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Abstract 

I propose an approach to create high-quality music synthesis by automatically 
constructing an instrument model and a performance model; the latter module generates 
control signals from score input, and drives the former module to produce synthetic 
instrumental sounds. By designing and applying appropriate machine learning techniques, 
the instrument model and the performance model can be trained with acoustic examples 
and their corresponding scores for a musical instrument. The automated model should be 
superior in performance to one manually modeled and tuned by hand.    

In this proposal, I describe the framework of the automated synthesis and modeling 
system, explain the reasons for employing specific techniques, such as the necessity of 
modeling amplitude envelopes and a machine learning approach, discuss specific 
characteristics of individual modules, and propose several possible solutions for some 
parts of the system.  

I state the contributions of the thesis topic, define criteria for project success, explore 
possible future work, and present a timetable for the research. I am confident that the 
thesis topic will yield interesting results and believe I can finish the proposed tasks within 
the scheduled time frame. 

Introduction 

The goal of this research is to create an automated system that can model musical 
instruments by learning from acoustic recordings. Ultimately it should be able to 
synthesize high-quality instrumental performances given score inputs.  

The two most basic modules of the proposed framework are the instrument model and the 
performance model. The function of the instrument model is similar to that of ordinary 
music synthesis, that is, to generate synthetic sound samples given control signals as 
input; the performance model is in charge of converting the given digital score into 
control signals, which is essentially the driving force of the instrument model. 

This research emphasizes designing and implementing a system framework that can 
automatically construct an instrument model and a performance model by intelligently 
learning from acoustic examples. Various machine learning techniques will be applied 
throughout the framework to automate the construction process.  

I am particularly interested in modeling wind instruments, thus I will start the project by 
trying to model the trumpet. There are two main reasons for this.  

First, most current commercialized synthesizers fail to synthesize realistic sounds of wind 
instruments. The problem lies in the conflict between the basic structure of synthesizers 
and the working mechanisms of wind instruments. On one hand, wind instruments are 
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controlled continuously by a source of energy exerted by the player. This continuous 
control drives the sound production. On the other hand, synthesizers (mostly sampling-
based) are based on single, isolated notes, and do not offer a wide range of control over 
the spectrum, attacks, and envelopes. They can synthesize a single note very well, but 
when they are used for synthesizing a phrase or a passage, listeners will immediately 
notice problems. 

Second, previous research by Dannenberg and Derenyi (1998) shows a similar scheme is 
capable of producing convincing trumpet sounds; it is natural to start from something 
known to be working.  

For music style, I will mainly focus on synthesizing classical music first, as the playing 
style is “purer”, more faithful to the score, and has fewer articulation effects that require 
additional tunings of the proposed system. In many non-classical music-playing 
techniques, inharmonic and transient sounds are significant. I expect those sounds can be 
modeled well with an appropriate residual model. However, modeling the noise (or the 
non-harmonic part of sounds) of musical instruments is not the primary purpose of this 
research. Once the synthetic performance for classical music is satisfactory, the system 
can be extended to synthesize other types of music. 

In the following sections, I will first state the contributions of the thesis and the criteria 
for success; then I will describe the system structure and fundamental processes and 
further explain each important module in detail, including the alignment and 
segmentation, the instrument model, and the performance model. I will present a 
timetable for the work followed by the conclusion of this proposal.  

Thesis Statement 

The topic of this research is interesting to the world of music synthesis and also to 
machine learning applications. The goal is to demonstrate that, by properly designing and 
applying appropriate machine learning techniques, we can automatically create high-
quality synthesis of musical instruments.  

Several major branches in music synthesis all suffer from the problem of control, 
Sampling and additive synthesis (De Poli 1993) both have problems due to the fact that 
they are focusing on the note rather than either the production of sound or control 
mechanisms. Physical models (Roads 1996) promise to solve the problems of synthesis, 
but direct models of acoustic instruments are very difficult to build, and they are highly 
specific to individual instruments. The proposed method avoids the problem of note-
oriented synthesis, bypasses the difficulties of building physical models, and simplifies 
the problem of control with spectral models and effective machine learning techniques. 
The thesis proposes to automatically model different musical instruments. Thus, I believe 
the thesis can make significant contributions to computer music and audio processing.   
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The minimum achievement for this research should be the completion of designing, 
implementing, and testing the basic system framework. The built system should be able 
to synthesize realistic trumpet performances for classical music, and the modeling 
process should be automated. Given corresponding acoustic training examples, it should 
also be able to automatically model some other musical instruments without much system 
tuning. At least it should be tested on one or two wind instruments, such as a trombone 
and clarinet. 

Once the developed system has achieved the minimum requirement, I am planning to 
extend the system framework so that it can automatically model different musical 
instruments and music styles. I expect it will take a lot of effort to investigate the distinct 
characteristics of individual instruments, and the framework will become more 
complicated to fulfill different needs. The optimal outcome will be: the framework is 
general enough to be suitable for wider range of musical instruments as well as music 
styles, while its structure remains relatively simple and easy to control. 

There are other interesting aspects of the topic that can be explored further, such as the 
real-time issue. Due to the time constraints, those tasks have lower priorities, and are 
deemed as future work, which means they are unlikely to be completed within the 
scheduled time frame of this thesis research.  

System Structure 

The whole system framework can be roughly broken down into four different processes, 
each targeting at a specific task. They are the synthesis process, training data pre-process, 
and the training processes for the performance model and the instrument model 
respectively. 

1. Rendering an audio performance from a symbolic score 

As shown in Figure 1, the synthesis system can be naturally divided into two sequential 
modules. The performance model gets the score input and produces a set of control 
signals as output. The instrument model accepts the control signals generated from the 
performance model as input, and synthesizes output audio. Here control signals are 
continuous and play a key role as an intermediate representation in the rendering process.  
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Figure 1. The synthesis process.  

2. Pre-processing training data 

For training purposes, the system needs acoustic examples of individual notes extracted 
from continuous musical phrases, along with their corresponding symbolic context. But 
the training inputs of the system are acoustic recordings and their corresponding scores, 
each representing a whole piece of music. We need an automated process that can extract 
audio and score for each note from the entire acoustic and symbolic input sequences. We 
first need to align them in time to find the precise correspondence between them. Then 
we will segment both scores and acoustic recordings into individual notes, and output 
segmented audio clips and score snippets that correspond to each other. As shown in 
Figure 2, pre-processing training data is an important step, and is required by both the 
training processes of the instrument model and the performance model.  

Figure 2. Data pre-processing before training. 
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As shown in Figure 3 and Figure 4, the segmented audio will be further analyzed by a 
parameter extraction module to obtain a root-mean-square (RMS) amplitude envelope 
and a fundamental frequency envelope. These envelopes are the training data to be 
learned. 

3. Training the performance model 

The core of the performance model is a machine learning system, which learns the 
mapping from score to control signals by training on segmented note examples. Figure 3 
shows the automatic training process for the performance model. The control signals 
generated by the performance model will be compared with the ones extracted from 
actual acoustic examples. The comparison results will be fed back to the performance 
model to help the convergence of the model parameters. The ultimate goal is to minimize 
the difference between the synthesized control signals generated from the performance 
model and the actual control signals extracted from the acoustic performance examples.  

Figure 3. Automatic training process for the performance model. 

4. Training the instrument model 

In order to produce synthetic sound samples given control signals as input, the instrument 
model needs to first generate spectra from control signals. I will introduce several options 
for that step in later section discussing the instrument model in more detail. Some 
approaches are memory-based. They employ simple yet effective techniques, such as 
table lookup and interpolation, but they need to make certain assumptions about the 
system; others are based on machine learning models, and those appear to generalize 
quite well and very compact in size. 

If a machine learning method is chosen for this specific task, we can train the model to 
learn the mapping scheme from control singles to spectra. Similar to the training process 
of the performance model, the automatic training process for the instrument model is 
shown in Figure 4. 
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Figure 4. Automatic training process for the instrument model. 

In the following sessions, I will further discuss each important module in more detail, i.e. 
the audio alignment and segmentation unit, the instrument model, and the performance 
model. I will explain the logic behind them, describe their inner structures, propose and 
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Audio Alignment and Segmentation 

As I just discussed, to train the instrument model and the performance model, we need 
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acoustic recording is corresponding in time to the score. An optimal alignment between 
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I have done some research in the area of polyphonic audio alignment. I developed a 
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in standard MIDI files without the difficult process of polyphonic transcription (Hu, 
Dannenberg, and Tzanetakis 2003; Dannenberg and Hu 2003). It extracts specific 
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application.  
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After the optimal alignment between the acoustic recording and the score is found, the 
audio data needs to be further segmented into individual notes or phrases. Segmentation 
has a very high requirement for accuracy. Segmentation error allowance might be as low 
as several milliseconds.  

Dannenberg and Matsunaga (1999) described some early work of trying to segment the 
notes with very accurate transition times. They defined some rules and thresholds to 
detect the appropriate start and end point of each note, using several features including 
power, number of peaks, and number of zero-crossings per fundamental period. That 
method shows promising results, but it is not reliable enough for a completely automated 
system, and accuracy is still below expectation.  

In my view, alignment and segmentation are closely related. If the alignment is precise 
enough, we can directly truncate note segments from audio accordingly. The technique 
for polyphonic audio alignment can be easily applied for this task. But as higher accuracy 
is required, it obviously needs further modification by adding some functions that can 
deal with fluctuation details of waveforms. The shortest size of audio frames I have tried 
so far is 0.1 second. That is good enough for a reasonable alignment of whole music 
pieces, but it is too long for this particular task.  

Kapanci and Pfeffer (2004) offered alternative approaches for accurate note segmentation. 
Basically they turned the segmentation problem into a classification problem and 
proposed a hierarchical machine-learning framework. The purpose is to overcome the 
difficulties of detecting soft onsets by comparing frames separated by increasingly longer 
distances. Though the reported results of the hierarchical approach were not significantly 
better than the non-hierarchical one, the idea is quite inspiring. I believe by appropriate 
design and implementation, it could be a successful solution for the task of audio 
segmentation. 

Instrument Model 

The instrument model accepts a set of control functions as input and produces a digital 
audio sound as output. The goal is to produce realistic instrument tones given the proper 
control signals. In order to insure the success of the whole synthesis model, the sound 
produced should be perceptually as close to the acoustic instrument being modeled as 
possible.  

The sounds of many musical instruments can be described by the combination of 
harmonic and additive noise signals (Serra 1989). I intend to consider these two parts 
separately to ease the problem.   

• Harmonic Model 

Many successful attempts in music synthesis only focus on the harmonics and ignore the 
noise part. A classic example is the additive synthesis (Moorer 1977). It models sounds as 
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summations of deterministic sinusoidal components (the partials). I also impose a 
common constraint that the frequencies of the partials are all multiples of a fundamental 
frequency. The key to the success of those techniques is that the acoustic instrument 
being modeled is indeed nearly harmonic. 

The block diagram of the harmonic model itself can also be partitioned into three 
sequential steps illustrated by the dotted lines shown in Figure 5.  

Figure 5. Block diagram for the harmonic model. 

The first step takes the control signals as input, and outputs spectral characteristics, 
notably several harmonic partials and their amplitudes (the spectra); Given the spectrum 
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corresponding pitches and RMS amplitudes. When accessing this two-dimensional 
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lookup table by the instantaneous amplitude along one dimension and the pitch along 
the other, the system will interpolate among four nearest spectrum samples to yield an 
output spectrum. 

Wessel, Drame, and Wright (1998) also studied and compared two other synthesis 
techniques. One is the memory-based approach. It stores in the memory a set of the 
spectral information as data points in an n dimensional space; the dimension indexes 
are their corresponding frequency, RMS amplitude, and etc. The input is a vector 
indicating a specific point in that space. To generate the output corresponding to each 
input value, it chooses the k nearest neighboring data points, weights each of them as 
a function of the distance between input point and itself, and computes the output by 
averaging the weighted k selected data points. It is a very flexible model and 
relatively easy to modify for different requirements. I should point out that the 
spectral interpolation technique introduced before can be deemed as a special case of 
the memory-based approach, as here the dimension n is 2 (fundamental frequency 
and RMS amplitude), k is 4, and the weighting function of the distance between the 
input and the data points is linear interpolation. 

The other method described utilizes a feed-forward neural network with multiple 
layers. The input units accept the frequency and amplitude functions, and the output 
units produce the frequencies and amplitudes of the sinusoidal components. The 
model can be trained with a back-propagation learning method. Unlike the memory-
based approach, it does not need to make assumptions about either the distance 
function or the weighting function, which is its advantage. Thus, the neural network 
model is very compact and appears to generalize well. 

The authors reported that both the neural-network and memory based models 
functioned well in a real-time context, and in general the neural network model 
provided a smoother sounding result than the memory-based model. That conclusion 
makes us particularly interested in the neural network model. If time permits, I would 
like to implement the neural network model and compare it to the spectral 
interpolation model. 

2. From Spectra to Wavetables 

There are several ways to compute wavetables from the spectra, such as IDFT, IFFT, 
etc. A simple approach is to perform a simple summation of sinusoids, each 
representing a harmonic partial and weighted by the corresponding relative 
amplitudes. How often the wavetables should be computed from the spectra is 
another issue to be considered. As the computing process from control signals to 
wavetables is relative expensive, it is technically applicable but inefficient to compute 
a wavetable for every period of the synthesized sound. A better way is to compute an 
adequate number of spectra per second, and produce every sample by interpolation 
between two tables. This leads to the third step.   
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Also in order to avoid any phase cancellation during the interpolation in the third step, 
wavetables must be created with matching phases. 

3. From Wavetables to Sound Samples 

In this step, I will interpolate between two adjacent wavetables to generate 
synthesized sound samples. This should effect a smooth, continuous spectral change. 
Then the result is scaled by the instantaneous RMS amplitude to produce the proper 
amplitude fluctuations in the sound.  

After this step, the synthesized sound should have controlled fluctuations in pitch, 
amplitude and timbre. 

• Residual Model 

The residual component refers to the stochastic non-harmonic part of the sound.  It is also 
an important factor that should not be simply overlooked, though that hugely depends on 
the characteristics of individual instruments. For example, I expect that for the trumpet 
and most woodwind instruments, the inharmonicity in general can be pretty much 
ignored except for the attack portions at the beginning of each note; on the other hand, 
modeling some “noisy” instruments, such as a flute may require careful consideration in 
designing and incorporating the residual model.  

Derenyi and Dannenberg (1998) demonstrated that attacks are particularly important for 
synthesizing convincing trumpet tones. This indicates I can temporarily overlook the 
general inharmonicity throughout each note and focus more on the attack model.  

A common way to give the impression of a natural attack is to use recorded attacks. In 
order to get a satisfactory attack sample, I first need to properly segment an attack portion 
from a recorded sound. This can be done automatically by observing the relations of the 
frequencies of the partials, as the attack represents the transitional part from silence or 
complete inharmonicity to harmonic partials.  

Anther thing to note is the phases of wavetables should be adapted to the phrases of the 
attacks. Dannenberg and Derenyi (1998) introduced a good way to solve this problem: to 
measure the phases and amplitudes of the harmonics as well as the overall RMS 
amplitude of the sound at the end of the attack. These attributes determine the initial 
phase and amplitude for the first wavetable, and also the phases for all wavetables until 
silence or the next attack. 

There are several questions to be answered: whether to attach an attack to every note 
onset, or just the beginning of every slur and legato phrase; how many and what kinds of 
sampled attacks are needed; and how to use and scale them. 
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Performance Model 

The goal of the performance model is to automatically generate proper control signals for 
the instrument model based solely on symbolic information from a score.  

Most sampling-based synthesizers only get some coarse note features of pitch, duration, 
and loudness as input. But that is not enough for our purpose of creating natural-sounding 
wind synthesis. The performance model has to focus on the fine details of control signals, 
including appropriate amplitude and frequency envelopes, slurs, vibrato, attacks, and 
other audible effects. The questions lies in whether I can obtain most of those fine details 
by analyzing information residing in music structure, the relations inside or between the 
phrases, and the interactions among notes.  

Even though many musical instruments such as a trumpet are complicated dynamic 
systems, it appears that the system behavior is almost entirely characterized by the 
amplitude and fundamental frequency at any moment. There are dramatic and systematic 
changes to amplitude and frequency envelopes depending upon how the note is 
articulated, whether the note is part of an ascending or descending line, and other factors 
relating to the context of the note. A quarter note followed by a rest is played differently 
from one followed by another note. The experiments done by Dannenberg, Pellerin, and 
Derenyi (1998) also verified that, by properly modeling amplitude envelopes, very 
convincing trumpet tones can be synthesized. Thus, I am particularly interested in 
synthesizing amplitude and frequency envelopes.  

Traditional computer music techniques, such as ADSR envelopes (Adams, 1986), are 
way too coarse for natural-sounding music synthesis, so a more sophisticated model with 
more parameters is required. Our successful modeling process will have to rely upon 
good control functions for pitch and amplitude. 

Dannenberg and Derenyi (1998) successfully designed functions mapping from features 
in the score to amplitude envelopes. Though the mappings/functions tuning were done by 
hand, the way they approached the problem shows a promising future for using machine 
learning techniques to train on performance examples and learn the mappings 
automatically. This will be a major contribution of the thesis. 

• Amplitude Envelope 

As suggested by Clynes (1984), amplitude envelopes should be modified according to 
context. Dannenberg, Pellerin, and Derenyi (1998) demonstrated that on the trumpet 
sound. The comparison between Figure 6 and Figure 7 show how the amplitude envelope 
of a note can change drastically under different music context. 
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Figure 6. A typical trumpet amplitude envelope (a 
mezzo forte Ab4 from an ascending scale of tongued 
quarter notes). Figure borrowed from the work of 
Dannenberg, Pellerin, and Derenyi (1998). 

 

Figure 7. A typical trumpet slurred amplitude 
envelope (a mezzo forte C4 from an ascending scale 
of slurred quarter notes). Figure borrowed from the 
work of Dannenberg, Pellerin, and Derenyi (1998). 

An optimal shape of synthetic envelope should be as close to the actual acoustic envelope 
as possible, as illustrated in Figure 8. A typical metric for measuring the difference 
between a synthetic envelope and an actual one is to take RMS of the value differences 
between two envelopes at selected time points. Moreover, recent work (Horner, 
Beauchamp, and So 2004) has attempted to characterize how accurate envelopes and 
spectra should be to be perceptually similar. It is a useful reference of picking the 
effective error metrics for evaluating synthetic envelopes. As suggested, some good ones 
are relative-amplitude spectral error, and RMS relative-amplitude spectral error.  

 

Figure 8. An actual amplitude envelope (thin line) and a synthetic envelope (heavy line). 
Figure borrowed from the work of Dannenberg and Derenyi (1998). 

There are many possible approaches to applying machine-learning techniques to 
synthesize envelope shapes. Two most important and closely related issues are how to 
effectively represent envelope shapes, and what machine-learning model to be used for 
learning the mapping scheme from the information extracted from score (music context) 
to envelope shapes.  
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q Envelope Representation 

As seen in Figure 6 and Figure 7, amplitude envelopes are univariate time series, and 
there are some specific properties of amplitude envelopes (for a note): 

Ø It has specific duration. 
Ø The envelope shapes are roughly arched, with two ends lower (not necessary 

zero) and middle higher in values. 
Ø It is well known that acoustic envelopes can be segmented into several 

continuous parts similar to ADSR model, e.g. attack, sustain, decay, release, 
etc. They are all very important and have distinct characteristics, for example, 
the duration of attack is always very short, while the duration of sustain is 
greatly determined by the note duration. 

I can use various kinds of parameters to describe amplitude envelopes, and they can 
be roughly classified in following two categories: 

v Collection of General Parameters  

A lot of parameters are available for describing the curves, such as center of mass, 
global/local maximum/minimum, curve smoothness, and data points in absolute 
or relative scale with certain intervals. I can either pick some of them by hand, or 
let machine-learning model to figure out what parameters are more useful 
(contain more information) than the others. The later method is preferred. 

v Wavelets 

Wavelets are a mathematical tool for hierarchically decomposing functions. They 
allow any function to be described in terms of a coarse overall shape, plus details 
that range from broad to narrow. Wavelets have been a very popular and powerful 
technique for many areas, including computer graphics, computer vision, and 
signal processing.  

q Mapping Scheme 

To convert music context to envelope shapes, various machine-learning models are 
applicable. They can also be classified into two categories:  

Ø Non-linear regression  

Basically these kinds of models try to discover and describe the underlying 
relations between music context and actual acoustic envelopes. There are many 
non-linear regressors that are possibly good options for this task. Some examples 
are neural networks, Kalman filters, and functions approximation.  
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Ø Pattern clustering 

Envelopes are classified into multivariate clusters based on their features from 
music context and acoustic shapes, each cluster with a representative envelope 
shape. For any arbitrary input with music context features, the model figures out 
what category it falls into, and uses the corresponding representative envelope as 
the base shape, then does appropriate local or global stretching, scaling and 
interpolation on the shape. This could be considered a form of case-based 
reasoning. 

• Frequency Envelope 

Frequency envelopes are also very important. A synthetic performance with steady, 
unwavering frequencies sounds artificial when compared to an acoustic recording. 
Frequency envelopes possess different characteristics from amplitude envelopes. But if I 
study them closely and carefully, I believe I will be able to synthesize frequency 
envelopes similar to how I model amplitude envelopes. Of course some variations will be 
needed, such as using a different set of parameters that can describe frequency envelopes 
better, or incorporating a vibrato model. 

Schedule 

October 2004 ~ November 2004 Propose thesis topic; 

Collect performance examples for initial experiments. 

December 2004 ~ May 2005 Alignment and segmentation of acoustic recordings; 

Incorporate SNDAN package to prepare data 
necessary for instrument and performance models; 

Develop and compare instrument models; 

Design and implement performance model; 

System integration; 

Model other musical instruments; 

Synthesize other types of music. 
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June 2005 ~ October 2005 System and model evaluation; 

Fine tuning of the system; 

Thesis write-up and revision. 

November 2005 Thesis defense. 

Conclusion 

Here I am proposing a scheme for automatically constructing high-quality musical 
instrument synthesis by listening to performance examples. Besides the traditional 
synthesis techniques, machine-learning methods will play a crucial role. They will be 
used pervasively throughout the whole system in order to automate the modeling process 
and intelligently control the synthesis. 

I will be starting the project by trying to synthesize the trumpet. Once the system proves 
to be working correctly and shows satisfactory results, I will try it on other instruments, 
possibly some other wind instruments, such as alto saxophone and flute. String 
instruments may be considered as well. I expect that I may need to slightly tune and 
modify the system according to the characteristics of different instruments. My goal is to 
make the system general enough for synthesizing a handful of musical instruments 
without much specialization, while still outputting realistic synthetic sounds. 

After first focusing on synthesizing classical music, I will try to synthesize other types of 
music as well, for example, jazz music. A successful system should be able to synthesize 
different types of music, reproducing their playing styles, effects, and other distinct 
characteristics.  

I will also need to think about the possibility of making the system work in real-time. 
That is, the system will accept control signals triggered by electronic keyboards or other 
electronic musical instruments, and output corresponding synthetic audio immediately. 
The current design of the system is for off-line purposes, not because rendering audio 
takes some time, but mainly due to the fact that it requires phrase information. For 
example, to render a note, the system needs to know the properties (pitch, duration, etc.) 
of not only the note itself, but also the notes before and after that. But in real-time, one 
cannot get information about the future, not even the duration of the current note. 
However, I still believe I can make some progress in pursuing real-time synthesis. At 
least the system should be able to synthesize on-line with a very short time lag.  

Overall I believe the topic is quite interesting, the experimental approach is clear, and I 
should be able to finish thesis project within the scheduled time frame. 
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