
1

Week 13: Audacity

Roger B. Dannenberg
Professor of Computer Science and Art
Carnegie Mellon University

Carnegie Mellon University

Introduction

n Audacity
n Audacity Implementation
n The Nyquist Plug-in Architecture

ⓒ 2019 by Roger B. Dannenberg 2

2

Carnegie Mellon University

Audacity

n Graphical Audio Editor
n Cross Platform: Win32, Mac, Linux
n Currently for mono and stereo (but more

channels possible)
n Good for large files
n Free and Open Source
n Active development team

ⓒ 2019 by Roger B. Dannenberg 3

Carnegie Mellon University

Types of Audio Editors

In-Place Non-Destructive

n  Original samples are
modified on disk.

n  For example:
n  Adobe Audition

(CoolEdit)

n  Original files are left
alone.

n  For example:
n  Cubase
n  ProTools
n  Logic
n  Digital Performer

ⓒ 2019 by Roger B. Dannenberg 4

3

Carnegie Mellon University

In-Place, Non-Destructive, and
Audacity
n  In-Place Features:

n  You see results of operations
n  Conceptually simple: direct manipulation
n  Precomputes audio: no real-time problems
n  Non-causal, out-of-time operations possible

n  Non-Destructive Features:
n  Large files can be handled efficiently
n  Effect parameters can be adjusted without

undoing other effects
n  Audacity does In-Place with efficiency.

ⓒ 2019 by Roger B. Dannenberg 5

Carnegie Mellon University

Introduction

n Audacity
n Audacity Implementation
n The Nyquist Plug-in Architecture

ⓒ 2019 by Roger B. Dannenberg 6

4

Carnegie Mellon University

The Sequence Data Structure

Get(i, l):

Set(i, l):

Insert(i, l):

Delete(i, l):

Retrieve l consecutive
samples from the ith sample.
Change l consecutive samples
from the ith sample.
Insert l consecutive samples
before the ith sample.
Delete l consecutive samples
from the ith sample.

ⓒ 2019 by Roger B. Dannenberg 7

Carnegie Mellon University

Our Sequence Implementation

n For some k, split the sequence into blocks
with sizes between k and 2k.

n When editing, always preserve this k-2k
property by rearranging the data within
blocks.

n Any Sequence operation can be performed
with this restriction in only constant (disk)
time.

ⓒ 2019 by Roger B. Dannenberg 8

5

Carnegie Mellon University

Index in RAM

Example: Delete(i, l)

0 1 a-1 a a+1 b-1 b b+1 m-2m-1

sample i sample i+l Blocks on Disk

ⓒ 2019 by Roger B. Dannenberg 9

Carnegie Mellon University

Index in RAM

Example: Delete(i, l)

0 1 a-1 a a+1 b-1 b b+1 m-2m-1

sample i sample i+l Blocks on Disk

ⓒ 2019 by Roger B. Dannenberg 10

6

Carnegie Mellon University

Index in RAM

Example: Delete(i, l)

0 1 a-1 a b b+1 m-2m-1

Blocks on Disk

ⓒ 2019 by Roger B. Dannenberg 11

Carnegie Mellon University

Advantages of a Sequence

n Speed (editing operations are fast, taking
constant disk time).

n Easy to implement Undo by reference-
counting the blocks.

n With reference-counting, the same block can
appear in the Sequence more than once,
making duplication/loops easy to implement
with low storage overhead.

ⓒ 2019 by Roger B. Dannenberg 12

7

Carnegie Mellon University

Disadvantages of a Sequence

n  Each block is stored in a separate file. To move an
audio project from one location to another, hundreds
of small files must be moved.

n  Soon, Audacity will use SQLite, a single-file, single-
process SQL database that is very efficient with large
objects. E.g. Photoshop uses it for thumbnails and other data –
apparently doing a query to retrieve a thumbnail image is faster
than going through directories using ordinary file systems.

n  Using SQLite for Audacity projects, we’ll use the
same sequence-of-blocks implementation, but all
blocks will be in a single project file which will be
an SQLite database.

ⓒ 2019 by Roger B. Dannenberg 13

Carnegie Mellon University

Fast Redisplay

n Sample amplitudes are summarized at two
zoom levels

n And cached at head of blocks on disk
n Simplifies implementation
n Quite fast in practice

n  Avoids scanning actual samples
n  Only read data that appears on display
n  Discussion: would it be better to put sample

amplitudes in separate files?

ⓒ 2019 by Roger B. Dannenberg 14

8

Carnegie Mellon University

Performance Measurements (2001)

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128 256 512

Total File Size
(MB)

Av
g

tim
e

pe
r e

di
t

(m
s)

ⓒ 2019 by Roger B. Dannenberg 15

It seems that file caching is in effect up to about 100MB.
After that, every edit pays to read from disk,
but notice that this is not exponential growth.
At 512MB, there seems to be an upper
bound or at most slow growth above
120ms. We actually ran out of disk
space doing measurements, so the
evidence for slow asymptotic growth
is not rock-solid, but it matches our
expectation and complexity
analysis.

Carnegie Mellon University

Introduction

n Audacity
n Audacity Implementation
n The Nyquist Plug-in Architecture

ⓒ 2019 by Roger B. Dannenberg 16

9

Carnegie Mellon University

Running Nyquist Within Audacity

(Virtual) Sound in Audacity

Nyquist Sound

Result Sound

(Virtual) Sound in Audacity

Copy Samples

Unit Generators

ⓒ 2019 by Roger B. Dannenberg 17

