Ph.D. Thesis Proposal

Automatic Construction of Synthetic Musical Instruments and Performers

Ning Hu

Carnegie Mellon University December 2004

Thesis Committee

- Roger B. Dannenberg, Chair
- Michael S. Lewicki
- Richard M. Stern
- David Wessel (UC Berkeley)

Roadmap

- Introduction
- System Structure
- Main Modules
 - Audio Alignment and Segmentation
 - Instrument Model
 - Performance Model
- Schedule
- Conclusion

Introduction

- Define thesis topic
- Thesis statement
- Start with modeling the trumpet for classical music
- Contributions of the thesis
- Criteria for success

• Title

- Meaning
 - Framework that builds music synthesis

• Title

- Meaning
 - Framework that builds music synthesis
 - Automatic construction

• Title

- Meaning
 - Framework that builds music synthesis
 - Automatic construction
 - Instrument model

• Title

- Meaning
 - Framework that builds music synthesis
 - Automatic construction
 - Instrument model
 - Performance model

• Title

- Meaning
 - Framework that builds music synthesis
 - High quality
 - High performance
 - Capable of modeling different instruments
 - Capable of modeling different music styles

• Title

- Meaning
 - Automatic construction
 - Use machine learning techniques
 - Learn from performance examples
 - Constructs instrument model and performance model

• Title

- Meaning
 - Instrument model
 - Similar to traditional concept of synthesis
 - Input: control signals
 - Output: synthesized sound samples

• Title

- Meaning
 - Performance model
 - Generating appropriate control signals from music context is crucial
 - Drives instrument model
 - Input: digital score (music notation)
 - Output: control signals

• Title

- Meaning
 - Framework that builds music synthesis
 - Automatic construction
 - Instrument model
 - Performance model

Thesis Statement

 To create a system framework that can automatically create high-quality musical instrument synthesis by using machine-learning techniques to construct the instrument model and the performance model by learning from the performance examples (acoustic recordings and their corresponding scores).

Start with Modeling...

- Musical Instrument:
 - Trumpet
- Music Style:
 - Classical Music

Reasons for Modeling the Trumpet (1)

- Most wind instrument synthesizers do not sound realistic
 - Conflict between:
 - Working mechanisms of wind instruments
 - Driven by continuous energy exerted by player
 - Continuous control drives sound production
 - Basic structure of synthesizers
 - Mostly sampling-based
 - Based on single, isolated notes
 - Do not offer a wide range of control

December 2004

Reasons for Modeling the Trumpet (2)

- Previous research
 - By Dannenberg and Derenyi (1998)
 - Similar scheme
 - Produces convincing trumpet sound

Reasons for Modeling Classical Music

- Characteristics of classical music
 - "Purer" playing style
 - More faithful to the score
 - Fewer articulation effects
- Characteristics of non-classical music
 - Significant inharmonic & transient sounds
 - Need to model noise with a residual model

Contributions of the thesis

- Use machine learning techniques
- Automatically create high-quality synthesis
- The problem of control
 - Problems of note-oriented synthesis
 - Problems of physical models
 - This approach simplifies the problem

Criteria for success

- Minimum requirement
 - Design, implement & test basic framework
 - Being able to synthesize realistic trumpet performance for classical music
 - Automated modeling process
 - Tested on one or two wind instruments.
- Extra tasks
 - Extend system framework
 - Model different musical instruments
 - Model different music styles
- Future work

Roadmap

Introduction

- System Structure
- Main Modules
 - Audio Alignment and Segmentation
 - Instrument Model
 - Performance Model
- Schedule
- Conclusion

System Structure

- Synthesis process
- Pre-processing training data
- Training process for instrument model
- Training process for performance model

Training the Performance Model

Training the Instrument Model

December 2004

Roadmap

Introduction

- System Structure
- Main Modules
 - Audio Alignment and Segmentation
 - Instrument Model
 - Performance Model
- Schedule
- Conclusion

Audio Alignment

- Find recording Correspondence Score
- Polyphonic audio alignment
 - Extract feature sequences from ...
 - Acoustic recording
 - Score
 - Find optimal alignment
 - Dynamic programming (DP) or Hidden Markov Model (HMM)
 - Satisfactory results

Audio Segmentation (1)

- Dannenberg, et. al., (1999) early work
 - Define rules & thresholds
 - Use features: power; #peaks/period; #zerocrossings/period
 - Not reliable and accurate enough

Precise alignment = reliable segmentation

- Require higher accuracy
- Need further modification

Audio Segmentation (2)

Kapanci & Pfeffer's (2004) work

- Segmentation problem Classification problem
- Hierarchical machine-learning framework
- Detect soft onset: compare frames separated by

increasingly longer distances

December 2004

Ning Hu's Ph.D. Thesis Proposal

Roadmap

Introduction

- System Structure
- Main Modules
 - Audio Alignment and Segmentation
 - Instrument Model
 - Performance Model
- Schedule
- Conclusion

Harmonic Model + Residual model

- Control signals Spectra
- Spectra > Wavetables

Control Signals > Spectra

- Spectral interpolation (Dannenberg, et. al., 1998)
- Memory-based approach (Wessel, et. al., 1998)
- Neural network (Wessel, et. al., 1998)

Spectral interpolation (Dannenberg, et. al., 1998)

- Generate Spectral lookup table
 - Record a set of sounds
 - Obtain a spectrogram for each sound
 - Retain specific spectra at thresholds

Memory-based approach (Wessel, et. al., 1998)

- Index spectra in a n dim. space
- Interpolate among k nearest neighbors
- Special case
 - Spectral interpolation technique
 - n=2 (frequency & amplitude)
 - *k*=4
 - Linear interpolation

Neural network (Wessel, et. al., 1998)

- •A feed-forward neural network with multiples layers
- Input: frequency, amplitude
- Output: info of sinusoidal components
- Back-propagation learning method
- Advantage: very compact & generalize well

Control signals Spectra Spectra Wavetables Wavetables Sound samples

Residual Model

- Modeling attacks
 - Use recorded attacks
 - Phase matching
- For other instruments

Roadmap

Introduction

- System Structure
- Main Modules
 - Audio Alignment and Segmentation
 - Instrument Model
 - Performance Model
- Schedule
- Conclusion

Performance Model

Performance Model Control Signal

Control signals
Amplitude envelope
Frequency envelope
Error metrics
Envelope representation
Mapping scheme

A tongued note

A slurred note

*Figures borrowed from (Dannenberg, et. al., 1998)

Ning Hu's Ph.D. Thesis Proposal

- Typical metric: RMS error
- Recent work by (Horner et. al., 2004)
 - Measure perceptual difference
 - Useful reference for error metrics

Envelope Representation

Envelope representation

Characteristics of amplitude envelope

- Specific duration
- Specific shape
- Specific properties of each part

Ways to Represent Envelopes

- Collection of general parameters
 - Candidates: center of mass, global/local maximum/minimum, etc.
 - Manual vs. automatic selection
- Wavelets
 - Hierarchical decomposing functions
 - Very powerful and popular

Mapping Scheme

- Non-linear regression
 - Find music context \Leftarrow actual envelopes
 - Examples:
 - Neural network
 - Kalman filters $X_k = AX_{k-1} + W_{k-1}$
 - Function approximation
- Pattern clustering
 - Classify envelopes into clusters
 - For each input data point:
 - Use corresponding representative envelope
 - Stretch, scale & interpolate accordingly
 - Considered as a form of case-based reasoning

Roadmap

Introduction

- System Structure
- Main Modules
 - Audio Alignment and Segmentation
 - Instrument Model
 - Performance Model
- Schedule
- Conclusion

Schedule (1)

Oct 2004 ~ Nov 2004	 Collect performance examples for initial experiments
(past)	 Get familiar with SNDAN package
Thesis Proposal	 Read the original code by Dannenberg & Derenvi
repeca	Propose thesis topic
Dec 2004	~ May 2005 System Development
Dec 2004 ~ Jan 2005	Implement Audio Alignment & Segmentation module
Jan 2005	Incorporate SNDAN package to training data pre-processing stage
Feb 2005	Develop and compare instrument models
Mar 2005 ~ Apr 2005	Design and implement performance model
May 2005	System integration and testing

Schedule (2)

Jun ~ Aug 2005 System Evaluation & Tuning		
Jun 2005	Model other instruments	
Jul 2005	Synthesize other types of music	
Aug 2005	System and model evaluation and fine tuning	
Sep ~ Nov	2005 Writing Thesis	
Sep 2005 ~	Thesis write-up and revisions	
Nov 2005		
Nov 2005	Thesis defense	

Conclusion

- Propose a scheme:
 - automatically construct
 - high-quality instrument synthesis
 - by learning from performance examples
- Machine learning a crucial role.
- Future work
 - Modeling different instruments
 - Modeling different music styles
 - Make it work in real-time

Thank You

- Acknowledgements
 - Roger B. Dannenberg
 - Istvan Derenyi
 - James Beauchamp (SNDAN)
- Contact

Ning Hu (ninghu@cs.cmu.edu)