COMPENSATION FOR NONLINEAR DISTORTION IN NOISE FOR ROBUST SPEECH RECOGNITION

Mark J. Harvilla

Ph.D. Thesis Defense

October 27, 2014

	DRC & ASR	BAN	BAR	RED	AMT	Big Picture	Conclusion
Introduction							

Introduction

Торіс	Symbol	Fraction of thesis work		
Dynamic range compression (DRC) and automatic speech recognition (ASR)	DRC & ASR	11%		
Blind amplitude normalization (BAN)	BAN	14%		
Blind amplitude reconstruction (BAR)	BAR	28%		
Robust estimation of distortion (RED)	RED	28%		
Artificially-matched training (AMT)	AMT	9%		
The Big Picture	Big Picture	10%		

Dynamic Range Compression (DRC)

- A form of nonlinear distortion
 - Nonlinear systems are common (e.g., AM/FM radio, rectifiers)
- DRC is used extensively in audio engineering typically for one of three reasons:
 - 1. Adhere to dynamic range limitations of a signal transmission system, while increasing average signal power
 - 2. Increase perceived signal loudness
 - 3. Eliminate drastic changes in volume (e.g., automatic gain control)
- Because of the ubiquity of DRC, speech systems—like ASR are likely to encounter compressed speech

Dynamic Range Compression (DRC)

 DRC is characterized by two parameters, ratio (R) and threshold (τ).

Introduction DRC & BAN BAR RED AMT Big Picture Conclusion

Dynamic Range Compression (DRC)

Dynamic Range Compression (DRC)

Some examples

Threshold (τ)	Ratio (<i>R</i>)	Audio	Crest Factor	Word Error Rate (WER)	WER after processing
P ₁₀₀	1		17.1 dB	6.4%	6.4%
P ₇₅	4		7.7 dB	20.3%	6.4%
P ₇₅	∞		4.1 dB	30.8%	13.5%
P ₅₀	4		6.7 dB	30.2%	6.4%
P ₅₀	∞		2.2 dB	49.5%	23.0%

Experiment 1 (no additive noise):

Experiment 2 (additive, channel noise):

Experiment 1 (no additive noise):

Experiment 2 (additive, channel noise):

Experiment 2 (additive, channel noise):

Counteracting the effects of DRC

Blind Amplitude Normalization (BAN)

(Balchandran & Mammone; ICASSP 1998)

Electrical & Computer

 Step 1: Obtain estimate of the cumulative distribution function (CDF) of the observed speech, and of clean, unadulterated reference speech.

Blind Amplitude Normalization (BAN)

(Balchandran & Mammone; ICASSP 1998)

 Step 2: For a given reference signal amplitude, find the amplitude in the observed CDF with the same cumulative probability.

Input amplitude of 0.061 maps to 0.2

Blind Amplitude Normalization (BAN)

(Balchandran & Mammone; ICASSP 1998)

• Step 3: Repeat for each input signal amplitude to obtain a full non-parametric estimate of the nonlinear mapping.

• Experiment 1 (no additive noise):

• Experiment 1 (no additive noise):

ENGINEERING

• Experiment 2 (additive, channel noise at 20-dB SNR):

• Experiment 2 (additive, channel noise at 20-dB SNR):

• Experiment 2 (additive, channel noise at 15-dB SNR):

• Experiment 2 (additive, channel noise at 15-dB SNR):

• Idea: Shift each input sample by the amount the centroid of it and its neighbors is changed when inverting the nonlinearity.

Carnegie Mellon

Robust BAN (Harvilla & Stern; unpub.)

• Step 1: As before, for a given reference signal amplitude, find the amplitude in the observed CDF with the same cumulative probability.

 Step 2: The difference between the output and the input is the offset to be added to the original, noisy and compressed waveform.

Offset = output - input = 0.2 - 0.061 = 0.139

Carnegie Mellon

• Step 3: Repeat for each input signal amplitude, always using the inverse mapping defined by the smoothed signals.

Carnegie Mellon

- Step 1: For each sample, find the centroid of the value and its surrounding 4 samples.
- Step 2: Pass the centroid value through the inverse nonlinearity estimate.
- Step 3: Find the difference ("offset") between the output of the inverse nonlinearity and the centroid.
- Step 4: Add the offset to the original noisy and compressed sample value from Step 1.
- Step 5: Repeat for each sample in the input signal.

Electrical & Computer

Results summary

• RBAN is more useful as *R* becomes large and SNR decreases:

Blind Amplitude Reconstruction (BAR)

- When $R = \infty$, BAN techniques are ineffective.
- All samples greater than $|\tau|$ are completely lost ("clipping").

Consistent Iterative Hard Thresholding (Kitic et al.; ICASSP 2013)

- **Kitic-IHT** works by learning a sparse representation of the incoming clipped speech in term of Gabor basis vectors.
- Learning is done using a modified version of the Iterative Hard Thresholding (IHT) algorithm.
- The learned sparse representation is then used to reconstruct the signal on a frame-by-frame basis.

Kitic-IHT will be used as a baseline to compare novel declipping algorithm performance.

- Declip the signal by interpolating missing samples such that the energy in the second derivative is minimized (i.e., for smoothness).
- Ensure the interpolation matches the sign of the clipped signal and is greater than |τ| in the absolute sense.

Introduction	DRC & ASR	BAN		RED	AMT	Big Picture	Conclusion
			BAR				

Explaining masking matrices

CBAR objective function:

$$\begin{array}{l} \underset{x_c}{\text{minimize}} & \left\| \left\| \boldsymbol{D}_2 (\boldsymbol{S}_r^T \boldsymbol{x}_r + \boldsymbol{S}_c^T \boldsymbol{x}_c) \right\|_2^2 \\ \text{subject to} & \boldsymbol{x}_c \circ \operatorname{sgn} \boldsymbol{S}_c \boldsymbol{x} \geq +\tau \mathbf{1} \end{array} \right\| \end{array}$$

- Because Constrained BAR (CBAR) imposes a hard constraint when minimizing the objective function, it is very slow.
- A line search algorithm is used to solve the constrained optimization separately for every frame.
- In the worst case, it is 400 times slower than real time.
- This motivates the development of a declipping algorithm that does not require a hard constraint.

• Replace CBAR's hard constraint with regularization terms:

CBAR objective function:

$$\begin{array}{l} \underset{x_c}{\text{minimize}} & \left\| \left\| \boldsymbol{D}_2 (\boldsymbol{S}_r^T \boldsymbol{x}_r + \boldsymbol{S}_c^T \boldsymbol{x}_c) \right\|_2^2 \\ \text{subject to} & \boldsymbol{x}_c \circ \operatorname{sgn} \boldsymbol{S}_c \boldsymbol{x} \geq +\tau \mathbf{1} \end{array} \right\| \end{array}$$

• Replace CBAR's hard constraint with regularization terms:

$$\min_{\boldsymbol{x}_{c}} \left\| \boldsymbol{D}_{2} (\boldsymbol{S}_{r}^{T} \boldsymbol{x}_{r} + \boldsymbol{S}_{c}^{T} \boldsymbol{x}_{c}) \right\|_{2}^{2}$$

• Replace CBAR's hard constraint with regularization terms:

$$\begin{array}{l} \underset{x_c}{\text{minimize}} & \left\| \boldsymbol{D}_2 (\boldsymbol{S}_r^T \boldsymbol{x}_r + \boldsymbol{S}_c^T \boldsymbol{x}_c) \right\|_2^2 \\ & + \lambda \left\| |\boldsymbol{t}_0 - \boldsymbol{S}_c^+ \boldsymbol{x}_c| \right\|_2^2 \\ & + \lambda \left\| |\boldsymbol{t}_1 - \boldsymbol{S}_c^- \boldsymbol{x}_c| \right\|_2^2 \end{array}$$

Electrical & Computer

• Replace CBAR's hard constraint with regularization terms:

RBAR objective function:

 x_c can be solved for in closed form!

$$\begin{array}{l} \underset{x_c}{\text{minimize}} & \left\| \boldsymbol{D}_2 (\boldsymbol{S}_r^T \boldsymbol{x}_r + \boldsymbol{S}_c^T \boldsymbol{x}_c) \right\|_2^2 \\ & + \lambda \left\| \boldsymbol{t}_0 - \boldsymbol{S}_c^+ \boldsymbol{x}_c \right\|_2^2 \\ & + \lambda \left\| \left| \boldsymbol{t}_1 - \boldsymbol{S}_c^- \boldsymbol{x}_c \right\|_2^2 \end{array} \right\|$$

• Replace CBAR's hard constraint with regularization terms:

Frame-specific solution:

 x_c can be solved for in closed form!

$$\widehat{\boldsymbol{x}}_{c} = -(\boldsymbol{S}_{c}\boldsymbol{D}_{2}^{T}\boldsymbol{D}_{2}\boldsymbol{S}_{c}^{T} + \lambda(\boldsymbol{S}_{c}^{+})^{T}\boldsymbol{S}_{c}^{+} + \lambda(\boldsymbol{S}_{c}^{-})^{T}\boldsymbol{S}_{c}^{-})^{-1} \\ \times (\boldsymbol{S}_{c}\boldsymbol{D}_{2}^{T}\boldsymbol{D}_{2}\boldsymbol{S}_{r}^{T}\boldsymbol{x}_{r} - \lambda(\boldsymbol{S}_{c}^{+})^{T}\boldsymbol{t}_{0} - \lambda(\boldsymbol{S}_{c}^{-})^{T}\boldsymbol{t}_{1})$$

$$\widehat{\boldsymbol{x}} = \boldsymbol{S}_{r}^{T} \boldsymbol{x}_{r} + \boldsymbol{S}_{c}^{T} \widehat{\boldsymbol{x}}_{c}$$

- The t_0 and t_1 terms are target vectors.
- They "float" above the clipped segments at the target amplitude.
- They are defined as a function of the fraction of clipped samples in a frame.

Introduction **DRC & ASR** BAN RED AMT **Big** Picture Conclusion BAR

Regularized BAR (Harvilla & Stern; ICASSP 2015)

Introduction **DRC & ASR** BAN RED AMT **Big** Picture Conclusion BAR Regularized BAR (Harvilla & Stern; ICASSP 2015)

Introduction **DRC & ASR** BAN RED AMT **Big** Picture Conclusion BAR Regularized BAR (Harvilla & Stern; ICASSP 2015)

Introduction DRC & ASR BAN BAR RED AMT Big Picture Conclusion

Regularized BAR (Harvilla & Stern; ICASSP 2015)

Introduction	DRC & ASR	BAN		RED	AMT	Big Picture	Conclusion
			BAR				

Amplitude prediction

Electrical & Computer

 ρ : fraction of clipped samples in frame

$$\phi(\rho) \approx \begin{cases} e^{2.5\rho} & \text{for } \rho \le 0.9 \\ 272\rho^{60} + 9.0 & \text{for } \rho > 0.9 \end{cases}$$

$$t_0 = \phi(\rho)\tau \mathbf{1}$$
$$t_1 = -\phi(\rho)\tau \mathbf{1}$$

Processing speed

Electrical & Computer

Declipping performance

• Experiment 1 (no additive noise):

Declipping performance

Electrical & Computer

• Experiment 1 (no additive noise), relative improvements:

Declipping performance

• Experiment 2 (additive noise):

The location of all clipped samples is assumed known.

Kitic-IHT is more robust to additive noise (future research).

Robust Estimation of Distortion (RED)

 Given a received speech signal, how does one determine if declipping (BAR) or decompression (BAN) need to be performed?

Robust Estimation of Distortion (RED)

 Given a received speech signal, how does one determine if declipping (BAR) or decompression (BAN) need to be performed?

53

Carnegie Mellon

Electrical 🎸 Computer

Introduction DRC & ASR BAN BAR RED AMT Big Picture Conclusion

Clipped speech detection & τ estimation (Harvilla & Stern; ICASSP 2015)

 Exposure to DRC significantly modifies the waveform amplitude distribution of the speech

Introduction DRC & ASR

Electrical & Computer

Clipped speech detection & τ estimation (Harvilla & Stern; ICASSP 2015)

 Exposure to DRC significantly modifies the waveform amplitude distribution of the speech

BAR

<u>Clipping detection and τ</u> <u>estimation algorithm:</u>

- 1. Detect peaks in the distribution
- 2. Compute:

$$\hat{\tau} = \frac{1}{K - 1} \sum_{i=0}^{K - 1} |k_i|$$

3. Output indicates clipping occurrence and amplitude value of $\tau (0.5^*(|-\tau| + 0 + |\tau|))$

(if output is ∞ , no clipping)

Clipped speech detection & τ estimation

(Harvilla & Stern; ICASSP 2015)

Electrical & Computer

Clipped signal detection accuracies

Because the amplitude distribution merges into one lobe (thus, one peak) with decreasing SNR and τ , detection accuracy correspondingly decreases.

Carnegie Mellon

BAR AMT Big Picture Conclusion

Clipped sample estimation

BAN

(Harvilla & Stern; ICASSP 2015)

DRC & ASR

Introduction

 Given the amplitude value of τ, how do we determine the location of clipped samples?

(Harvilla & Stern; ICASSP 2015)

- Given the amplitude value of τ , how do we determine the location of clipped samples?
- <u>Solution:</u>

Introduction

Given,

amplitude value of τ percentile value of τ variance of the additive noise (σ_w^2) variance of the observed signal (σ_y^2)

- Model the clean speech and noise with separate Gaussians
- For each sample, classify as clipped if

Pr(clipped | observed sample, τ , σ_w^2 , σ_v^2) > Pr(not clipped | observed sample, τ , σ_w^2 , σ_v^2)

Electrical & Computer

(Harvilla & Stern; ICASSP 2015)

Electrical & Computer

Robust Estimation of Distortion (RED)

 Given a received speech signal, how does one determine if declipping (BAR) or decompression (BAN) need to be performed?

Introduction	DRC & ASR	BAN	BAR		AMT	Big Picture	Conclusion
				RED			

(Harvilla & Stern; ICASSP 2015)

(Harvilla & Stern; ICASSP 2015)

Electrical & Computer

• Experiment 2 (additive noise):

The location of all clipped samples is assumed known.

64

(Harvilla & Stern; ICASSP 2015)

Electrical & Computer

• Experiment 2 (additive noise):

Clipping occurrence and location is detected using RED techniques

(Harvilla & Stern; ICASSP 2015)

Electrical & Computer

• Experiment 2 (additive noise):

Clipping occurrence and location is detected using RED techniques

 So far, the developed techniques have sought to repair clipped, compressed and noisy speech to "look like" clean speech:

 Ultimately, it's only important for the Acoustic Model and testing data conditions to match. They both need not be "clean."

Experiment 1 (no additive noise):

• Experiment 1 (no additive noise):

• One approach to achieving this in practice:

Artificially-Matched Training with Acoustic Model Selection (AMT-AMS) *Current implementation uses the following parameter sets:*

Experiment 1 (no additive noise):

Artificially-Matched Training (AMT)

• Experiment 1 (no additive noise):

ENGINEERÍNG

Carnegie Mellon

 With no knowledge of the noise conditions and characteristics of the incoming speech, how well does the combination of algorithms from the thesis work in practice?

Compression

 With no knowledge of the noise conditions and characteristics of the incoming speech, how well does the combination of algorithms from the thesis work in practice?

Electrical & Computer

Carnegie Mellon

<u>Clipping</u>

Introduction	DRC & ASR	BAN	BAR	RED	AMT	Big Picture	
							Conclusion

Summary & Conclusions

- A previously-unexplored problem in speech recognition, DRC, was introduced.
- Novel solutions to the two primary aspects of the problem, clipping and compression, were developed.
- Techniques for detecting the occurrence of DRC were considered.
- A comprehensive solution to DRC for speech recognition was proposed.
- DRC, especially in noise, is a very hard problem, but this thesis lays the groundwork for very promising future research.

Introduction	DRC & ASR	BAN	BAR	RED	AMT	Big Picture	
							Conclusion

Summary & Conclusions

- Areas of future research include:
 - Improving target amplitude estimates for RBAR [BAR]
 - Improving the robustness of BAR methods to additive noise [BAR]
 - Improving the robustness of clipped/compressed signal detection to low-valued SNR and τ [RED, Big Picture]
 - Development of an *R*-estimation algorithm [RED, Big Picture]
 - Further investigation of the performance of AMT-AMS with an increasing granularity of acoustic model references [AMT]

Introduction	DRC & ASR	BAN	BAR	RED	AMT	Big Picture	
							Conclusion

Thank you!

• Questions?

