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Abstract 

 

Downbeat is the first beat of a measure in music, and downbeat tracking is the task of 

estimating downbeat locations in a musical audio signal. Compared to beat tracking, 

downbeat tracking is a higher-level task since it detects the boundary between measures. 

A real-time downbeat tracker is a critical component for many interactive music 

applications. Musicians can naturally synchronize their (human) performances to within 

tens of milliseconds in real time. However, it is still a challenging task for computers to 

achieve human-level accuracy and latency in music synchronization tasks. In the past 

two years, machine learning based algorithms have achieved great improvements in 

accuracy over traditional approaches in the MIREX [1] downbeat estimation evaluation 

exchange. However, most of the algorithms rely on look ahead (the future information an 

algorithm needs) in order to achieve better accuracy, which prevents these systems from 

being used in real-time applications. 

 The goal of this thesis is to adapt a state-of-the-art downbeat tracking system from 

offline computation to real time by reducing the look ahead and applying prediction. For 

true real-time systems, downbeats must be anticipated or predicted, because even a 

system with 10ms latency would impose an unacceptable delay and will still require 

prediction to deliver real-time output. We will compare systems by using prediction to 

hide their latency and then evaluating the accuracy of predicted downbeats. Notice that 

adding look ahead might improve performance if the compensating prediction does not 

degrade the performance much. The trade-offs between the amount of reduced look 

ahead and performance, and between the amount of increased future prediction and 

performance are presented in the experimental results.  

 As a summary, this thesis research consists of the following steps:  

1. Re-implement a state-of-the-art downbeat tracking system. 

2. Identify the components of the system that prevent online computation.  

3. Adapt the system to online computation by modifying the components. 

4. Perform prediction to achieve real-time output. 

5. Conduct experiments to evaluate the trade-off between prediction and look ahead.
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1 Introduction 

The beat [3] is often defined as the rhythm to which listeners would tap their toes when 

listening to a piece of music. Music is often organized into groups of 3 or 4 beats called 

measures that share common rhythms (e.g. bass drum on beats 2 and 4). The first beat of 

each measure is the downbeat, which often is the beat where harmonies change, and new 

phrases begin. In studies of rhythm, tempo, and timing, tatum [4] refers to a subdivision 

of beats that most highly coincides with note onsets. Downbeats, beats and tatums are all 

imaginary1 time locations that divide the music in the time axis at different levels – 

downbeats divide music, beats divide downbeats and tatums divide beats. 

 Downbeat tracking is the task of estimating the downbeat locations in a musical 

audio signal. The fundamental reason to have a downbeat/beat tracker is that it is almost 

impossible for humans to perform music in an absolutely steady tempo with no variation. 

Even if it were possible, composers or performers might deliberately change tempo 

throughout the piece. Downbeat tracking is a fundamental task for automatic music 

segmentation [5] or intelligent instruments, and it enables many interesting computations 

supporting live music production as it allows the computer to model how humans parse 

the melodic/rhythmic patterns from the musical signal. For example, downbeat tracking 

can be used to build a real-time sampler [6], that can automatically record audio in 

measures with varying time length, as an extension of traditional loop pedals that rely on 

                                                 

1 The “ground truth” of tatum, beat or downbeat locations are defined by humans. Given 

a piece of music, timings might vary from listening to listening and from person to 

person, but in most cases people agree with each other, at least to within a time interval 

that is small compared to note lengths. 
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humans to follow the metronome. A real-time downbeat-tracking algorithm can create 

lots of possibilities in interactive performance [7]. 

 Although downbeat/beat tracking is a quite subconscious level task for humans, 

just like riding a bicycle, it is hard to formulate algorithmically. Over the past two 

decades, researchers have been trying to formulate beat tracking algorithmically, as will 

be discussed in Section 2; however, most of these algorithms are not able to perform well 

in a wide variety of music. Recently, machine-learning-based (ML) methods have 

achieved great improvement [8] [9] over traditional methods in the MIREX downbeat 

estimation evaluation exchange [1] and in the original experimental results [8] [9]. In 

certain genres that have strong rhythmic components and clear clues of downbeats, such 

as the Ballroom dataset [10] and Pop music (i.e. The Beatles dataset and RWC-Pop), 

ML-based method can achieve almost 90% in f-score measurement. 

 A real-time downbeat tracking system should input a raw audio signal stream and 

output the beat prediction within an acceptable latency (which might even be less than 

zero to allow time to generate a sound that is synchronized with the beat). However, in 

order to achieve better accuracy, most systems often require look ahead (which will be 

discussed in Section 3 in detail), limiting the system from being online and real-time. As 

long as the latency of the system is higher than human perceivable tolerance, which is 

around 50-70 ms in most evaluation systems (and even this could be considered much too 

generous), the system is considered not to be a real-time system. Since there are some 

hard limitations, such as the signal processing analysis window, which make the true 

real-time response hard to achieve, it seems that a beat tracking system (and humans as 

well) must predict beats at least slightly ahead of real time to enable real-time 

applications (i.e. latency slightly less than zero). 

 As a general rule, the longer the prediction is, the more uncertain the prediction 

will be. Since the system does not use the information within the prediction interval 

(which has a duration equal to the look ahead of the downbeat tracker), the system cannot 

respond to any tempo change during this interval. On the other hand, longer prediction 

ahead lets the system use more temporal context (look ahead), which might benefit the 

performance of the system. Therefore, the goal of this thesis is to discover the trade-off 
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between the how the amount of prediction and look ahead affect the overall performance 

in a specific downbeat tracking system of choice. Since this work is based on a non-real-

time beat tracker that is not open-source or available from the developers, a custom 

implementation is made as part of the thesis. 

1.1 Terminology 

Since our use of prediction to overcome look ahead does not have a standard terminology 

in real-time systems, we define some terms here to clarify our approach and main 

concepts. This terminology will be used consistently throughout the thesis, in which we 

discuss a system that takes an input stream and generates the output stream within a 

certain latency, which is the result of look ahead and prediction. The relationship is 

shown in Figure 1.  

 

Figure 1 Illustration of the relationship between latency, look ahead, and prediction of a system. The 

broken line denotes the amount of look ahead, and the curve denotes the amount of prediction. 

Definition 

• Latency is the delay between the input stream and the output stream  

         latency = look ahead – prediction 

• Look ahead is the amount of future information an algorithm/system needs in 

order to produce the output at certain time instance, such as the future context 

needed for the algorithms or the analysis window used for signal processing 

(shown as the broken line in Figure 1). 

• Prediction is how far into the future output is estimated, given the past output 

(shown as the curved solid line in Figure 1). 

The system can be classified as: 
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• Offline system: A system that has access to all input before producing any output. 

We could say that an offline system has arbitrary or infinite latency.  

• Online system: A system with finite latency. 

• Real-time system: A special case of online systems where the latency due to all 

factors including computation time is less than a certain tolerated threshold 

depending on applications. 

1.2 Scope 

 In the real world, there are also other causes of latency not addressed in Figure 1. 

Such as 1) the low-level latency caused by the hardware and software buffer and 2) the 

scheduling latency caused by the operating system, which we believe are typically on the 

order of 10 ms. 

 This thesis will focus on the latency caused by the look ahead (and prediction), as 

it is difficult to conduct evaluation for latency on the scale of few milliseconds, and 

because our focus is on methods and algorithms rather than operating systems and code 

optimization. For the same reasons, the experiments will be conducted in offline 

simulation. Furthermore, the latency caused by look ahead is on the order of seconds, so 

it is reasonable to ignore the low-level latency and scheduling latency. In fact, we will see 

later (Section 5.3.2.3) that changing the amount of prediction by a few tens of 

milliseconds will have negligible impact on accuracy. 

1.3 Organization 

 The rest of this thesis is organized as follows: In Section 2, related work will be 

briefly summarized. Section 3 will provide an overview of the state-of-the-art downbeat 

tracking system that works offline. Section 4 will describe the implementation of the 

original paper in detail and provide benchmark results. Section 5 will describe the look 

ahead related bottlenecks of the system, assumptions, approaches to adapting the system 

to real time, and the benchmarks after applying the modification. Section 6 will conclude 

this thesis and discuss possible future work based on the results. 
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2 Related Work 

In the past two decades, people have been trying to hand design beat tracking algorithms. 

For example, formulating beat tracking as an optimization problem based on one’s 

assumptions (i.e. “beats should align with onsets and beats should be locally steady in 

tempo,” and the solution that satisfies both constraints is the beat sequence [11]). 

Standard signal processing techniques [12] [13] (e.g. auto-correlation and comb-filters) 

have been applied to extract the periodicity as a sub-task of the beat tracking system. 

Probabilistic models [14] have been designed to encode the musical time signature 

structure and to fit the long-term signal pattern. In sum, hand-designed algorithms require 

both excellent understanding in music and engineering domain knowledge in order to 

design the algorithms.  

 In recent years, machine learning algorithms (i.e. deep neural networks) have 

achieved great improvement over the traditional approaches in MIREX downbeat 

estimation evaluation exchange [1] There are two distinct of series of works that seem to 

outperform others: Sebastian et al. (BK4 [9] and related work KB1 and KB2 [15]) use 

recurrent neural networks (RNNs), and Simon et al. (DBDR [8], and related work [16]) 

use convolutional neural networks (CNNs) to extract features and model temporal 

context.  

 Generally speaking, both systems consist of two stages:  

1. The first stage of the system uses neural network(s) to compute the likelihood 

of a beat at any given time, resulting in a one-dimensional time series. 

2. The second stage of the system uses a probabilistic model (i.e. a Hidden 

Markov Model) encoded with musical knowledge to infer a path through 

hidden states (thus the downbeat locations) from the output of the neural 

network.   
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As a comparison, these two systems (BK4 and DBDR) are differed as follows:  

1. In the first stage, BK4, directly operates on the magnitude spectrogram using a 

bi-directional RNN and outputs the beat likelihood sequence, while DBDR 

first divides the audio into subdivisions (using the tempogram toolbox [17]), 

which are then analyzed to obtain different features. 

2. In the second stage, BK4 uses a bar-pointer model that encodes the phase of 

the beat within the measure, thus BK4 is tracking beat and downbeat at the 

same time. On the other hand, DBDR's model does not intend to derive the 

phase of the beat within a measure, but only the phase of the tatum2. 

 In terms of the real-time feasibility, both systems (BK4 and DBDR) make 

extensive use of future information. First of all, BK4 use a bi-directional RNN to process 

the full sequence of audio input, and DBDR looks 8 tatums ahead. In addition, DBDR 

uses the tempogram toolbox [17], which consists of various large signal processing 

analysis windows (which will be discussed in detail in Section 3), making it challenging 

to adapt it to real-time application. Secondly, the decoding stage of HMMs also look at 

the full sequence of observations in order to derive the global optimal path.  Since BK4 

has a relevantly simple pipeline which is basically data driven, it could be modified to 

real-time application with less effort than DBDR. For example, KB1 and KB2 (the 

variations of BK4) use a uni-directional RNN, which reduces the need to look ahead in 

the first stage, and it only degrades the performance accuracy moderately as shown in 

MIREX evaluation exchange. Moreover, earlier in 2017, the KB series was modified to 

create a real-time beat tracker and submitted to the IEEE Signal Processing Cup and 

awarded as one of the top three contestants, although the accuracy benchmark result is 

not reported publicly. 

 Since the deep-learning-based downbeat tracker came out in around 2015, the 

attempt to adapting these beat tracking algorithms to real-time is fairly few. For example, 

[18] presents a study on how to speed up the offline processing of downbeat tracking 

                                                 
2 For example, if a there are 8 tatums in a measure, the phase of tatum goes from 0/8, 1/8, 

2/8 … 6/8, 7/8 within a measure. 
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using the similar CNN architecture as DBDR, and [19] adapts the CNN architecture to a 

real-time beat tracking application; however, the performance presented in MIREX 2017 

is not comparable to the BK series. 

 This thesis chooses to adapt DBDR for real-time application for the reason that 

DBDR is arguably the best algorithm as presented in the original paper. Secondly, 

BK/KB algorithms are already published as open source, so I believe it is a good learning 

experience to implement a downbeat tracking system from scratch.  
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3 System Overview 

An overview of the original downbeat tracking system will be introduced in this section, 

including the original paper [8] and tempogram toolbox [17], which plays an important 

role in this system. This section will focus on the parts of system that are related to real-

time downbeat tracking applications and will leave irrelevant details to the references. 

 The DBDR system consists of three stages: 1) feature extraction (tatum 

segmentation and feature pre-processing) 2) feature learning with convolutional neural 

network and 3) Hidden-Markov Model decoding as illustrated in Figure 2. The following 

paragraphs will describe the system in this order. 

 

 

Figure 2 The overview of the DBDR system (taken from the original paper.) The red vertical lines one the 

left are the tatums that segment the audio. 

3.1 Feature extraction 

This stage consists of two parts: tatum segmentation and feature pre-processing. Tatum 

segmentation is a way to perform non-uniform sampling on the pre-processed feature. 

3.1.1 Tatum segmentation  

 There are several reasons to segment the audio with tatums in the first step. First 

of all, this can reduce the search space and therefore reduce the computation. Secondly, 
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this can create a tempo-invariant3 feature, since tatums provide a non-uniform sampling 

on musically meaningful time events. Notice that the tatums are estimations, which must 

have a high recall rate to the downbeat locations; otherwise, the sample loss cannot be 

recovered in the later stages of the system.  

 Tatums are computed using the “tempogram toolbox [20].” The goal of the 

tempogram toolbox is to synthesize a mid-level representation that captures the 

periodicity of meaningful musical events. The tempogram is analogous to a spectrogram: 

at each point along the time axis is a column that expresses periodicity of onset features. 

Each element of the column represents a different tempo. Given a tempogram, one can 

search for the strongest tempo at each time point, typically using dynamic programming 

to enforce continuity constraints so that a smoothly changing “tempo curve” (as a 

function of time illustrated in Figure 3) can be obtained. Since the tempogram contains 

phase information, the “tempo curve” can be “synthesized” into a smooth quasi-periodic 

function called the predominant local pulse (PLP) curve, a one-dimensional time series (a 

real-valued function of time), and tatums are derived by simply performing peak-picking 

on this PLP curve. In terms of the look ahead, those steps use large analysis/synthesis 

windows as illustrated in Figure 4and the following steps: 

3.1.1.1 Compute onset detection function (onset look ahead) 

The original implementation first uses a 1024 sample wide analysis window to perform 

Short-Time Fourier Transform, which introduces few milliseconds of look ahead. 

However, a large normalization window (5 s) is used for calculating the onset detection 

function from the spectrogram to yield a better feature quality. 

3.1.1.2 Compute tempogram (tempogram look ahead)  

The original implementation uses a 6-second-long window to compute the tempogram as 

described above. 

                                                 
3 Here tempo-invariant means the extracted feature is invariant to tempo change. For 

example, when a music piece is played in different tempo, the extracted feature should be 

the same. 
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3.1.1.3 Compute tempo curve (tatum Viterbi look ahead) 

The Viterbi algorithm is used to solve the maximum accumulated path (tempo curve) of 

the magnitude of tempogram minus the transition cost (penalty) for long distance jumps. 

Since the Viterbi algorithm is an offline algorithm, this is the major look ahead 

bottleneck in the system. The original implementation only considers the tempo curve 

above 60 bpm.  

3.1.1.4 Compute overlap-add synthesis (tempogram look ahead) 

The overlap-add synthesis can be thought of as a inverse process (inverse Fourier 

transform) of computing the tempogram (Fourier transfrom), but we apply filter (tempo 

curve) to focused on the phase and magnitude of the tempogram along with the tempo 

curve. The PLP curve is derived by performing the overlap-add synthesis with a 6-

second-wide window. Specifically, for each synthesis time step t, a sinusoid with the 

frequency and phase at tempogram(tempo_curve(t), t), modulated with a synthesis 

window, is added to the PLP curve. For this system, the resolution of the synthesized PLP 

curve is 5 milliseconds, which is also the feature rate of the onset detection function. 

 

 

Figure 3 Magnitude of tempogram and decoded tempo curve. The red flat line is the tempo curve, 

computed by Viterbi algorithm. 
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3.1.1.5 Peak-picking on PLP curve  

The peak-picking algorithm works as the following pseudo-code (Python code is in 

pulse.py): 

 

 for each location i:  

     if k left-side samples (inclusive) are monotonically increasing and k right-side 

samples (inclusive) are monotonically decreasing, then the location i is a peak  

     else the location is not a peak  

 

 Since the PLP is synthesized with a smoothed sinusoid curve, which has a simple 

shape of peak and valley without spiky noise, k is set to be 1 for both sides.  

 As a summary, the look aheads in the tatum computation is illustrated in Figure 4. 

The onset detection uses a 5-second-long normalization window; the tempogram 

computation uses a 6-second-long analysis window; and the PLP synthesis stage uses the 

same windows as tempogram to perform overlap synthesis, resulting in a look ahead of 

2.5 + 6 = 8.5 s. Also, the tempo curve is derived by the Viterbi algorithm, so it introduces 

an infinite (arbitrary) look ahead. 
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Figure 4 The look ahead diagram for tatum computation. 

 

3.1.2 Feature pre-processing 

There are three kinds of feature pre-processing methods – harmonic feature, rhythmic 

feature and melodic feature. Since they are computed similarly, this section will use 

harmonic feature pre-processing as example. The same concept can be applied to other 

features. 

 The harmonic feature is the Chroma-gram which maps (warps) the spectrogram to 

12 pitches to capture the harmonic progression of each audio track as shown in Figure 5. 

This feature is first sampled at the tatums (red line) non-uniformly. For each sample point 

(tatum), a moving window is used to select a two-dimensional “image,” where the x-axis 

is the time dimension (measured in tatums) and y-axis is the Chroma index. This window 

captures the temporal context, resulting in a 3D tensor (number of tatums, 12, temporal 

context width in tatums) for each audio file.  
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Figure 5 Feature extraction illustration. A moving window (shown at left as a rectangle with a thick 

outline) is used to capture the temporal context for each tatum. 

 Specifically, the temporal context for harmonic feature is 9 tatums (i.e. 4 tatums 

in the future + 4 tatums in the past +1 at the center), and each pair of adjacent tatums are 

linear interpolated by 5 sample points to increase to time resolution. For an audio with T 

tatums, this will result in a T x 12 x (9 x 5) tensor.   

 The same logic for feature extraction can be applied to the rhythmic feature and 

melodic feature. For reference, the window size, the hop size and the temporal context in 

detailed in Table 1. 

 Harmonic Rhythmic Melodic 

STFT step size 46.4 ms 23.2 ms 185.8 ms 

STFT window 185.7 ms 11.6 ms 11.6 ms 

Temporal context 9 tatums 17 tatums 17 tatums 

Table 1 The STFT parameters and temporal contexts for each feature. 

3.2 Feature learning with neural network 

At each sample point (tatum), a 2D feature is sent into the neural network, and the 

network will output the downbeat likelihood(s). There are two formats of neural network 

outputs. Let t to be the sample point: For harmonic and melodic network, the output at 

time t is a single value. And for rhythmic network the output is a vector of values, which 
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contains the 17 tatums of downbeat likelihood centered at time t. The multiple 

estimations at each t, will be further averaged into one single value. The original paper 

claims the rhythmic network can learns better by doing this. 

 Finally, there will be three 1-D time series of downbeat likelihood for each audio, 

output from three neural networks independently. In the original paper, these outputs are 

simply averaged in to a 1-D downbeat likelihood series which is served as the 

observation sequence of the Hidden-Markov model. 

3.3 Hidden Markov Model (HMM) decoding  

 The final observation sequence is actually the downbeat likelihood for aligned at 

each tatum (number of tatums is equal to the length of the sequence). Each tatum is 

assigned to have a hidden-state solved by the Viterbi decoding algorithm. In the original 

paper, the Viterbi decoding algorithm looks at the whole sequence of the observation 

sequence to compute the global optimal path. This will be another look ahead bottleneck 

but could be mitigated by doing Viterbi decoding at each time step as a compromise with 

the performance as describe in Section 5.  
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4 Re-implementation 

An implementation of the original downbeat tracking system is made as a part of this 

thesis in order to modify the original system. This implementation follows the original 

paper as accurately as possible, however, considering the time constraint and missing 

details in different parts of the original system, some work-around modifications are 

made. This section will address them in detail. A benchmark result comparing with the 

original implementation executable program provided by the author is present in the end 

of this section. 

4.1 Dataset  

The original paper uses 9 datasets to train and fine-tune the neural networks in a leave-

one-out fashion. There are summaries shown below (taken from the original paper).  

 

Table 2 Datasets overview 

In this implementation, the size of dataset is about the same in total length though there 

are some missing and extra datasets. Three missing datasets are Klapuri, Hainworth and 

Quaero.  These are either not available or do not have public annotations. On the other 

hand, there are three extra datasets: RWC Royalty-Free, Zweieck, and GTZAN provided 

from Prof. Dannenberg and Matthew Davies. Both Royalty-Free and Zweieck datasets 

consist of 15 full tracks, and GTZAN consist of 1000 small clips in various genre 

cropped to 30 seconds long.  
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4.2 Rhythmic feature signal pre-processing  

The original paper applies μ-law compression [21] to process the STFT spectrogram in 

the rhythmic feature, however, in the experiment we found that this operation will cause 

the rhythmic feature to be extremely noisy. By plotting out the input/output as of μ-law 

compression in input range from -1 to 1, using μ = 1E6 and further plotting out all input 

range from floating point -1 to 1 to 16-bit integer, none of the results from the 

compression seems to be correct and they cause the output to be distorted. We find the 

function is actually serving as an expander as shown in Figure 6, therefore we didn’t 

apply this pre-processing step for the rhythmic feature. One thing to notice is that the 

original implementation uses MATLAB, and mine use Python libraries (e.q., Scipy, 

Numpy). This discrepancy might suggest that the numeric value of the original paper and 

my implementation might be in a different scale.  

 

Figure 6 input / output of u-law compression. X-axis is the input, Y-axis is the output from compression 

algorithm. 

 

4.3 Tatum computation 

The tatums are derived by performing peak-picking on the PLP curve computed from the 

tempogram toolbox, which is publicly available [20]. The naïve way to derive the tempo 

curve is to directly take the argmax path of tempogram at each time. However, this will 

generate a discontinuous path. In the original downbeat tracking paper, dynamic 

programing is applied in order to impose a strong continuity constraint to the tempo curve 

before synthesizing the PLP curve; however, the cost parameter is not detailed. With trial 
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and error on a subset of 25 audio files randomly selected from all datasets, we find the 

cost works best with:  

𝑐𝑜𝑠𝑡(𝑖, 𝑗) =  𝑎𝑏𝑠(𝑖 − 𝑗) 

, where i and j are simply the index of the tempogram matrix. Note that the optimal value 

actually depends on the numerical values presented in the tempogram matrix. 

The result of applying constraints is shown in Table 2, which increases both recall and 

precision by about 2 percent. 

Method / F-measure Recall Precision F-score 

Max tempo curve (naive) 95.96 11.85 18.69 

Backtracked tempo curve (DP) 97.53 13.54 23.25 

Table 3 The f-measure of tatum computed with or without dynamic programing (DP) with downbeat as 

ground truth with 70 ms tolerance. 

4.4 Rhythmic feature extraction 

In this implementation, the interpolation ratio of the rhythmic feature is increased from 5 

to 21 interpolation points in between two tatums in order to have better temporal 

resolution. This modification is to deal with the fact that the computed tatums are not 

perfectly aligned with the peak of rhythmic feature. Although the tatums have a recall 

rate of 97% within 70 ms of tolerance shown in Table 3, most of them do not hit the 

peak, in fact, tatums are detected earlier as illustrated in Figure 7. We can see the onset 

detection function always detects the beginning of the peak by definition, since the PLP 

curve is synthesized based on this, hence the tatums will also be estimated a bit earlier. In 

the case of rhythmic feature that have relatively narrow bandwidth, if we don’t sample 

precisely or increase the sample rate, the peak information will lose or distort the feature.  

 In most cases the largest periodicity of tatums is 500 ms (i.e. 120 tatums per 

second), which means the temporal resolution is only 100 ms after the linear 

interpolation. However, most of the bandwidth of rhythmic features is much smaller than 

this. As long as the tatums are off by the peak by a small fragment, such as 10 ms, the 

extracted feature will lose the important peak information. Therefore, we increase the 
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interpolation ratio by 4 times, so that we can have a 25 ms of rhythmic feature resolution 

or smaller. 

 

Figure 7 The misalignment of the peak of waveform (waveform), onsets (odf), and peak of PLP (plp). 

4.5 Not implementing melodic network 

I did not implement the melodic network because it adds extra computation and 

development time without gaining much performance. The input feature dimension for 

the melodic network is 304x85, which is about 100 times larger than the original 

rhythmic network (i.e. 3x85) and about 20 times larger than the modified one in this 

implementation. However, the information gain from melodic network is limited 

considering we already have a harmonic network as the Chroma-gram is basically a 

degenerate version of the melodic feature. Moreover, as addressed in the original paper, 

the performance gain is only 0.3 percentage points when comparing the system with three 

networks to the system with 1 melodic plus 2 harmonic networks. 

4.6 Rhythmic network architecture 

Since the dimension of the rhythmic feature is modified as addressed in sub-section 4, the 

input dimension is modified from the original 85 (i.e. 17 tatums with 5-point 

interpolation) to 357 (i.e. 17 tatums with 21-point interpolation). The input dimension for 

the first layer and the max pooling layer are also scaled accordingly to cover the same 

amount of information. Specifically, the resulting filter size for the first layer is modified 

to (3, 174) from (3, 40), and the first max pooling layer is modified to (1, 8) from (1, 2). 

The detail of network layouts can be found in model.py in the source code. 
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4.7 Neural network training phase (hyper-parameters, data preprocessing…) 

There are various details related to the training phase of the convolutional neural network 

not mentioned in the original paper and its previous works, such as the hyper-parameters 

and data preprocessing strategy. Since each configuration takes 2-4 hours of training plus 

modification of code to see the result, this implementation did not perform a complete 

grid search due to the time and computation constraint. This implementation therefore 

chooses the parameters empirically by trial and error.  

The missing information includes:  

1. Batch-size,  

2. Dropout rate  

3. Learning rate and decay rate  

4. Momentum for stochastic gradient descent  

5. Shuffle strategy (in-batch or dataset)  

6. Regularization strategy  

7. Initial distribution  

8. Normalization (standardization, mean subtraction) strategy and so on.  

For this implementation, those details are listed in the source code 

train_harmonic_network.py and train_rhyhtmic_network.py for reference. 

4.8 Transition probability of Hidden Markov Model 

In the original paper, the transition probability of the HMM is directly assigned, with 

some empirical tweaking. However, the tweaking step is unclear, so this implementation 

did not do the further tweaking, and the HMM parameters are assigned by the following 

rule: 

 Let the HMM states denoted by “n/k”, where k is number of tatums per measure, 

and n is the phase of the tatum (0 < n < k). For example, the original HMM has k in K = 

{3, 4, 5, 6, 7, 8, 9, 10, 12, 16}. For example, for k = 3, there are 3 states: “0/3”, “1/3”, 

“2/3”, for k = 4 there are 4 states: “0/4”, “1/4”, “2/4”, “3/4” and so on. So, there will be 

10 groups of states in different k.   
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 Let transition (i, j) denote the probability of going from i state to j state, the 

transition probability is assigned as follow: 

1. Assign transition (i, j) = 0.95 if j is the next tatum phase in the same group 

(same k). For example, from “0/4” to “1/4”, or from “4/5” to “0/5”. 

2. Add 0.1 to all transition probability to smooth out the distribution. 

3. Normalize the transition matrix to be a right stochastic matrix. 

The specific detailed can be found in hmm.py.  

4.9 Evaluation  

The evaluation is conducted as described in the original paper using the beat tracking 

evaluation toolbox [12]. The dataset is split in a leave-one-out manner (the test set is from 

a completely different dataset, not used in training). One minor difference is that this 

evaluation does not discard the first and last few seconds of the audio, which make it 

slightly stricter than the original evaluation as these regions usually perform badly. 

 Table 4 shows the benchmark on the Ballroom dataset, which consist of 698 audio 

tracks. The f-score is computed by averaging every f-score of the audio track. For this 

thesis implementation, the performance is further decomposed into three intermediate 

steps: “tatum” directly evaluates the f-measure against downbeat annotation; “peak-

picking” evaluates the peaks from the averaged output of two neural networks; “HMM” 

performs Viterbi decoding from the same input used in “peak-picking”. 

 We can see the HMM performance is about 76% of the original implementation. 

First of all, when looking at the tatum and peak-peaking performance, we can see the 

tatum computation is performing as expected. It achieves the recall rate of 97% while 

maintaining a precision of 15%, which suggest the periodicity of the tatum is about 8 

times faster than that of the downbeat. Secondly, we can see that in each of the stages, the 

recall decreases and the precision increases, and every step increases the f-score by about 

20%. This suggests both the neural network and HMM are beneficial to the system; 

however, there is still room for tweaking in both steps, especially in the neural network 

stage.  



 
21 

 In the original paper’s previous work [22], which uses the same HMM model 

(with different parameters), the performance gain by applying Viterbi decoding to the 

overall f-score is also around 20%. This suggest the HMM implementation is doing a 

reasonable job and the problem is most likely coming from the neural nets. In fact, during 

the training phase, we find the models converges fast in the first 3 epochs and starts to 

over-fit the training data. Though we have tried different combination of the parameters 

and pre-processing strategy as described in the previous Section 4.7, this result is the best 

we can achieve given the missing details from original paper. 

  

 

 

 

 

 

 

 

Table 4 Downbeat detection result on Ballroom dataset. “paper” refers to the result shown in the original 

paper [8], “executable” refers to the result from the executable provided by the author. “tatum” refers 

evaluating tatums with downbeat annotations.  

   

  

 Method Recall Precision F-score 

Origin 
paper N/A N/A ~80.00 

executable 81.11 84.69 80.23 

Thesis 

tatum 97.05 14.74 24.96 

peak-picking 83.16 29.51 41.40 

HMM 79.83 54.00 60.94 
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5 Adapt to Real-Time 

For a real-time downbeat tracking system, the latency of the system has to be reduced to 

at least zero. To decrease the latency, the system can be modified in two directions: one is 

reducing the look ahead, and the other is increasing the amount of prediction. Generally 

speaking, both directions will degrade the accuracy. For example, state-of-the-art beat 

tracking systems are off-line algorithms that look ahead many seconds for better 

performance, suggesting that look ahead is important. Prediction cannot react to unseen 

tempo change, resulting in a loss of accuracy whenever tempo changes (and of course, 

the fact that tempo is unsteady is the main reason we need downbeat tracking to begin 

with). Therefore, the goal of this section is to discover the optimal combination of look 

ahead and prediction under a given latency constraint (i.e. latency < 0). The assumptions, 

detail of modifications, and the evaluation results will be covered in this section. 

5.1 Total look ahead estimation 

  The total look ahead of the system is estimated as follows. Suppose a system has 

only two components with look ahead L1 and L2 respectively. If L1 and L2 are serial (i.e. 

the input of L2 is the output of L1), the total look ahead is L1 + L2. On the other hand, if 

L1 and L2 are parallel (i.e. they both take the same input), the total look ahead is 

determined by max (L1, L2). For example, the total look ahead shown in Figure 8 is: 

𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑜𝑘 𝑎ℎ𝑒𝑎𝑑 = max(𝐿0, 𝐿1, 𝐿2) +  max ((𝐿3 + 𝐿4), 𝐿5) 

This property implies that when the components are parallel, the components with less 

look ahead can potentially increase its own look ahead up to the maximum look ahead 

among all parallel components without changing the total look ahead. For example, in 

CNN + HMM computation, 2 neural networks are parallel with different look aheads (8 

tatums ahead for rhythmic network and 4 tatums ahead for harmonic network). In this 

case, the harmonic network can actually look ahead up to 8 tatums while keeping the 

same total look ahead. 
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Figure 8 A example of system with various components each has different amount of look ahead. L0, L1, L2 

are parallel and L3, L4 are serial. The green blocks are serial. 

5.2 Predicting Tatums/Downbeats 

 Typically, real-time systems are evaluated in terms of meeting or exceeding 

deadlines for the delivery of results. For musical beat- and downbeat-tracking systems, 

the tolerable deadline might even be slightly negative to allow for latency in the synthesis 

of musical output to be synchronized to beats of the input. To achieve real-time 

performance, it seems necessary to predict tatums/downbeats in the future to make up for 

the low-level system latency and look ahead found in any downbeat detection system.  

 This prediction is built upon some assumptions described here. We assume that 

tatums/beats/downbeats are periodic pulse trains with certain deviation caused by various 

reasons. On the performance side, the deviation might be coming from the musical 

expression, e.g. the bass playing earlier to create a certain feeling or style, and the speed 

of sound causing instruments to be not perfectly synchronized when they are in the 

distance. In these cases, the deviations are usually repetitive and predictable. On the other 

hand, the deviation might also be coming from player error, which can be approximated 

by a Gaussian distribution. On the downbeat tracking algorithm side, the deviation might 

be coming from the ambiguity of the detection boundary (i.e. the ambiguity of onset 

locations for soft onsets, which can be up to 100 ms). Or, deviation might be coming 

from the low time resolution of analysis window, down sampling or quantization error. 

These distributions are also assumed to be Gaussian. 

 With the assumptions above (i.e. the stability property of pulses and Gaussian 

distribution of error), the future locations of tatums seem to be suitably modeled with 

linear regression as illustrated in Figure 9. We assume that tatums in a “perfect” 
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performance is equally spaced in time, and therefore a plot of tatum number as a function 

of time creates a straight line parameterized by the slope and the intercept. For prediction, 

the objective is to find a straight line that minimizes the mean squared error of the 

estimations and observations (i.e. the errors in horizontal direction), where the 

observations are n most recently generated pulse locations.  

 We expect there will be a trade-off regarding the number of most recent 

observations used to fit the linear regression model. Because we assume that the 

observations of pulses are noisy, the more observations we use to fit the model, the more 

accurate the estimation we can approach, however, at the cost of losing responsiveness to 

tempo change – since the tempo is only locally stable. Therefore, this section will also 

evaluate the results of future prediction using different number of samples as a control 

variable. 

  

Figure 9 Illustration for tatum prediction with linear regression. 

 Figure 9 shows a snapshot when the real-world time is pointing at “Tnow” and the 

system has generated the output at Tcurr, therefore the look ahead of the system is Tnow – 

Tcurr. The black dots are the seen tatums generated by the algorithm so far, and the grey 

dots are the tatums locations predicted by linear regression. Note that the Tnow pointer 

moves to the right continuously as it is real-world time; however, the processed Tcurr 
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pointer moves to the right discontinuously depending on the step size of analysis window 

or buffers of each component in the system. Therefore, in order to compensate for the 

step size, the actual compensation must be greater than the worst-case look ahead, which 

is further illustrated in Figure 10. 

 

Figure 10 Illustration of extra compensation caused by the discontinuous step size of sliding window (or 

buffer).  

 In Figure 10, the black lines are the past estimations of tatums. Grey lines are the 

predictions; Tcurr denotes the time instance of latest time frame from the previous stage, 

while Tcurr + step_size denotes the time instance of the next time frame. Since the sliding 

window is not continuous, the system has to predict the output at t (𝑇𝑛𝑜𝑤 ≤  𝑡 <  𝑇𝑛𝑜𝑤 +

 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒) to meet real time requirement. 

 Because our output is downbeat predictions, it is not enough to simply predict 

tatums4. Recall that the downbeats are computed by decoding the hidden state of each 

tatum using the original HMM model (Section 4.8), which has a strong assumption that 

the state transition has higher tendency of staying in its group (tatums per measure). We 

apply the same assumption to the downbeat prediction logic as illustrated in Figure 11.  

                                                 
4 Alternatively, we can directly apply linear regression on downbeat locations, but this 

will give coarser time granularity (time intervals of downbeats are larger), so this design 

is not evaluated. 
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Figure 11  Downbeat prediction logic. The numbers above the vertical lines are the hidden states, where 

the downbeat states are in bold font. The future states are predicted by the hidden state of latest tatum, in 

this case it is “1/4”. 

5.3 Reducing latency 

This section will discuss the modifications and the effect of reducing the look ahead and 

applying prediction to the accuracy of performance individually. Note the symbol L 

denotes look ahead components. 

5.3.1 Tatum computation 

L1. Reduce Tempo curve look ahead (tatum Viterbi look ahead) 

The first step to enable online processing is to reduce the look ahead for tempo curve 

computation defined in Section 3.1.1.3. In this modification, the same Viterbi 

algorithm will be performed as each column of the tempogram matrix becomes 

available at each time step.  So, the tatum Viterbi look ahead can be reduced from 

infinity to ~0 s.  

 The time complexity for standard Viterbi decoding is O(N2T), where N is the 

number of tempo bins and T is the number of columns of tempogram. In this 

modification, the computation will be the same in the way we append the max-score 

matrix (which costs O(N2) at each step), but the difference is that at each time step we 

update the back-tracking path (which costs O(T) for each step). Therefore, the 

computation time for each step is O(N2+T) which is linear to T (although the total 

sum for all time steps will be O(N2T+T2)). Here, T is the total time measured from the 

beginning of streaming. For online systems, this might cause problems because T 
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increases without bound, but this could be mitigated simply by performing back-

tracking for a constant number of columns starting from the end.  

 For online computation, the original peak-picking algorithm (Section 3.1.1.5) is 

also modified. Because the PLP curve is synthesized one piece (grey area) at a time, 

as shown in Figure 4, instead of the whole sequence, the peak-picking algorithm can 

only see one chunk of PLP curve and therefore cannot determine if the sample at the 

right (future) boundary is a peak or not. In this implementation, the sample on the 

right boundary will be determined in the next time step, so the peak-picking result 

should be the same as the original one, but this correct result requires that we 

introduce another step size of look ahead.  

L2. Reduce onset detection look ahead (onset look ahead) 

The original system uses a large normalization window for the onset detection 

function computation. We attempt to replace this component with an existing state-of-

the-art real-time onset detector that uses a uni-directional recurrent neural network 

[23], with source code available online [24]. This modification will reduce the look 

ahead from 2.5 s to about 20 ms (the STFT analysis window size) in this stage, which 

is neglectable in this thesis. 

L3. Reduce tempogram analysis/synthesis look ahead (tempogram look ahead) 

The tempogram toolbox uses a 6 second window by default in order to capture the 

slow periodicity of tempo, which corresponds to 10 bpm (minimum detectable) in the 

tempogram. However, in the original downbeat detection system, tempo less than 60 

bpm is actually discarded in order to increase the recall rate. Therefore, ideally the 

window length can be decreased by a large amount without changing the output 

behavior of the tatum computation.  

5.3.2 Tatum evaluation  

5.3.2.1 Dataset 

Since the tatum computation is relatively expensive (the computation time is only about 2 

times faster than real time), the experiment is evaluated with a subset containing 10% of 
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the dataset (Table 5). The result is evaluated by the downbeat annotations, with a 70ms 

tolerance window.  

Table 5 Randomly selected subsets. Each column contains ~10% of the original datasets. 

5.3.2.2 Effect of reducing look ahead (L1, L2, L3) 

Table 6 shows the evaluation results of reducing the look aheads from tatum 

computation. First of all, the leftmost column of each group shows the comparison 

between original tatum computation (offline), after reducing the tatum Viterbi decoding 

look ahead and after reducing onset look ahead without modifying the tempogram look 

ahead. We can see the performance measures remain the same after reducing tatum 

Viterbi decoding look ahead, and the look ahead of the system can be reduced from 

infinity to about 8.5 s. Secondly, after the reducing the onset look ahead, the precision 

drops by 20%, the recall increases by 4% and the overall F-score drops by 19%. By 

visualizing the tatums computed by this configuration, we find that the frequency of the 

tatum becomes 2 to 4 times higher. This change of behavior is also reflected in the f-

score and precision degradation. Third, we can see the effect of reducing the tempogram 

analysis/synthesis window length. The decreasing tempogram look ahead only causes 

slight f-score performance degradation when using the original onset detection algorithm, 

and causes the f-score drops by 38% from +2 s to +1 s when using the real-time onset 

detection algorithm.  

 

 

 

 

 

Dataset Ballroom 
RWC 

Classical 
GTZAN 

RWC 

Genre 

RWC 

Jazz 

RWC 

Pop 

RWC 

Royalty 

Free 

The 

Beatles 
Zweieck Total 

# 

Tracks 
69 6 99 10 5 10 1 17 1 218 
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Table 6 F-measure of the tatum computed from different configuration (without applying prediction). The 

ground truth is the downbeat annotation, and tolerated window is 70 ms). The tatum look ahead is the total 

look ahead of tatum computation stage. 

5.3.2.3 Effect of applying prediction 

To discover the effect of prediction and number of observation (last_n) used for linear 

regression. We choose a fixed configuration where Viterbi look ahead is 0 s and 

tempogram look ahead is +2 s, with the original onset detection algorithm. We perform 

grid search on two control variables. The amount of prediction is searched from 0 to 10 

seconds with a 1 second of interval5 and the number of observations used for linear 

regression is searched from 2 to 10 seconds with a 1 second interval. The resulting f-

score performance is shown in Figure 126.  

                                                 
5 Note that the step size of the prediction is set to be 0.205 s, which is the same step size 

of the PLP synthesis window, so even when prediction is 0, the prediction logic is still 

predicting ahead by 0.205 s to compensate the extra delay caused by step size. 

6 Since the resulting degradation patterns for recall and precision look similar and the f-

score represents the harmonic combination of recall and precision, we only present the f-

score result. 

Method Offline 
tatum Viterbi look ahead = 0 s 

onset look ahead = 2.5 s 

tatum Viterbi look ahead = 0 s 

onset look ahead = 0 s 

tempogram look 

ahead (s) 
+6 +6 +5 +4 +3 +2 +1 +6 +5 +4 +3 +2 +1 

Avg. 

Recall 
94.8 95.1 95.2 95.0 95.1 94.9 92.5 98.5 98.5 98.6 98.6 98.4 67.1 

Avg. 

Precision 
12.6 12.7 12.7 12.7 12.6 12.6 12.5 10.0 9.9 9.8 9.6 9.4 9.8 

Avg. 

F-score 
21.9 22.0 22.0 21.9 21.9 21.8 21.7 17.7 17.6 17.5 17.2 16.8 16.1 

tatum 

look ahead 

(s) 

Inf. +8.5 +7.5 +6.5 +5.5 +4.5 +3.5 +6.0 +5.0 +4.0 +3.0 +2.0 +1.0 
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Figure 12 F-score with regard to the amount of prediction. The legend represents for the different number 

of observation in different color. 

 First of all, we can look at the sensitivity of performance to the amount of 

prediction. The f-score decreases as the amount of prediction increases for all numbers of 

observations (last_n). The f-score remains approximately the same until the prediction is 

greater the 2 s, and drops by more than 10% after the prediction is greater than 5 s. 

Secondly, we can look at the number of observations versus the performance (color). The 

f-score performance almost behaves the same – fewer observations yield better 

performance when the amount of prediction is less than 5 s. On the other hand, after the 

amount of prediction is greater than 5 s, different observations gradually exhibit an 

inverse relationship. The larger last_n starts to yield better performance. 

5.3.3 CNN + HMM computation 

As described in Section 3.1.2, the rhythmic and the harmonic feature looks ahead by 8 

tatums and 4 tatums respectively, and HMM Viterbi decoding is an offline algorithm. In 

this section, we will investigate the sensitivity of look ahead measured in tatums to the 

performance.  

L4. Reduce HMM Viterbi decoding look ahead (HMM Viterbi look ahead) 
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In this modification, we introduce another control variable HMM Viterbi look ahead, 

which is the observation ahead (i.e. the sample points) used in back tracking. This 

variable is considered since the algorithm is essentially performing peak-picking on 

the output of neural networks (i.e. determine if a state is a downbeat or not), and 

looking ahead seems to be helpful to assess if the current observation is the downbeat 

(as illustrated in Figure 13.) On the other hand, one might expect the same kind of 

look ahead to be advantageous in tempo curve decoding. However, in this application 

of Viterbi, past information seems to be sufficient to impose a continuous property 

right up to the last observation, so look ahead is not used.  

 

Figure 13 Online Viterbi decoding without looking ahead.  

 Figure 13 shows a synthesized downbeat likelihood as a function of time.  The x-

axis is the index of observation; the vertical lines are the decoded hidden states. The red 

lines are the downbeat states and the green lines are the non-downbeat states. We can see 

that without looking ahead, the algorithm cannot really determine the peak at the first 3 

observations and around 110th observation. 

L5. Reduce CNN look ahead 

We want to discover the effect of reducing the look ahead of the CNN feature to the 

performance accuracy, therefore we apply a mask on the future context of the input 

feature (illustrated in Figure 14) to simulate the missing look ahead. Specifically, we 

parameterized the amount of mask by percentage. In the experiment, the mask is set 

to be m in {0%, 20%, 40%, 60%, 80%, 100%}, where 0% denotes no mask (i.e. the 

original case), and 20% denotes zero out the right-most 20% of the right-hand-side 

image (10 % of the total image) and so on. 
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Figure 14 Mask future context from input feature. This illustrates the feature being masked by different 

amounts. There are 6 rows and the top row is the 2D images without mask, and second row is masked by 

20% on the right-hand side, and so on. The bottom row has all of the right-hand side removed.  

5.3.4 CNN + HMM evaluation  

This section evaluates the effect of each modification to the performance accuracy 

individually. The evaluation setup is the same as what we did in the baseline benchmark 

(Section 4.9), with the same offline tatums, and we apply modifications as follows.  

5.3.4.1 Effect of reducing look ahead (L4, L5) 

Table 7 shows the evaluation results when reducing the look ahead of CNN+HMM 

computation. First of all, we can look at the sensitivity of HMM Viterbi looking ahead to 

the performance (left-hand-side of the table). The F-score performance degrades by 4% 

when we reduce the amount of look ahead in Viterbi decoding algorithm from infinity to 

5 tatums. And from 5 tatums to 1 tatum, all performance measures are roughly the same. 

Another gap is between 1 tatum and 0 tatum, the F-score performance decreased by 4% 

again. This suggests even one step of HMM Viterbi look ahead is beneficial to the 

performance. Secondly, we can look at right-hand-side of the table, which shows the 

effect of reducing neural network look ahead. Interestingly, the performance degradation 

is not monotonic when masking out more future information - an optimal trade-off 

between latency and performance seems to happen at masking out 80% of the future 

context. In this configuration, the F-score degradation is only around 10% but we get 

80% of latency reduction in this stage. Though it’s hard to provide explanation of how 

neural networks work internally, this finding suggests the possibility for this CNN 

architecture to predict downbeat with lower latency with proper training. 
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Table 7. F-measure for downbeat computed from different configurations in reducing look ahead. The 

ground truth is the downbeat annotation, and the tolerated window is 70 ms. HMM+CNN look ahead is the 

total look ahead in this stage. 

5.3.4.2 Effect of applying prediction 

We set the configuration to be fixed at HMM Viterbi look ahead = 1 tatum, CNN feature 

mask = 80%, as it seems to be an optimal point for look ahead and performance, and do 

grid search on the amount of prediction and the number of observation used for linear 

regression. Note that the step size7 is also set to be 0.205 second for downbeat prediction 

logic. The evaluation result is shown in Figure 15. 

   

 

                                                 
7Though the step size of the tatums is not a fixed interval, we can imagine the prediction 

logic should still periodically (with fixed step size) probe the current the outputs from the 

system (even the new output is not generated yet) actively and perform prediction at this 

rate in order to satisfy real-time output. 

Method Offline Reduce HMM Viterbi look ahead 
Reduce HMM Viterbi look ahead 

Reduce CNN look ahead (mask) 

# HMM look 

ahead 

in tatum 

Inf. 5 4 3 2 1 0 1 

% mask 0% 20% 40% 60% 80% 100% 

Avg. 

Recall 
79.8 76.4 75.9 75.9 76.7 76.5 72.4 69.1 65.4 30.6 81.2 14.0 

Avg. 

Precision 
54.0 51.4 51.6 51.6 51.0 50.8 49.5 53.0 54.1 57.4 41.0 33.6 

Avg. 

F-score 
60.9 58.4 58.3 58.3 58.2 58.1 55.8 56.7 55.0 36.1 52.0 18.0 

HMM + 

CNN. 

look ahead  

in tatum 

Inf. 
5+ 

8 

4+ 

8 

3+ 

8 

2+ 

8 

1+ 

8 

0+ 

8 

1+ 

8x80% 

1+ 

8x60% 

1+ 

8x40% 

1+ 

8x20% 

1+ 

0% 
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Figure 15 F-score with regard to number of observations (left), and the amount of prediction (right). 

 First of all, we can look at the sensitivity of performance to the amount of 

prediction (figure on the right). The f-score performance degradation reaches 10% at 

around 1.728 seconds of prediction and 20% at around 4.096 seconds. Secondly, the 

sensitivity of number of observation with regard to the performance (figure on the left) 

seems to be small if we only consider the data that perform above 80% of best 

performance (We can see the lines on the top are almost flat with regard to number of 

observation). When the number of observation is between 4 and 10, it seems to have little 

impact to the performance. 

5.4 End-to-end evaluation 

This section evaluates the end-to-end, online downbeat tracking system with different 

configurations (look ahead and prediction). We use the existing model without retraining 

the model, and the evaluation is the same as what we did in the last section. 

 In this end-to-end simulation, the mask that simulates the effect of look ahead is 

directly computed dynamically, for example, when look ahead is set to 3 s, it might 

correspond to 5 tatums ahead at t = 1 s, and it might correspond to 6 tatums ahead at t = 

2 s (since the tempo speeds up at around t = 2 s). Therefore, we directly describe all look 

aheads in seconds instead of tatums. Also, the parallel components now can look ahead as 

much as possible as described in Section 5.1. 

 In this evaluation, we fixed the online tatum configuration to be {Tatum Viterbi 

look ahead = 0 s, tempogram look ahead = 2 s, onset look ahead = 2.5 s} which gives 
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4.5 s of look ahead, and fixed the hmm_look_ahead (The HMM Viterbi look ahead) to be 

1 s. We perform grid search on two control variables: nn_look_ahead and nn_prediction, 

where the nn_prediction is the downbeat detection logic defined in Section 5.3.3, and 

nn_look_ahead is the amount of look ahead shared among the parallel components, 

namely the harmonic network and rhythmic network. Note that the we do not consider 

the low-level latency and the step-size effects. 

 Figure 16 shows the total latency of the system in terms of the f-score 

performance with different amounts of nn_look_ahead rendered in different colors. The 

total latency is defined as: 

 

total latency (s) = tatum look ahead (4.5 s) + hmm_look_ahead (1 s) + nn_look_ahead  

          – nn_prediction 

 

 

Figure 16 Grid search on nn_look_ahead and nn_prediction versus f-score performance.  

 First of all, we can see that each line in a different color constructs a curve with 

degrading f-score performance from top right to bottom left, which is the effect of 

applying nn_prediction (recall that prediction is needed in real-time systems to 

compensate for look ahead, but prediction reduces the performance as measured by the f-

score). Since the degradation patterns after applying prediction are almost the same 
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among all nn_look_ahead (colors), the effect of applying nn_prediction can be further 

simplified to Figure 17 by aggregating nn_look_ahead in Figure 16. We can see the f-

score to nn_prediction plot is a monotonically decreasing curve and the slope of the curve 

slightly decreases (in magnitude) as nn_prediction becomes larger. 

 

Figure 17 The effect of applying nn_prediction. 

 Secondly, Figure 18 shows the effect of reducing nn_look_ahead to the f-score 

performance when no nn_prediction is applied. We can see the curve has a much smaller 

slope compared to the f-score degradation caused by applying nn_prediction when 

nn_look_ahead is greater than 1 s. However, when nn_look_ahead is less than 1 s, the 

impact of reducing the nn_look_ahead suddenly becomes greater than applying 

nn_prediction.  
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Figure 18 The effect of applying nn_look_ahead. 

 These observations suggest that in order to reduce the latency with lowest cost of 

performance degradation, it is better to reduce nn_look_ahead to about 1 s, then apply the 

nn_prediction. It costs almost no f-score degradation to reduce nn_look_ahead when it is 

greater than 1 s, but the cost suddenly become greater than nn_prediction after 

nn_look_ahead is less than 1 s. 

 Figure 19 further shows the trade-off between nn_look_ahead and nn_prediction 

to f-score performance when the total latency is fixed at zero (when the system barely 

meets real time).  
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Figure 19 Trade-off between nn_look_ahead and nn_prediction at total latency = 0 s. 

 First of all, we are interested in the combination of look ahead and prediction that 

yields the best performance (the peak of the inverted U shape), which is nn_look_ahead = 

1.0 s, and nn_prediction = 6.5 s (the x-axis denotes the nn_look_ahead and the colors 

denote different nn_predictions respectively). The resulting inverse U shape reflects what 

we observed before. We can see that when nn_look_ahead is greater than 1 s (the points 

on the right-hand-side of the peak), we cannot improve the f-score performance by 

increasing nn_look_ahead; however, in order to satisfy the same total latency, we have to 

apply nn_prediction in compensation of the extra nn_look_ahead, and this will cause a 

linear performance degradation with a slope of about 10% f-score for every 2.5 s. On the 

other hand, when the nn_look_ahead is less the 1 s (left-hand-side of the peak), we can 

see the trade-off between reducing nn_look_ahead (decrease the f-score performance) 

and reducing nn_prediction (increase the f-score performance) is that the f-score 

degradation caused by reducing nn_look_ahead is greater than the f-score increment 

caused by reducing nn_prediction. 

  This also explains why the performance degrades so much after the total latency 

is less than 6.5 s in Figure 16. The reason is that we have fixed the sum of tatum look 

ahead and hmm look ahead to be 5.5 s. So if we want to reduce the total latency to be 0 s, 

after we have reduced the nn_look_ahead to 1 s (at this point the total latency is 6.5 s and 

the best f-score among all configurations is about 50%, where nn_look_ahead is 1 s and 
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nn_prediction is 0 s), we have no choice but to apply 6.5 seconds of nn_prediction in 

order to compensate the look ahead, which will degrade the f-score by 25% according to 

Figure 17. As we can see, the peak f-score is about 24% when total latency reaches 0 s, 

which is close to our explanation (50% - 25% = 25%). 

 Secondly, we are interested in what is the best performance we can achieve under 

this real-time constraint comparing to our baseline (Thesis) implementation shown in 

Table 4, which is around 61% f-score. We can see the best f-score for real-time system 

Figure 19 is only around 24% f-score, which is around 37% of f-score degradation, 

making the accuracy unsuitable for real-world applications.  

 Third, we are interested in directions to improve the real-time accuracy for future 

work. On one hand, from the individual evaluations in previous sections, we have a sense 

of the sensitivity (slope) of f-score degradation caused by reducing each look ahead. 

Since we know that the performance degradation caused by nn_prediction is 

approximately linear at 10-15%/2.5 s, we can expect reducing other look aheads, if the 

cost is cheaper than applying nn_prediction8, can increase the f-score performance. For 

example, in tatum computation, we can reduce 1 second of tempogram look ahead almost 

with no cost, and also apply 2 seconds of tatum prediction with no cost. The HMM look 

ahead seems to have the same slope from 1 tatum to 0 tatum as nn_prediction, so it might 

not be beneficial to reduce HMM look ahead. Potentially we can reduce the tatum look 

ahead by 3.5 s, therefore reduce the need of applying 3.5 s of nn_prediction and therefore 

increase 15-20% f-score ideally. On the other hand, though currently the nn_look_ahead 

can already be reduced to about 1 s with only a little accuracy degradation, retraining the 

model with the masked feature might further push this number to 500 ms or smaller, as 

we can see, even without retraining, the trade-off between nn_prediction and reduce 

nn_look_ahead from 1 s to 500 ms is already close as shown in Figure 19. 

 Lastly, note that the evaluation of reducing nn_look_ahead is simulated by 

masking the feature without retraining the model for each amount of nn_look_ahead. The 

                                                 
8 Assuming the f-score degradation curve caused by nn_prediction (slope) still holds after 

reducing other look aheads. 
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performance degradation graph after retraining might behave differently, and this is a 

limitation of this study. However, we can assume from the original off-line work that 

look ahead is beneficial, so surely there will be some degradation, even if the CNN is 

retrained for lower look ahead. Furthermore, the degradation we measured from simple 

masking is rather small and smooth except for the anomalous value at 60% (see Table 7). 

This all suggests that retraining would achieve only small improvements, so we left this 

to future work. 
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6 Conclusion and Future Work 

In thesis work we re-implemented a state-of-the-art downbeat tracking system, identified 

the latency bottleneck of the system, proposed several real-time adaptations for the 

original system, provided an evaluation and presented the sensitivity of each modification 

to the accuracy of performance.  First of all, the re-implementation part achieves 76% of 

the original f-score performance on a single dataset. As shown in Section 4.9, the 

performance gap most likely comes from the training process and hyper-parameter tuning 

of the neural networks, and a minor gap might come from the details of various parts of 

the system. Therefore, we believe that with proper pre-processing of the data, this stage 

could have a substantial improvement. Secondly, in Section 5, we find that the latency of 

the tatum computation can be reduced by 2 seconds without compromising the f-score 

performance, and it can potentially achieve real-time computation with about 15% of f-

score degradation (compared to the offline version) when prediction is applied as shown 

in Figure 12. Third, we see that when masking out the future temporal context in the 

neural network (without retraining the network after applying each mask), the 

performance degradation has an optimal sweet spot when masking out 80% of the future 

context (Section 5.3.4.1). Furthermore,  also shows the sweet spot of look ahead is less 

than 2 s. This suggests the future information beyond 2 s might not be so important to the 

system and the possibility of increasing the accuracy by directly retraining this neural 

network architecture with masked future information. Fourth, we can see that for 

downbeat prediction (Figure 15), when the amount of prediction is less than 0.2 s (in 

addition, the step size is set to be about 200 ms), the prediction is fairly robust, this is 

useful to compensate for the low-level latency in the systems. Fifth, the efficiency of the 

algorithms should be considered when the system is taking in long streams of audio. In 

various stages of the system, such as Viterbi decoding, a practical implementation will 

need to impose an upper bound on the amount of retained data to avoid memory overflow. 

Also, the Viterbi decoding is an expensive step that, in practice, can be sped up by large 

amounts using a compiled language. (The current implementation uses an interpreted 
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version of Python). Sixth, from the experiment results shown in Section 5.3.2, we can see 

there seems to be substantial room for improvement in tatum computation latency (by 

about 3 s) without compromising the f-score performance, which could potentially 

increase the accuracy of the real-time downbeat tracking system. 
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