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Introduction 
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Topic Symbol Fraction of thesis work 

Dynamic range compression 
(DRC) and automatic speech 
recognition (ASR) 

11% 

Blind amplitude normalization 
(BAN) 14% 

Blind amplitude 
reconstruction (BAR) 28% 

Robust estimation of 
distortion (RED) 28% 

Artificially-matched training 
(AMT) 9% 

The Big Picture 10% 

DRC & ASR 

BAN 

BAR 

RED 

AMT 

Big Picture 

DRC & ASR BAN BAR RED AMT Big Picture Conclusion 
Introduction 



Dynamic Range Compression (DRC) 
•  A form of nonlinear distortion 

Ø  Nonlinear systems are common (e.g., AM/FM radio, rectifiers) 
 

• DRC is used extensively in audio engineering typically for one 
of three reasons: 
1.  Adhere to dynamic range limitations of a signal transmission 

system, while increasing average signal power 
2.  Increase perceived signal loudness 
3.  Eliminate drastic changes in volume (e.g., automatic gain control) 

 
•  Because of the ubiquity of DRC, speech systems—like ASR—

are likely to encounter compressed speech 
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BAN BAR RED AMT Big Picture Conclusion Introduction DRC & 
ASR 
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Dynamic Range Compression (DRC) 
• DRC is characterized by two parameters, ratio (R) and 

threshold (τ). 
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Dynamic Range Compression (DRC) 
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Some examples 
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Threshold 
(τ) Ratio (R) Audio Crest Factor Word Error 

Rate (WER) 
WER after 
processing 

P100 1 17.1 dB 6.4% 6.4% 

P75 4 7.7 dB 20.3% 6.4% 

P75 ∞ 4.1 dB 30.8% 13.5% 

P50 4 6.7 dB 30.2% 6.4% 

P50 ∞ 2.2 dB 49.5% 23.0% 



Measuring the effect of DRC on ASR 
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Clean acoustic 
model 

clean 
speech 

signal 

Controlled 
parameter 

values: (R,τ) 

Measure 
word error 
rate (WER) DRC ASR 

Experiment 1 (no additive noise): 



Measuring the effect of DRC on ASR 
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Measuring the effect of DRC on ASR 
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Experiment 1 (no additive noise): 
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Measuring the effect of DRC on ASR 
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Experiment 2 (additive, channel noise): 
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Measuring the effect of DRC on ASR 
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Experiment 2 (additive, channel noise): 
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clean 
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Counteracting the effects of DRC 
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DRC 

Saturating 
“clipping” 

Non-saturating 
“compression” 

Blind amplitude 
reconstruction 

(BAR) 

Blind amplitude 
normalization 

(BAN) 

Artificially-
matched 

training (AMT) 

Robust estimation of nonlinear distortion function (RED) 



Blind Amplitude Normalization (BAN) 
(Balchandran & Mammone; ICASSP 1998) 

•  Step 1: Obtain estimate of the cumulative distribution 
function (CDF) of the observed speech, and of clean, 
unadulterated reference speech. 
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•  Step 2: For a given reference signal amplitude, find the 
amplitude in the observed CDF with the same cumulative 
probability. 

15 

DRC & ASR BAR RED AMT Big Picture Conclusion Introduction 
BAN 

Ø  Input amplitude of 0.061 maps to 0.2 

Blind Amplitude Normalization (BAN) 
(Balchandran & Mammone; ICASSP 1998) 
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•  Step 3: Repeat for each input signal amplitude to obtain a 
full non-parametric estimate of the nonlinear mapping. 
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Blind Amplitude Normalization (BAN) 
(Balchandran & Mammone; ICASSP 1998) 
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How well does BAN work? 
•  Experiment 1 (no additive noise): 
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How well does BAN work? 
•  Experiment 1 (no additive noise): 
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How well does BAN work? 
•  Experiment 2 (additive, channel noise at 20-dB SNR): 
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How well does BAN work? 
•  Experiment 2 (additive, channel noise at 20-dB SNR): 
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After BAN 



15 35 55 75 95 100

10
20
30
40
50
60
70
80
90

100

τ, threshold (percentile)

W
or

d 
er

ro
r r

at
e 

(%
)

 

 

How well does BAN work? 
•  Experiment 2 (additive, channel noise at 15-dB SNR): 

21 

DRC & ASR BAR RED AMT Big Picture Conclusion Introduction 
BAN 

Before BAN 



15 35 55 75 95 100

10
20
30
40
50
60
70
80
90

100

τ, threshold (percentile)

W
or

d 
er

ro
r r

at
e 

(%
)

 

 

How well does BAN work? 
•  Experiment 2 (additive, channel noise at 15-dB SNR): 
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After BAN 



Robust BAN (Harvilla & Stern; unpub.) 

•  Idea: Shift each input sample by the amount the centroid of it 
and its neighbors is changed when inverting the nonlinearity. 
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Observed speech after low-pass filter 
(R = 10, τ = P50, SNR = 15 dB)  

Clean speech after low-pass filter 
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Robust BAN (Harvilla & Stern; unpub.) 

•  Step 1: As before, for a given reference signal amplitude, find 
the amplitude in the observed CDF with the same cumulative 
probability. 
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Robust BAN (Harvilla & Stern; unpub.) 

•  Step 2: The difference between the output and the input is 
the offset to be added to the original, noisy and compressed 
waveform. 
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Offset = output – input 
           = 0.2 – 0.061 = 0.139 



Robust BAN (Harvilla & Stern; unpub.) 
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•  Step 3: Repeat for each input signal amplitude, always using 
the inverse mapping defined by the smoothed signals. 



Robust BAN (Harvilla & Stern; unpub.) 
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•  Step 1: For each sample, find the centroid of the value and 
its surrounding 4 samples. 
•  Step 2: Pass the centroid value through the inverse 

nonlinearity estimate. 
•  Step 3: Find the difference (“offset”) between the output of 

the inverse nonlinearity and the centroid. 
•  Step 4: Add the offset to the original noisy and compressed 

sample value from Step 1. 
•  Step 5: Repeat for each sample in the input signal. 



Robust BAN (Harvilla & Stern; unpub.) 
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Robust BAN (Harvilla & Stern; unpub.) 

29 

DRC & ASR BAR RED AMT Big Picture Conclusion Introduction 
BAN 

0 0.0037 0.0075 0.0112 0.0149 0.0187
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

time (seconds)

am
pl

itu
de

 

 
original
DRC + noise (SNR = 15dB)

0 0.0037 0.0075 0.0112 0.0149 0.0187
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

time (seconds)

am
pl

itu
de

Repaired 
using 

Robust 
BAN: 



R=2 R=4 R=6 R=10 R=20
−30

−20

−10

0

10

20

30

(R
B

A
N
−B

A
N

) r
el

. i
m

pr
ov

. (
%

) 

 

 

15−dB SNR
20−dB SNR

•  RBAN is more useful as R becomes large and SNR decreases: 

Results summary 
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Blind Amplitude Reconstruction (BAR) 
• When R = ∞, BAN techniques are ineffective. 
•  All samples greater than |τ| are completely lost (“clipping”). 
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Consistent Iterative Hard Thresholding 
(Kitic et al.; ICASSP 2013) 

• Kitic-IHT works by learning a sparse representation of the 
incoming clipped speech in term of Gabor basis vectors. 
•  Learning is done using a modified version of the Iterative 

Hard Thresholding (IHT) algorithm. 
•  The learned sparse representation is then used to 

reconstruct the signal on a frame-by-frame basis. 
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Kitic-IHT will be used as a baseline to compare novel 
declipping algorithm performance. 
 

Gabor basis 
vectors 

Sparse representation, learned 
from clipped observation 

Repaired signal 
frame 



Constrained BAR (Harvilla & Stern; Interspeech 2014) 
• Declip the signal by interpolating missing samples such that 

the energy in the second derivative is minimized (i.e., for 
smoothness). 
•  Ensure the interpolation matches the sign of the clipped 

signal and is greater than |τ| in the absolute sense. 
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Constrained BAR (Harvilla & Stern; Interspeech 2014) 
•  Explaining masking matrices 
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Constrained BAR (Harvilla & Stern; Interspeech 2014) 
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minimize 

subject to 

xc 

CBAR objective function: 



Constrained BAR (Harvilla & Stern; Interspeech 2014) 
•  Because Constrained BAR (CBAR) imposes a hard constraint 

when minimizing the objective function, it is very slow. 

•  A line search algorithm is used to solve the constrained 
optimization separately for every frame. 

 
•  In the worst case, it is 400 times slower than real time. 
   
•  This motivates the development of a declipping algorithm 

that does not require a hard constraint. 
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Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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•  Replace CBAR’s hard constraint with regularization terms: 

minimize 

subject to 

xc 

CBAR objective function: 



Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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•  Replace CBAR’s hard constraint with regularization terms: 

minimize 
xc 



Regularized BAR (Harvilla & Stern; ICASSP 2015) 

39 

DRC & ASR BAN RED AMT Big Picture Conclusion Introduction 
BAR 

•  Replace CBAR’s hard constraint with regularization terms: 

minimize 
xc 



Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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•  Replace CBAR’s hard constraint with regularization terms: 

minimize 
xc 

RBAR objective function: xc can be solved for 
in closed form! 



Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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•  Replace CBAR’s hard constraint with regularization terms: 

Frame-specific solution:  xc can be solved for 
in closed form! 



Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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•  The t0 and t1 terms are target vectors. 
 
•  They “float” above the clipped segments at the target 

amplitude. 
 
•  They are defined as a function of the fraction of clipped 

samples in a frame. 



Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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The target amplitudes underestimate 
the true peak (future research). 



Regularized BAR (Harvilla & Stern; ICASSP 2015) 
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•  Amplitude prediction 
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Processing speed 
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Declipping performance 
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•  Experiment 1 (no additive noise): 
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Declipping performance 
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•  Experiment 1 (no additive noise), relative improvements: 
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Declipping performance 
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•  Experiment 2 (additive noise): 
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The location of all clipped 
samples is assumed known. 

Kitic-IHT is more robust to additive noise (future research). 
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Robust Estimation of Distortion (RED) 
• Given a received speech signal, how does one determine if 

declipping (BAR) or decompression (BAN) need to be 
performed? 
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Robust Estimation of Distortion (RED) 
• Given a received speech signal, how does one determine if 

declipping (BAR) or decompression (BAN) need to be 
performed? 
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Is audio 
exposed to 

DRC? 

Is audio 
clipped? 

Apply 
BAR 

Search for peaks in the probability 
distribution of the waveform amplitudes 

Accurately estimate the value of R (recall: if R 
is “very” large, speech is effectively clipped)   

Requires estimation of which samples are 
clipped and must assume the possibility of 
noise (e.g., as in Experiment 2) 

✔ 

✗ 

✔ 



Clipped speech detection & τ estimation  
(Harvilla & Stern; ICASSP 2015) 

•  Exposure to DRC significantly modifies the waveform 
amplitude distribution of the speech  
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Clipped speech detection & τ estimation  
(Harvilla & Stern; ICASSP 2015) 

•  Exposure to DRC significantly modifies the waveform 
amplitude distribution of the speech  
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DRC’ed speech (R=6, τ=0.06) 
+ noise at 15 dB 

Clipping detection and τ 
estimation algorithm: 
1.  Detect peaks in the 

distribution 
2.  Compute: 

3.  Output indicates clipping 
occurrence and amplitude 
value of τ (0.5*( |-τ| + 0 + |τ| )) 

(if output is ∞, no clipping) 
 



Clipped speech detection & τ estimation  
(Harvilla & Stern; ICASSP 2015) 

56 

DRC & ASR BAN BAR AMT Big Picture Conclusion Introduction 
RED 

Clipped signal detection accuracies 

5 10 15 20
0

20

40

60

80

100

SNR (dB)

Cl
ip

pe
d 

sig
na

l d
et

. a
cc

. (
%

)

5 10 15 20
0

20

40

60

80

100

SNR (dB)
Cl

ip
pe

d 
sig

na
l d

et
. a

cc
. (

%
)

τ = P95 τ = P75 

Because the amplitude distribution merges into one lobe (thus, one peak) with 
decreasing SNR and τ, detection accuracy correspondingly decreases. 



Clipped speech detection & τ estimation  
(Harvilla & Stern; ICASSP 2015) 
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SNR = 20 dB SNR = 15 dB 

SNR = 10 dB SNR = 5 dB 

τ-estimation accuracies for R = ∞ 
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Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 

• Given the amplitude value of τ, how do we determine the 
location of clipped samples? 
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Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 

•  Given the amplitude value of τ, how do we determine the location 
of clipped samples? 
•  Solution: 

 Given, 
   amplitude value of τ 
   percentile value of τ 
   variance of the additive noise (σw

2) 
   variance of the observed signal (σy

2) 

•  Model the clean speech and noise with separate Gaussians 
•  For each sample, classify as clipped if  
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Pr( clipped|observed sample, τ, σw
2, σy

2) > Pr( not clipped|observed sample, τ, σw
2, σy

2) 



Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 
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Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 
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Robust Estimation of Distortion (RED) 
• Given a received speech signal, how does one determine if 

declipping (BAR) or decompression (BAN) need to be 
performed? 
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Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 
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Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 
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•  Experiment 2 (additive noise): 

τ = P75 τ = P95 

The location of all clipped 
samples is assumed known. 
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Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 
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•  Experiment 2 (additive noise): 

τ = P75 τ = P95 

Clipping occurrence and location is 
detected using RED techniques 
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Clipped sample estimation  
(Harvilla & Stern; ICASSP 2015) 
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•  Experiment 2 (additive noise): 

τ = P75 τ = P95 

Clipping occurrence and location is 
detected using RED techniques 



Artificially-Matched Training (AMT) 
•  So far, the developed techniques have sought to repair 

clipped, compressed and noisy speech to “look like” clean 
speech: 
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Artificially-Matched Training (AMT) 
•  Ultimately, it’s only important for the Acoustic Model and 

testing data conditions to match. They both need not be 
“clean.” 
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Artificially-Matched Training (AMT) 
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•  Experiment 1 (no additive noise): 

15 35 55 75 95 100

10
20
30
40
50
60
70
80
90

100

τ, threshold (percentile)

W
or

d 
er

ro
r r

at
e 

(%
)

 

 

R = ∞
R = 20
R = 10
R = 6
R = 4
R = 2
R = 1

Clean training 



15 35 55 75 95 100

10
20
30
40
50
60
70
80
90

100

τ, threshold (percentile)

W
or

d 
er

ro
r r

at
e 

(%
)

 

 

R = ∞
R = 20
R = 10
R = 6
R = 4
R = 2
R = 1

Artificially-Matched Training (AMT) 

70 

DRC & ASR BAN BAR RED Big Picture Conclusion Introduction 
AMT 

•  Experiment 1 (no additive noise): 

DRC-matched training 



Artificially-Matched Training (AMT) 
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• One approach to achieving this in practice: 

xn 

MFCC ASR WER 

Regression on 
DRC parameters 

{R,τ} 

{Rk-1, τk-1} {R1, τ1} {R0, τ0} 
… Bank of 

acoustic 
models 

Artificially-Matched Training with 
Acoustic Model Selection (AMT-AMS) 

Current implementation uses 
the following parameter sets: 
 
R = {∞} 
τ  = {P15, P35, P55, P75, P95} 



Artificially-Matched Training (AMT) 
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•  Experiment 1 (no additive noise): 
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•  Experiment 1 (no additive noise): 

AMT-AMS 



x[n] y[n] 

+

w[n] 

SNR in dB 
drawn from 
N(µ,σ2) 

τ drawn 
uniformly 
in [τ0,τ1] 

Compress with 
probability pc 

Add noise with 
probability pn 

R drawn 
from Gamma 
dist., [kR,θR] 

The Big Picture 
• With no knowledge of the noise conditions and 

characteristics of the incoming speech, how well does the 
combination of algorithms from the thesis work in practice? 

74 

DRC & ASR BAN BAR RED AMT Conclusion Introduction Big 
Picture 

pc = 0.9 
t0  = 60 
t1  = 98 
pn = 0.75 
µ  = 20 
σ2 = 25 
k  = 3 
θ  = 2 

Compression 



The Big Picture 
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x[n] y[n] 

+

w[n] 

SNR in dB 
drawn from 
N(µ,σ2) 

τ drawn 
uniformly 
in [τ0,τ1] 

Clip with 
probability pc 

Add noise with 
probability pn 

The Big Picture 
• With no knowledge of the noise conditions and 

characteristics of the incoming speech, how well does the 
combination of algorithms from the thesis work in practice? 
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Summary & Conclusions 
•  A previously-unexplored problem in speech recognition, DRC, 

was introduced. 
• Novel solutions to the two primary aspects of the problem, 

clipping and compression, were developed. 
•  Techniques for detecting the occurrence of DRC were 

considered. 
•  A comprehensive solution to DRC for speech recognition was 

proposed. 
• DRC, especially in noise, is a very hard problem, but this 

thesis lays the groundwork for very promising future 
research. 
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Summary & Conclusions 
•  Areas of future research include: 
•  Improving target amplitude estimates for RBAR [BAR] 
•  Improving the robustness of BAR methods to additive noise [BAR] 
•  Improving the robustness of clipped/compressed signal detection to 

low-valued SNR and τ [RED, Big Picture] 
•  Development of an R-estimation algorithm [RED, Big Picture] 
•  Further investigation of the performance of AMT-AMS with an 

increasing granularity of acoustic model references [AMT] 
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Thank you! 
• Questions? 
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