
Name: __ Andrew ID: ______________

15-323/623	Computer	Music	Systems	and	Information	Processing	
Exam	

Spring	2019,	PRACTICE	VERSION	
	
	

	
	
	
Useful	Constants		
	
	

	

	

Midi	Program	Numbers	

Ensemble	

• 49	String	Ensemble	1	
• 50	String	Ensemble	2	
• 51	Synth	Strings	1	
• 52	Synth	Strings	2	
• 53	Choir	Aahs	
• 54	Voice	Oohs	
• 55	Synth	Choir	
• 56	Orchestra	Hit	

Brass	

• 57	Trumpet	
• 58	Trombone	
• 59	Tuba	
• 60	Muted	Trumpet	
• 61	French	Horn	
• 62	Brass	Section	
• 63	Synth	Brass	1	
• 64	Synth	Brass	2	

Reed	

• 65	Soprano	Sax	
• 66	Alto	Sax	
• 67	Tenor	Sax	
• 68	Baritone	Sax	
• 69	Oboe	
• 70	English	Horn	
• 71	Bassoon	
• 72	Clarinet

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 2	

	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 3	

	
1) MIDI	

a) Reza	Vali	wanted	to	explore	Persian	tuning	using	off-the-shelf	MIDI	synthesizers.	
MIDI	assumes	an	equal-tempered	tuning	where	chromatic	scale	steps	are	equally	
spaced	(12	to	the	octave),	whereas	Persian	tuning	is	based	on	a	set	(scale)	of	
pitches	that	are	not	in	our	Western	chromatic	scale.		What	MIDI	message	is	
available	to	slightly	adjust	the	pitch	of	a	MIDI	note?	
	
	
	

b) In	Reza’s	strategy,	there’s	a	problem	with	fine-tuning	the	pitch	of	each	MIDI	note.	
How	many	notes	can	you	play	simultaneously	with	fine-grain	pitch	control	given	a	
single	conventional	MIDI	connection	and	synthesizer?	(This	is	a	problem	related	to	
MIDI	encoding,	naming	notes,	and	scope	of	control	messages.)	
	
	
	

c) A	related	problem	is	controlling	the	instrument	of	each	note	(e.g.	piano,	flute,	bell,	
or	bass	sound).	What	message	is	used	to	select	the	instrument	for	a	note?	

	
	
	

d) How	many	different	instruments	can	you	play	simultaneously	given	a	single	
conventional	MIDI	connection	and	synthesizer?	(Ignore	the	special	case	of	drum	
sounds.)	

	
	
	

e) About	how	long	(in	milliseconds)	does	it	take	to	send	10	note-on	messages	in	
MIDI?		(Use	B	=	bits-per-second	as	a	parameter	if	you	do	not	know	it.)	

	
	
	

f) How	many	bytes	does	it	take	to	send	10	note-on	messages	in	MIDI?	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 4	

2) Audio	Processing		
a) Label	the	following	graph	of	unit	generators	with	numbers	to	indicate	the	order	in	

which	they	should	be	computed.	An	arrow	from	A	to	B	indicates	that	data	
generated	by	A	is	read	by	B.	

																																		 	
b) Some	systems	like	STK	traverse	a	graph	as	shown	in	(a),	and	for	each	unit	

generator,	a	method	is	called	that	returns	one	sample	of	audio.	Traversing	the	
graph	and	calling	all	those	methods	is	a	lot	of	work	just	to	compute	one	sample.	
How	do	most	unit	generator	systems	improve	efficiency?	

	
	
	
	
	
	
	
	
	
	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 5	

c) Application	programs	are	often	scheduled	every	1ms,	but	operating	systems	may	
schedule	programs	only	every	50ms	or	so.	As	some	low	level	in	the	hardware,	each	
sample	must	be	delivered	at	the	sampling	rate,	which	is	often	44,100Hz,	or	one	
sample	every	22µs.	How	do	systems	deal	with	the	50:1	or	even	2500:1	disparity	
between	scheduling	periods	(~1ms	or	~50ms)	and	sample	periods	(~20µs)?	

	
	
	
	
	
	
	
	
	
	
3) Design	question.	We	heard	from	Roger	Linn	about	the	importance	of	low	jitter	in	

musical	instrument	response.	Consider	a	system	that	takes	input	via	OSC	(or	O2)	from	
digital	instrument	sensors	and	uses	software	to	synthesize	audio	output	in	response	to	
data	from	the	instrument.	The	synthesis	software	runs	PortAudio,	and	you	establish	
that	PortAudio	callbacks	have	a	jitter	of	up	to	25ms	(i.e.	you	might	expect	a	callback	
every	2ms,	but	in	fact,	sometimes	there	is	a	pause	of	23ms	followed	by	10	or	so	instant	
callbacks	to	“catch	up.”	Thus,	if	the	callbacks	act	on	the	latest	sensor	data,	this	25ms	of	
jitter	will	be	passed	on	to	the	output	sound.	

	
a) Design	an	implementation	that	reduces	jitter	to	(at	most)	the	nominal	period	of	

PortAudio	callbacks	(e.g.	2ms	in	this	example).	You	do	not	need	to	write	code,	but	
explain	the	key	elements	and	concepts	of	the	design.	It	should	be	clear	that	your	
design	will	reduce	jitter.		

	
	
	
	
	
	
	
	
	
	
	
	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 6	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b) Be	sure	to	consider	additional	sources	of	jitter.	If	not	already	addressed	in	part	(a),	
what	assumptions	do	you	make	about	(i)	the	instrument	itself,	(ii)	the	network	
connection	for	OSC	or	O2,	(iii)	the	behavior	of	the	“Synthesis	App”	application	
receiving	the	messages?	(note	that	it	would	be	unreasonable	to	assume	the	app	has	
very	low	jitter	and	ideal	scheduling	given	that	the	high-priority	PortAudio	thread	
has	25ms	of	jitter).	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 7	

c) Typically,	when	you	reduce	jitter,	you	must	increase	latency.	In	your	design,	and	
based	on	your	assumptions,	give	a	reasonable	estimate	of	the	total	latency	from	
instrument	“gesture”	(physical	input)	to	sound	output.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

1) Music	Generation	and	Algorithmic	Composition	(4	pts)	
a) Name	a	limitation	of	Markov	Chains	for	music	generation.	

	
	
	
	
	
	
	
	

b) Other	then	Markov	Chains,	name	two	other	approaches	to	Algorithmic	Composition	
that	we	discussed	in	class.	
	
	
	
	
	
	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 8	

4) Theory	&	Music	Representation	

	
	

a) What	is	the	key	signature?	
	
	
	
	

b) What	is	the	time	signature?	
	
	
	
	

c) How	many	complete	measures	are	notated	in	the	score?	
	
	
	

d) How	many	parts	are	in	this	score?	
	
	
	

e) How	long	does	it	take	to	perform	a	measure	by	strictly	following	the	score’s	
tempo?	

	
	
	

f) Translate	the	first	full	measure	of	the	score	(ignore	the	first	or	“pickup”	note	in	the	
violin),	and	consider	the	2nd	violin	note	to	be	at	time	0)	into	a	Serpent	note	list	
representation:	Use	an	array	of	notes	where	each	note	is	represented	by	an	array	
of	the	form		
																												[time,	duration,	voice,	pitch,	velocity],																	where		
i) time	and	duration	are	in	seconds	(floating	point),		
ii) voice	is	'violin'	or	'cello'	(recall	Serpent	symbols	are	denoted	by	single	quotes)	
iii) pitch	is	a	MIDI	key	number	(integer),	and		
iv) velocity	is	a	MIDI	velocity	number	(integer,	pick	a	reasonable	value).	

	
	

q	=	120	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 9	

2) Networks	and	Music	Control	(6	pts	–	2	each)	
a) O2	has	two	forms	of	send.	o2_send()	sends	a	message	as	quickly	as	possible	but	

does	not	ensure	delivery.	o2_send_cmd()	sends	a	message	reliably	(the	message	
is	guaranteed	to	arrive	unless	the	sender	or	receiver	crashes	first),	but	the	message	
delivery	may	not	be	as	fast.	Write	“TCP”	or	“UDP”	to	indicate	how	O2	delivers	
messages	for:	
5) o2_send()	 	 ______________	

	
o2_send_cmd() _________	

b) OSC	generally	uses		(circle	one):						TCP					or						UDP					?	
	

c) Suppose	an	O2	service	named	“synth”	offers	two	voices	named	“voice1”	and	“voice2”	
that	each	allow	you	to	set	“freq”	(frequency)	and	“amp”	(amplitude).	
Write	an	O2	address	that	could	be	used	to	set	the	frequency	of	voice1	to	440	Hz.	
	
	
	
	

3) Standard	MIDI	Files	
a) Name	two	things	that	Standard	Midi	Files	can	represent	that	are	not	(easily)	

representable	in	Common	Practice	Music	Notation.	
	
	
	
	
	

b) Name	two	things	that	Common	Practice	Music	Notation	can	represent	that	are	not	
(easily)	representable	in	Standard	Midi	Files.	
	
	
	
	
	
	

6) Clock	Synchronization	(6	pts	–	3	each)	
Fill	in	the	blanks.	The	clock	synchronization	algorithm	described	in	class	estimates	the	
difference	between	a	slave’s	local	clock	and	the	clock	of	the	master.	The	protocol	is	
basically:	
	
	
	
	

	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 10	

1. Run	steps	(a)	through	(e)	for	i	=	0,	1,	…	N-1:	
a. at	slave	time	Si,	the	slave	sends	a	message	to	the	master	
b. at	master	time	Mi,	the	master	replies	with	Mi	
c. at	slave	time	Ti,	the	slave	receives	Mi	
d. the	slave	estimates	that	the	local	time	corresponding	to	master	time	Mi	is	

	
Li	=	___.	

e. The	local	clock	offset	is	estimated	as	Δi	=	Li	–	Mi.	
2. Finally,	the	algorithm	computes	an	overall	estimated	Δ as	follows:	(insert	short	

description)	
	
	
	
	
	
	
	
	
	
	
	
	

	 	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 11	

	
7) Music	Understanding	and	Classifiers	

	
Recall	that	P(A&B)	=	P(A|B)P(B)	=	P(B|A)P(A).	
	
Suppose	you	want	to	classify	whether	a	piece	of	music	is	Happy	or	Sad,	and	there’s	only	
one	feature,	the	mean	pitch.	Your	job	is	to	guess	the	most	likely	music	style	given	the	
observed	feature	using	a	Gaussian	naïve	Bayes	classifier.	Observed	statistics	of	the	
mean	and	standard	deviation	for	Happy	and	Sad	music	is	shown	in	the	table	below.	The	
prior	guess	for	the	two	music	styles	are	equal,	i.e.,	P(Happy)	=	P(Sad)	=	1/2.	Recall	that	
with	a	Gaussian	distribution,	the	probability	of	observing	a	feature	is	decreasing	with	
the	number	of	standard	deviations	from	the	mean.	In	other	words		

(|observation	−	µclassA|/σclassA)		<		(|observation	−	µclassB|/σclassB)	
if	and	only	if	

p(observation	|	classA)		>	p(observation	|	classB).	
	

	 Mean	within	class	
(µclass)	

Standard	Deviation	
within	class	(σclass)	

Happy	 65	 4	
Sad	 57	 8	

	
a) If	the	observed	mean	pitch	is	61	(half-way	between	µhappy	and	µsad),	what	is	your	

guess	for	the	music	style?	Show	your	work	using	the	formulas	given	above.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 12	

b) Starting	from	the	description	in	the	previous	problem,	we	change	the	prior	
probabilities	for	the	styles	to	be	not	equal,	letting	P(Happy)	=	1/4	and	P(Sad)	=	
3/4.	Redo	the	work	under	this	assumption.	What	would	be	your	guess	for	the	
music	style?	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
c) What	are	2	features	you	might	use	to	classify	styles	or	genre	in	MIDI	files?	

	
	
	
	
	
	
	
	
	

	 	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 13	

8) Concurrency	
Consider	the	following	code	(in	Serpent)	that	inserts	a	value	into	a	linked	list:1	
1 values = nil # values is a global variable, a list
2
3 class Node:
4 var value
5 var next
6
7 def insert(value):
8 # Insert value at front of values.
9 var node = Node()
10 node.value = value
11 node.next = values
12 values = node

Serpent	does	not	have	preemptive	threads,	so	this	code	is	“safe”	in	Serpent,	but	for	this	
problem,	imagine	a	Serpent	interpreter	that	can	switch	threads	after	any	statement.		
	
a) Give	an	example	interleaving	of	two	threads	using	the	above	insert()	code	

(without	locks)	that	results	in	losing	data.	You	can	assume	each	thread	executes	
one	call	to	insert	and	just	write	down	the	order	of	lines	9,	10,	11	and	12.	
Thread	1:	insert(1)	 Thread	2:	insert(2)	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	

b) If	the	initial	list	contained	just	one	Node	with	the	value	3,	what	would	the	list	
contain	after	the	sequence	of	statements	you	wrote	in	part	(a)?	

	
	
	
	
	

																																																								
1	This	is	really	terrible	code:	insert	should	be	a	method,	values	shouldn’t	be	a	global,	
insert	should	return	a	new	list,	but	that	all	obscures	the	exam	problem.	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 14	

c) Add	calls	to	lock(k)	and	unlock(k)	to	obtain	correct	behavior	when	
insert()	is	called	from	multiple	concurrent	threads:	

	
var k = lock_create(); // create a new global lock object
void insert(int amt)

 # Insert value at front of values.

 var node = Node()

 node.value = value

 node.next = values

 values = node

d) We’ve	learned	about	scheduling	and	events	to	obtain	most	of	the	advantages	of	
concurrency	without	actually	using	multiple	threads.	When	is	this	approach	
inadequate,	motivating	threads	and	preemptive	scheduling?	(Choose	the	best	
answer):	
i) When	you	have	input	from	MIDI	or	OSC	
ii) When	you	have	100’s	of	activities.	
iii) When	some	actions	must	be	completed	faster	than	the	execution	time	of	some	

other	action.	
iv) All	of	the	above	

	
e) One	of	the	main	uses	of	threads	in	music	applications	is	to	allow	time-critical	audio	

computation	to	preempt	other	code.	(Otherwise,	running	audio	processing	later	
might	cause	the	audio	output	buffer	to	empty,	which	would	insert	pops	or	gaps	
into	the	audio	output).	Allowing	preemptive	audio	threads	begs	for	locks	to	solve	
concurrency	problems,	yet	most	audio	systems	tell	developers	not	to	use	locks	at	
all	in	audio	callbacks.	Why?	

	 	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 15	

9) 	Matching	
Match	each	item	at	left	with	a	corresponding	item	at	right.	
	

A. Chromagram	 	 	 	 ____	hashing		
B. Forward	Synchronous	Scheduling	 ____	logical	(or	virtual)	time	
C. Genre	Classification	 	 	 ____	MAX		

D. Music	Fingerprinting	 	 	 ____	Naïve	Bayes		

E. OSC	 	 	 	 	 ____	time	deltas		
F. Standard	MIDI	File	 	 	 ____	topological	sort		

G. Unit	Generators	 	 	 	 ____	UDP	

H. Visual	Programming	 	 	 ____	vectors	of	length	12		
	
	

10) Event-based,	real-time	programming	
a) Write Serpent code to generate two sequences of MIDI notes. One sequence should play

pitch F6 100 times with an initial inter-note onset (IOI) time of 2s, decreasing by 0.02s
on each successive note. (Thus, the last IOI will be 0.02s.) The other sequence should
play pitch G3 100 times with an initial IOI of 0.02s, increasing by 0.02s for each
successive note. (Thus, the last IOI will be 2s, and the sequences will have the same
duration.)	

To play a note (don’t worry about the duration / note off), call (but do not define):
 note(pitch)
To schedule a function call, call (but do not define):
 sched_cause(time_from_now, nil, function_name, p1, p2, …)
You can assume the scheduler in sched.srp is loaded and running in the normal way.
Important: follow the template below. Define one function to play both sequences as
shown.

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 16	

def start_sequence(): // this is called to start both sequences

 __

 __

def play_next(pitch, ioi, ioi_inc, n): // a helper function
 // pitch – pitch to play
 // ioi – ioi to the next note,
 // ioi_inc – change from this ioi to the next,
 // n – number of (remaining) notes to play

 __

 __

 __

 __

 __

 __

// use only as many lines as you need

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 17	

b) Modify your code (from the previous page) so that the sequence can be stopped. You
may use a global variable. The function stop_sequence() will cause the sequence to
stop. Your solution should work even if a start_sequence is called immediately
after stop_sequence (in which case the old sequence is stopped before it plays
another note, but a new sequence is started immediately).

// declare any global variables here:

def start_sequence(): // this is called to start both sequences

 __

 __

 __

def stop_sequence(): // calling this halts any currently playing sequence

def play_next(pitch, ioi, ioi_inc, n,_______________):
 // pitch – pitch to play
 // ioi – ioi to the next note,
 // ioi_inc – change from this ioi to the next,
 // n – number of (remaining) notes to play

 __

 __

 __

 __

 __

// use only as many lines as you need

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 18	

11) 	Scheduling	
a) The	following	graph	shows	a	mapping	from	time	in	seconds	to	beats.	Draw	the	

second	graph,	which	shows	tempo	as	a	function	of	time.		

	
b) Write	the	mathematical	equation	for	T(b)	(where	T(b)	is	time	of	beat	b)	in	terms	of	

B(t)	(where	B(t)	is	the	beat	position	at	time	t).	
	
	
	
	
	
	

c) Write	the	mathematical	equation	for	T(b),	the	time	of	beat	b,	in	terms	of	S(b),	the	
tempo	(in	beats/second)	at	beat	b.	

	
	
	
	
	

Name: __ Andrew ID: ______________

CMSIP	Spring	2019	PRACTICE	Final	Exam	 19	

12) Audio	Editors	(6	pts	–	2	each)	
a) In	Audacity,	if	you	filter	a	signal	and	zoom	in,	you	might	see	a	change	in	the	

waveform.	However,	in	ProTools,	if	you	apply	a	filter	to	a	signal,	you	do	not	see	the	
waveform	change	on	the	display.	Why?	
	
	
	
	
	
	
	
	

b) Aside	from	display	differences,	name	one	advantage	of	in-place	editors	and	Audacity	
over	non-destructive	editors.	
	
	
	
	
	
	
	
	

c) Aside	from	display	differences,	name	one	advantage	of	non-destructive	editors	over	
in-place	editors	and	Audacity.	
	
	
	
	
	
	
	
	
	

	

