and non-music frames cannot 

alternate frequently, and (2) short duration music and non-

music intervals are less likely than longer ones. By utilizing 

these assumptions in conjunction with the HMM, low (but 

possibly deleterious) frame-level error rates can be further 

reduced. We use a fully-connected HMM with only two 

states, representing music and non-music. The HMM ob-

servation corresponding to every frame x is a real number 

w(x), as in Equation (2), given by the Adaboost classifier. 

2.4.1 HMM Training 

The training data collection mentioned in Section 2.3.1 is 

used to estimate the HMM parameters. Formally, let S = 

[S1, S2,…,ST] be the state sequence and let O = [O1, 

O2,…,OT] be the observation sequence. Since it is a super-

vised learning problem, we do Maximum Likelihood Esti-

mation (MLE) by counting or just manually setting the pa-

rameters for initial state probabilities and transition proba-

bilities. For emission probabilities, we use Bayes’ rule: 

P(Ot | St  1) 
P(St  1 |Ot ) P(Ot )

P(St  1)
          (5) 

Remember that in our model Ot = w(xt) and P(Ot) is a con-

stant. Therefore, if we plug in function F according to 

Equation (3), we obtain the estimate of the emission proba-

bility of music where C denotes a constant scalar multiplier: 

P(Ot | St  1)  C 
F(w(xt ))

P(St  1)
                 (6) 

Using the same method, we obtain the estimate of the emis-

sion probability of non-music: 

P(Ot | St  1)  C 
1 F(w(xt ))

P(St  1)
              (7) 

Here, we set the a priori probability of both music and non-

music to 0.5 and then apply the Viterbi algorithm [13] to 

efficiently find the best possible state sequence for a given 

observation sequence. 

2.4.2 Implementation and Evaluation 

At the frame level, HMM smoothing reduced the error rate 

from about 5.5% to 1.8% on music and 2.2% on non-music. 

This is same as the best result the references claimed, 

which is tested on cleaner data sets and not related to our 

application. Since the piece level evaluation has been large-

ly ignored in previous works on music/non-music segmen-

tation, we adopt an evaluation method from speech seg-

mentation [20] called Fuzzy Recall and Precision. This 

method pays more attention to insertion and deletion than 

boundary precision. We get a Fuzzy Precision of 89.5% and 

Fuzzy Recall of 97%. The high Fuzzy Recall reflects that 

all true boundaries are well detected with only some impre-

cision around the boundaries. The lower Fuzzy Precision 

reflects that about 10% detected boundaries are not true 

ones.  

3. CLUSTERING OF MUSIC SEGMENTS 

Assuming perfect classification results from the previous 

step, the clustering task is a distinct problem. Our goal is to 

cluster the musical segments belonging to the same piece. 

3.1 Feature Extraction 

Chroma vectors [2] have been widely used as a robust har-

monic feature in all kinds of MIR tasks. The chroma vector 

represents the spectral energy distribution in each of the 12 

pitch classes (C, C#, D,… A#, B). Such features strongly 

correlate to the harmonic progression of the audio.  

Considering the objective that our system should be ro-

bust to external factors (e.g. audience cheering and ap-

plause), the feature cannot be too sensitive to minor varia-

tions. Therefore, as suggested by Müller, we first calculate 



  

 

12-dimensional chroma vectors using 200ms windows with 

50% overlap, then compute a longer-term summary by 

windowing over 41 consecutive short-term vectors and 

normalizing, with a 10-vector (1s) hop-size. These long-

term feature vectors are described as CENS features 

(Chroma Energy distribution Normalized Statistics) 

[10][11]. The length of the long-term window and hop size 

can be changed to take global tempo variations into ac-

count. 

3.2 Audio Matching and Clustering  

Given the CENS features, audio matching can be achieved 

by simply correlating the query clip Q = (q1, q2, … qM) with 

the subsequences of musical segments P = (p1, p2, … pN) in 

the database (assume N > M). Here, all lower case letters 

(e.g. qi, pi) represent 12-dimensional CENS vectors. Thus, 

Q and P are both sequences of CENS vectors over time. As 

in [11], the distance between the query clip Q and the sub-

sequence P
(i)

 = (pi, pi+1,… pi+M-1) is: 

dist(Q, P(i)) = 1-
1

M
qk , pik1

k1

M

               (8) 

Here <qk, pi+k-1> denotes the dot product between these two 

CENS vectors. All of the distances for i = 1, 2, ... N−M+1 

together can be considered a distance function ∆ between 

query clip Q and each of the musical segments P in the da-

tabase. If the minimum distance is less than a preset thresh-

old γ, then Q can be clustered with P.  

One problem with this decision scheme is that, unlike a 

traditional song retrieval system which has a large reference 

database in advance, our system has no prior information 

about the rehearsal audio stream. We are only given a 

stream of potentially unordered and unlabeled audio that 

needs to be clustered. To solve this problem, we construct 

the database from the input audio dynamically. The inputs 

are all the music segments obtained from Section 2, and the 

algorithm is: 

1. Sort all the music segments according to their length. 

2. Take out the longest segment S. 

i) If database D is empty, put S into D as a cluster.  

ii) Otherwise match S with every segment in D by 
calculating distance function ∆. Let Dm be the 
segment in D with the best match. 

(1) If the distance function ∆ of Dm with S has a 
minimum less than γ, cluster S with Dm. 

(2) Otherwise make S a new cluster in D. 

iii) Repeat step 2 until all segments are clustered. 

Here we made a critical assumption: the longest segment 

is most likely to be a whole piece or at least the longest 

segment for this distinct piece, so it is reasonable to let it 

represent a new cluster. At every step of the iteration, we 

take out a new segment S which is guaranteed to be shorter 

than any of the segments in database D. This implies it can 

either be part of an existing piece in the database (in which 

case we will cluster it with a matching segment) or it is a 

segment for a new piece which does not yet exist in the da-

tabase (in which case we will make it a new cluster). 

We also need to consider the possibility that tempo vari-

ation causes misalignment between sequences. We can ob-

tain different versions of CENS features (for example, from 

10% slower to 10% faster) for the same segment to repre-

sent the possible variations. This is achieved by adjusting 

the length of the long-term window and the hop size as 

mentioned in Section 3.1. During matching, the version of 

the segment with the lowest distance function minimum 

will be chosen.  

3.2.1 Segment Length vs. Threshold Value 

While time scaling compensates for global tempo variation, 

it does not account for local variation within segments. It is 

interesting to consider the length of the query clip that is 

used to correlate with the segments in the database. Intui-

tively, longer clips will be more selective, reducing spuri-

ous matches. However, if the length is too large, e.g. two 

segments both longer than 5 minutes, sequence misalign-

ments due to tempo variation will decrease the correlation 

and increase the distance. If longer segments lead to greater 

distance, one might compensate with larger threshold val-

ues. However, larger γ values may not prove strict enough 

to effectively filter out noise, leading to clustering errors. 

We will compare two pairs of configurations: longer seg-

ments with larger γ and shorter segments with smaller γ. 

3.2.2 Experiments and Evaluation 

We have two parameters to control: γ, which determines if 

the two segments are close enough to be clustered together, 

and t, the length of the segments. We use hours of rehearsal 

recordings as test data, with styles that include classical, 

rock, and jazz. We also use live performance recordings, 

which are typically even longer. To evaluate the clustering 

results, we use the F-measure as discussed in [9]:  

P 
TP

TP  FP
,  R 

TP

TP  FN

                          (9) 

  
F 

( 2 1)PR

 2P  R

                                   (10) 

Here, P (precision) and R (recall) are determined by 4 dif-

ferent variables: TP (true positive) which corresponds to 

assigning two similar segments to the same cluster, TN 

(true negative) corresponding to assigning two dissimilar 

segments to the different clusters, FP (false positive) corre-

sponding to assigning two dissimilar segments to the same 

cluster, and FN (false negative) which corresponds to as-



  

 

signing two similar segments to different clusters. β is the 

tuning parameter used to adjust the emphasis on precision 

or recall. In our case, it is more important to avoid cluster-

ing segments from different pieces into one cluster than it is 

to avoid “oversegmenting” by creating too many clusters. 

The latter case is more easily rectified manually. Thus, we 

would like to penalize more on false positives, which leads 

to choosing β < 1. Here, we use β = 0.9. Considering the 

possible noise near the beginning and the end of the record-

ings, we choose the middle t seconds if the segment is 

shorter than the original recording.  

As seen in Figure 3, for segments longer than 3 minutes, 

the relatively larger γ = 0.25 outperforms others, while for 

shorter segments around 20s to 60s, the smaller γ = 0.15 has 

the best performance. It is also shown that if γ is set too 

large (0.35), the performance drops drastically. Overall, 

shorter segments and smaller γ give us better results than 

longer segments and larger γ. Finally, since calculating cor-

relation has O(n
2
) complexity, shorter segment lengths can 

also save significant computation. Thus, our current system 

uses a segment length t = 40s and γ = 0.15. K-means was 

also tested and did not work as well as our algorithm, be-

cause of the non-uniform segment length and pre-unknown 

clusters number (details omitted for reasons of space). 

 

Figure 3. Experimental results with different segments of 

length t and matching threshold γ. 

4. USER INTERFACE 

Ultimately, we plan to integrate our rehearsal audio into a 

digital music display and practice support system (see Fig-

ure 4). While listening to a performance, the user can tap on 

music locations to establish a correspondence between mu-

sic audio and music notation. Once the music has been an-

notated in this manner, audio-to-audio alignment (a by-

product of clustering) can be used to align other audio au-

tomatically. The user can then point to a music passage in 

order to call up a menu of matching audio sorted by date, 

length, tempo, or other attributes. The user can then prac-

tice with the recording in order to work on tempo, phrasing, 

or intonation, or the user might simply review a recent re-

hearsal, checking on known trouble spots. One of the excit-

ing elements of this interface is that we can make useful 

audio available quickly through a natural, intuitive interface 

(music notation). It is easy to import scanned images of no-

tation into the system and create these interfaces. 

5. CONCLUSIONS 

We have presented a system for automated management of 

a personal audio database for practicing musicians. The 

system segments recordings and organizes them through 

unsupervised clustering and alignment. An interface based 

on common music notation allows the user to quickly re-

trieve music audio for practice or review. Our work intro-

duces Eigenmusic as a music detection feature, a probabil-

istic connection between Adaboost and HMMs, an unsu-

pervised clustering algorithm for music audio organization, 

and a notation-based interface that takes advantage of au-

dio-to-audio alignment. In the future, we will fully integrate 

these components and test them with actual users. 

 

Figure 4. Audio database is accessed through a common 

music notation interface. The user has selected the begin-

ning of system 3 as a starting point for audio playback, and 

the current audio playback location is shown by the thick 

vertical bar at the beginning of system 4. 
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