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Week 2: Discrete Event Simulation 

Roger B. Dannenberg, instructor 
Spring, 2019 

Discrete Event Simulation 

n Why DES? 
n Overview 
n Approaches 
n Details of Event Scheduling Systems 
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Why Discrete Event Simulation 

n Most CS is concerned with computing 
answers at some time in the future (hopefully 
soon) 

n Discrete event simulation models time as well 
as processes 

n DES techniques turn out to be very relevant 
to real-time, interactive music systems. 
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Overview of Discrete Event Simulation 

n Model behavior … 
n … consisting of discrete state changes 
n State: all information describing system at a 

given point in time 
n Event: a trigger that initiates an action that 

changes the state 
n Process: a sequence of events, usually 

associated with some simulated entity 
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Simulation Structure 

n Executive: manages events and runs actions, 
keeps track of time 

n Utilities: random number generation, 
statistics, etc. 

n Model (program): code that models the 
specific behavior of the simulated system. 
n  Note the design strategy: separate system-

specific code from generic, reusable code. 

Time in Simulation 

n Usually, simulation time is not real time. 
n Results of simulation available faster than 

real time (e.g. weather, climate simulation) 
n Simulation time 
n Run time 
n Event time 
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Time in Simulation 

n Usually, simulation time is not real time. 
n Results of simulation available faster than 

real time (e.g. weather, climate simulation) 
n Simulation time: the time in the model 

n  Also logical time or virtual time 
n Run time: the real (cpu) time of the simulation 
n Event time: the simulation time at which an 

event should happen 
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Scheduling Events 

n  (1) Synchronous simulation 
n  What it does: 

n  Advance virtual time by small fixed interval 
n  Run all events in that interval 

n  Timing not precise 
n  Wastes computation when no events enabled 
n  Similar to frame-by-frame animation engine 

n  (2) Event-scanning simulation: 
n  Advance time to next event time 
n  Run the event 
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(1) Synchronous Simulation 
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Discrete times ➞ 

Objects being simulated 

Call every 
object at 
every time 
step 

Question: 

n What are some examples where synchronous 
simulation makes sense? 
n  Computer animation – everything changes 

frame-by-frame; maybe drawing dominates 
cost (so testing for behavior is insignificant) 

n  Physical simulation, difference equations, 
everything changes each time step 

n  Continuous music control, e.g. objects 
generate envelopes, vibrato, etc. and change 
“continuously” (i.e. at each time step) 
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(2) Event-Scanning Executive 

n Event: data structure containing… 
n  Event time: when to dispatch the event 
n  Function: reference to a method or procedure 
n  Parameters: for the function 

n Future event list: data structure 
n  Priority Queue: insert/remove events 

 

Question: 

n What are some examples where event-
scanning makes sense? 
n  Music with discrete events, e.g. notes, 

sequencers, MIDI 
n  Operating systems: processes call sleep() 
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Simulation Organization 

n Activity Scanning 
n Event Scanning/Scheduling 
n Process Interaction 

Activity Scanning 

n Organized around the activity 
n Activities start when conditions are met 
n Executive scans for an activity that is enabled 

n Makes sense when enabling conditions are 
complex, e.g. particle systems, crowds, 
physics with collision detection 

n Amounts to synchronous simulation with 
polling to decide when to perform events 
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Event Scheduling 

n Organized around the event 
n Activities change the state, figure out time of 

next event and schedule events accordingly 
n Appropriate when  

n  Interactions are limited 
n  Precise timing is important 
n  Timed state changes 
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Process Interaction 

n Organized around the Process 
n Modeled entities represented by processes 
n Processes can wait to simulate passing of 

time 
n Processes can use synchronization, e.g. 

semaphores or condition variables to 
represent interdependencies. 
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Example 

n Manufacturing 

n Four ways to approach this (at least): 
n  Activity scanning model 
n  Event scheduling model 
n  Process interaction model 

n  Process could be a manufactured article 
n  Process could be a manufacturing station 

n  (discuss each of these four approaches) 

Step 1 Step 2 Step 3 

Event Model in More Detail 

n  Why focus on event model? Because we’re going to 
be using the event model for music generation. 

n State: 
The number of objects at each position 

n Event: Begin or end a step  
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Step 1 Step 2 Step 3 

50      0      0      0
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Events 

def start_step(i):  
    if s[i] > 0:  
        s[i] = s[i] – 1  
        schedule(now + dur(i), ‘event_done’, i)

def event_done(i):  
    s[i+1] = s[i+1] + 1 // increment output tray 
    start_step(i) // begin work on next input 
 
n  Bugs: 

n  Need range check on i, there’s no step 3, 4, 5, … 
n  If step is inactive and item is added to input tray, need to start 

the step. How do we implement this? 
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Step 1 Step 2 Step 3 

50      0      0      0
  

Take something out  
of the input queue 

Add to output and process next input 

Events and Time 

n Virtual time does not advance while events 
are “running” – being computed. 

n Virtual time only advances when the next 
event is in the future. 

n  If there are multiple events at the same virtual 
time, time does not advance until all are 
computed: Arbitrary amounts of computation 
in zero logical time. 

n Event “duration” is zero, but we can model 
process begin, middle, end as multiple events 
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Processes/Threads 

n A “natural” way to model behaviors 
n But processes can be “heavy” 

n  Stacks 
n  Context switch must swap all registers 

n Processes must coordinate updates to the 
state. Consider this in parallel: 
n  s[i] = s[i] + 1
n  s[i] = s[i] - 1
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Processes and Time 

n How can we model time with Processes? 
n Virtual time should only advance when 

processes block or sleep. 
n Blocking and sleeping are typical OS 

primitives, but not designed for simulation 
n Coordinating multiple CPUs to order 

computation with respect to virtual time is 
tricky and beyond our (current) discussion 

n  Processes are not recommended for DES 
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Coroutines 

n  Similar to processes, but  
n  “synchronous” in that threads must explicitly 

yield: 
n  sleep() – run other threads for some amount of 

virtual time 
n  semaphores and condition variables – block until 

ready to run, run other threads in the meantime 
n  yield() – just pick another thread and run 

n  Consider: 
n  s[i] = s[i] + 1
n  s[i] = s[i] - 1
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Each of these is an atomic 
operation: it runs to completion with 
no possibility of another thread 
seeing intermediate results. 

Coroutines and Logical Time 

n How can we model time with coroutines? 
n Sleep(): inserts an event in a priority queue 

n  Advance virtual time to next event in queue 
(virtual time does not necessarily change) 

n  Event wakes up the sleeping coroutine 
n Yield(): checks and switch to ready-to-run 

coroutines. 
n Assessment: 

n  Similar to Event Model 
n  Ability to suspend (sleep) within a procedure 
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Coroutines, Threads, Serpent 

n  Until last year, this discussion of coroutines was 
mainly for completeness, since few languages 
support them. 

n  Serpent has a new feature: non-preemptive 
threads! 

n  Note: Python can implement coroutines by 
building on generators; semantics are different 

n  Coroutines in Serpent are called “threads” (sorry, 
but “non-preemptive threads” was too verbose) 

n  Serpent scheduler works with threads 
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Simulating a Sequence with 
Serpent Threads 

def myseq():  
    if fork(): return  
    // computation in STEP1  
    sched_wait(DUR1)  
    // computation in STEP2  
    sched_wait(DUR2)  
    // computation in STEP3  
    sched_wait(DUR3)  
    …
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Simulating a Sequence with Events 

def myseq():  
    if state == START:  
        state = STEP1  
        // computation in STEP1  
        schedule(now + DUR1, ‘myseq’)  
    elif state == STEP1:  
        state = STEP2  
        // computation in STEP2  
        schedule(now + DUR2, ‘myseq’)  
    elif state == STEP2:  
        state = STEP3  
        // computation in STEP3
        ...
What if we want multiple instances of myseq? 
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Events and Instances 

def myseq(state):  
    if state == START:  
        state = STEP1  
        schedule(now + DUR1, ‘myseq’, state)  
    elif state == STEP1:  
        state = STEP2  
        schedule(now + DUR2, ‘myseq’, state)  
    elif state == STEP2:  
        state = STEP3
        ...
Now we can launch many instances of myseq(START)
But, what if we need local state for each instance?
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Events and Instances (2) 

def myseq(state, per_inst):  
    if state == START:  
        state = STEP1  
        schedule(now + DUR1, ‘myseq’, 
                 state, per_inst)  
    elif state == STEP1:  
        state = STEP2  
        schedule(now + DUR2, ‘myseq’, 
                 state, per_inst)  
    elif state == STEP2:  
        state = STEP3
        ...
Now we can launch many instances of myseq(START, x)  
where each instance has its own local state (x). 
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Simulating a Sequence with Events –  
     A Variation 

def myseq_step1():  
    schedule(now + DUR1, ‘myseq_step2’)  

def myseq_step2():  
    schedule(now + DUR2, ‘myseq_step3’)  

def myseq_step3():  
    schedule(now + DUR3, ‘myseq_step4’)

...
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Object Oriented Simulation 

n  In previous slide, what if we wanted more 
state? 
n  Events solution requires us to pass state or at 

least a reference to state through parameters. 
n  Let’s look at Object Oriented simulation as 

another way to deal with instances and state. 

Object Oriented Approach 

n Scheduling an event effectively calls a 
procedure in the future 
n  Procedures are not the best model for entities 

in the real world (that have state) 
n  A previous example shows how we can pass 

state through parameters 
n What if we extend events to activate objects? 

n  Object can hold state – no need to encode into 
parameters 

n  Objects can model entities in the real world 
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Object Oriented Approach 

class My_thing (Event):  
   var state // an instance variable 
   def init():  
      state = START  
   def run():  
      switch (state):  
        START:  
          state = STEP1  
          schedule(now + DUR1) // inherited method 
        STEP1:  
          state = STEP2  
          schedule(now + DUR2)  
        STEP2:  
          state = STEP3
        ...

Object Oriented Approach  (2) 

n  Notes on the previous slide: 
n  Everything can be statically type checked 

n  schedule() takes an object of type Event rather than a 
procedure reference 

n  no dynamically typed parameters to pass to an event 
n  State is encapsulated in objects 
n  Slightly clumsy that every schedule results in a call 

to run()
n  Some languages allow you to pass pointers to methods, 

similar to passing function pointers in the Event Model 
n  OO languages allow you to pass objects that could then 

invoke the desired method, but this could be clumsy too 
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Summary 

n  Discrete Event Simulation computes (virtual) time 
as well as state changes 

n  Event Scheduling can compute timing with high 
precision (no rounding to discrete intervals or 
system clock) 

n  Various approaches: 
n  Processes – heavy and hard to manage time 
n  Coroutines – stacks, context switch, relatively 

easy to incorporate virtual time 
n  Objects – lighter weight, popular for models 
n  Events – very lightweight, simple 
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Computer Music Systems  
and Information Processing 
 
Week 2, Day 2: Discrete Event 
Simulation, Scheduling 

Roger B. Dannenberg, instructor 
Spring, 2019 

Review 

n Discrete – at points in time 
n Event – state changing action 
n Simulation – a model 
n Big ideas: 

n  All behavior modeled as instantaneous events 
n  Compute precise times of events 
n  Future events in a priority queue (sort by time) 
n  Perform events in time order 
n  Always keep track of virtual (simulated) time  
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Representing Events in Serpent 

n Want to separate “simulation executive” from 
details of model. 

n Need “event” representation: how do we 
represent a function call to take place in the 
future? 

n  “event” should support these operations: 
n  Dispatch– allows the executive to execute 

events without knowing the details 
n  Compare – allows executive to see which 

event comes first  
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The event Representation 

n  Just an array: 
n  [time,         // the event time
n   target,       // object
n   message_name, // method to invoke
n   parms]        // parameters to pass

n  Or
n  [time,         // the event time
n   nil,          // nil➛call a function
n   function_name,// function to call
n   parms]        // parameters to pass 
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Dispatching an event 

def general_apply(target, message, parms)
    if target
        sendapply(target, message, parms)
    else
        apply(message, parms)

// note: parms is an array, e.g.
//
//   general_apply(synth, 'play', [60, 100])
//   is same as: synth.play(60, 100)
//
//   general_apply(nil, 'foo', [10, "hi"])
//   is same as: foo(10, "hi")
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Implementing a scheduler (a 
“simulation executive”) 
n  Need two operations: 

n  Schedule (“cause”) an event: the event is 
remembered and dispatched at the specified event 
time 

n  Poll:  
n  advance virtual time to the earliest event time,  
n  if real time >= virtual time  
n      dispatch the earliest event 

n  Design choice:  
n  Simulation executive can be a process that polls 
n  It can be our responsibility to call poll() frequently 
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Implementation 1: linked list 

n  To schedule, insert event at the head of a list 
  while len(list) > 0: // run until done  
      for each r in list  
          if r[0] < now  
              list.remove(r)  
              dispatch(r)  
      now += interval
n  Example of Event Scanning 
n  Problems: 

n  Could run events out of order 
n  Searches entire list very often 
n  Bug: changing list while iterating over list is not allowed 
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Implementation 2: priority queue 

n  Like before, but linked list is sorted: 

  while len(list) > 0: // run until done  
      var r = list[0]
      list.remove(r) 
      now = r[0] // get the event time  
      dispatch(r)

n  Problems: 
n  Scheduling (insertion) is linear in size of list 
n  In Serpent, list.remove(r) is linear as well 

Increasing timestamps  
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Implementation 3: heapsort 

n  Trick: embed complete binary tree in array. 

n  parent(n) = floor(n/2) 
n  left_subtree(n) = 2 * n 
n  right_subtree(n) = 2 * n + 1 

n  Heap invariant: 
No parent is greater than its children 
It follows that the root is the minimal element 

1     2     3     4    5     6     7    8     9   10   11   12  13   14 
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Heapsort (2) 

n After removing least element (array[1]), move 
last array element to first. Then, “bubble” 
down the tree by swapping new element with 
least of two children (iteratively) until no child 
is smaller. 

n To add an element, insert at end of array. 
Then “bubble” up the tree by swapping new 
element with parent until parent is smaller. 

n  Log(n) insert and delete. 
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Heapsort (3): Remove 

5 

20 6 

29 35 

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 48 

Heapsort (3): Remove 

20 6 

29 35 
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Heapsort (3): Remove 

29 

20 6 

35 

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 50 

Heapsort (3): Remove 

6 

20 29 

35 
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Heapsort (3): Insert 

6 

20 29 

4 35 
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Heapsort (3): Insert 

6 

4 29 

20 35 
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Heapsort (3): Insert 

4 

6 29 

20 35 

From DES to Real-Time Systems 

n  DES computes and simulates precise timing 
n  We want precise timing in music systems too 
n  Example: 

n  Thread1(): 
    loop: 
        play bass_drum 
        sleep(1.0) 
Thread2(): 
    loop: 
        play snare 
        sleep(1.0) 
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main(): 
    new Thread1() 
    sleep(0.5) 
    new Thread2() 
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How Much Precision Do We Need? 

n Suppose we compute things to nearest frame 
of a video game: 
n  Frame rate = 60fps 
n  Frame period = 1/60 = 17ms 
n  Quantization error is perceptible 

n What if system always responds within 1ms? 
n  100 beats per minute * 0.5ms error = 50ms 

error per minute (!) 
n Recommendation: compute time with doubles 
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What can we hear? 

n  0.1s jitter 
n  20ms jitter 
n  5ms jitter 
n  1ms jitter 

n  10ms is typical Just-Noticeable Difference 
(JND) for (almost) equally spaced taps 

n  10ms jitter in a drum roll is clearly audible 
though, so 1ms is a much better goal 
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DES-like Real-Time Scheduling 

n  In music, usually very small timing errors 
(~1ms) are OK, but cumulative errors are 
bad: 
n  Otherwise, two musical lines might drift apart 
n  Otherwise, MIDI synchronized to audio or 

video might drift 
n By the way, what are synchronization 

requirements for audio/video? 
n  EBU R37: recommends audio at most 40ms 

early, at most 60ms late 
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DES-like Real-Time Scheduling (2) 

n  Key ideas: 
n  DES techniques to compute when things should 

happen – a specification 
n  Use clock reference to make things happen as 

close to specification as possible 
n  Algorithm: 
    periodically do this: 
        if time of first event in queue < get_time() 
            remove event from queue 
            now = event.time 
            event.run()     
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Where do we get “real time”? 

n  system clock – every computer has a built-in 
crystal clock 

n  audio sample count – to sync to audio 
n  video frame count or SMPTE – sync to video 

Spring 2019 Copyright (c) 2018 Roger B. Dannenberg 59 

How to implement “periodically” 

n Simplest scheme (for command line – e.g. 
serpent64 – or embedded programs) 
n  while true 

    do periodic computation 
    sleep(0.002) // sleep 2ms to reduce CPU load 

n GUI toolkits/libraries usually have a timer 
callback function, e.g. in Swing: 
n  new Timer(2, periodicComputation).start();
n  Where periodicComputation implements Action interface 
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Scheduler in Serpent 

require "sched”
def sched_poll():
    nil
sched_init()
// put something on the scheduler
def demo(n):
    print "I'm alive!", n
    sched_cause(1, nil, 'demo', n + 1)
sched_select(rtsched)
sched_cause(1, nil, 'demo', 0)
sched_run()
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Scheduler in wxSerpent 

require "sched"
sched_init()
def demo(n):
    print "I'm alive!", n
    sched_cause(1, nil, 'demo', n + 1)
sched_select(rtsched)
sched_cause(1, nil, 'demo', 0)
// do not call sched_run()
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Review 

n  Now you know how to build an accurate 
scheduler for music that: 
n  Can handle hundreds or thousands of concurrent 

streams of events (notes, chords, beats, etc.) 
n  Is efficient with computer time 
n  Does not drift with respect to reference clock 
n  Does not introduce critical sections, locks, multiple 

threads, or the overhead of traditional concurrent 
programs 

n  Let’s look at some more scheduling algorithms… 
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Implementation 4: no polling 

n  Implementations 2 and 3 use priority queues 
n  Time of the next event is easily determined 
n  Why wake up periodically? 
n  Instead, sleep until the next event time. 

n  Observations: 
n  +Saves time when there nothing to do   
n  -Overhead of polling every ms or so is small 
n  -Often, you need to poll for other things (audio 

processing, sensor input, …) 
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Implementation 5: timing wheel or 
calendar queue 

0 
1 
2 
3 
… 
 
 

n-1 

To Schedule: insert in table[int(ticks) mod n] 

To Dispatch: every tick, search in table[tick mod n] 

Assuming event times are random, and table size n is 
comparable to number of events, this can have O(1) 
scheduling and dispatching time. 
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Implementation 6 

n What happens if events are not randomly 
distributed but separated by n? 
n  E.g. table size = 1024 and each slot 

represents 1ms. Many events are scheduled 
at times 50+1024n ms. Slot 50 gets all events! 

n Suppose we use table only for events in the 
near future? 

n Note: reading makes this assumption already 
in Implementation 5. 

n What do we do with events too far in future? 
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Implementation 6 (2) 

n The answer:  
n  Keep far-future events in a heap-based priority 

queue and deal with them later. 
n  But a heap-based priority queue has O(log n) 

insert time, so… 
n  Schedule far-future events by inserting into a 

list; process the events later. 

Pending 
List 

Priority 
Queue Table 
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Implementation 6 (3) 

Pending List 1 

Pending List 2 

Table 2 

Table 1 

Priority Queue 

this period 

next period 

“far future” 

Incoming 
Events 

(1) 

(2) 
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Implementation 6 – Analysis 

n Schedule time is O(1): based on time, just 
insert into Table 1, Table 2, or Pending List 

n Dispatch time is O(1) per event and O(1) per 
clock tick: dispatch everything in 
corresponding slot in Table 1. 

n Additional background processing time is 
O(log n) per far-future event. 

n Background processing must be completed 
each period. 
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Implementation 6 – Discussion  

n  How do you schedule background processing? What if it 
doesn’t finish in time? 

n  Yann Orlarey has a related scheme using an incremental 
radix sort instead of the heap – implemented and used in 
MidiShare system. 

n  I currently use Serpent’s (linear) resort() method to make 
priority cues. In C, I use Implementation 5 (timing wheel): 
n  Simple to implement. 
n  Works with floating point timestamps. 
n  Worst-case performance not bad in practice. 
n  Determining when to do background processing and 

coordinating that with foreground processing really needs 
OS support so it’s hard to do right 
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Summary 

n  Events and Priority Queue 
n  Adaptable to almost any programming language 

n  Function pointers 
n  Subclass events 

n  Accurate timing 
n  Deterministic execution even in the face of some 

timing jitter 
n  Scheduling can be both fast and simple 
n  Implementation 5 is common, but tricky to 

implement due to rounding issues 
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