

The Implications of Method Placement on API Learnability

Jeffrey Stylos
Carnegie Mellon University

Computer Science Department
5000 Forbes Ave

Pittsburgh, PA, USA

jsstylos@cs.cmu.edu

Brad A. Myers
Carnegie Mellon University

Human-Computer Interaction Institute
5000 Forbes Ave

Pittsburgh, PA, USA

bam@cs.cmu.edu

ABSTRACT
To better understand what makes Application Programming
Interfaces (APIs) hard to use and how to improve them, recent
research has begun studying programmers’ strategies and use of
APIs. It was found that method placement — on which class or
classes a method is placed — can have large usability impact in
object-oriented APIs. This was because programmers often start
their exploration of an API from one “main” object, and were
slower finding other objects that were not referenced in the
methods of the main object. For example, while
mailServer.send(mailMessage) might make sense, if
programmers often begin their API explorations from the
MailMessage class, then this makes it harder to find the
MailServer class than the alternative
mailMessage.send(mailServer). This is interesting
because many real APIs place methods essential to common
objects on other, helper objects. Alternate versions of three
different APIs were compared, and it was found that programmers
gravitated toward the same starting classes and were dramatically
faster — between 2 to 11 times — combining multiple objects
when a method on the starting class referred to the other class.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – reusable
libraries. D.2.11 [Software Engineering]: Software Architectures
– patterns.

General Terms
Human Factors, Experimentation, Design.

Keywords
APIs, usability, libraries, frameworks, user studies,
documentation.

1. INTRODUCTION
Large object-oriented Application Programming Interface (API)
frameworks like Java’s JDK libraries and Microsoft .NET offer
the potential to improve programmers’ productivity by providing

access to thousands of classes worth of functionality. However,
successfully using these APIs can be difficult and time consuming
even for experienced programmers [17], and can be a barrier to
successful programming for learner and end-user programmers
[12]. Nobody is an expert at every piece of very large
frameworks, and so new tasks frequently require even
experienced programmers to learn new pieces of the API.

Our research focuses on better leveraging the potential power of
APIs by understanding what makes them difficult for
programmers to use and how to solve these problems by fixing the
APIs, the documentation, or making new programming tools. In
previous studies we have identified the factory design pattern [9]
and required constructor parameters [18] as potential barriers to
usable APIs.

This paper presents the results of a new study examining method
placement — which class a method belongs to — in APIs that
require the use of multiple objects. The study was motivated by
our previous observations that combining multiple objects is a
challenging part of using APIs [12][17]. We later refined this
observation by noticing that programmers seemed to have
particular trouble using APIs in which the object they needed was
not referenced by any of the methods on the class they started
with, for example in the top code example in Figure 1. We
hypothesized that: (1) For common tasks, most programmers look
for and find the same class to begin their API explorations; (2)
Programmers explore a class by examining its methods, and the
classes referenced by these methods; and (3) because of the
previous two hypotheses, programmers would be significantly
faster if the classes programmers gravitate toward as starting
points reference other needed classes in at least one of their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-59593-995-1…$5.00.

Figure 1. Sample code using two different APIs. APIs that
produce similar looking code can be remarkably different in

terms of learnability. We compare APIs and show that
programmers find the same starting classes and are

significantly faster combining multiple objects when the other
class they need is referenced by a method on the starting class.

mailServer.send(mailMessage)

mailMessage.send(mailServer)

vs.

105

methods. We designed our user study to test these three
hypotheses.

This is of practical interest because in real world APIs like Java’s
JDK and Microsoft’s .NET, it frequently seems to be the case that
the classes one needs are not referenced by the classes with which
one starts. It has implications not only for API design, but also
how to design effective programming tools and documentation for
current APIs. Our previous research has shown that the
programming language, the development tools, the API
documentation, and the APIs themselves all impact programmers’
use of APIs.

To test the three hypotheses, we created two different versions of
three different APIs. Two of the APIs were based on real APIs in
which the class we thought was the most logical starting point did
not reference other, needed helping classes. The third task was
designed to be domain-independent, and factor out programmers’
experience with any real domain or API. We then had ten
programmers perform each of the tasks; they were randomly
assigned different versions of each API.

In summary, we found that, for the tasks we selected,
programmers did indeed gravitate toward the same starting
classes, use the methods of this starting class to explore the API,
and were significantly faster — between 2 and 11 times faster at
the part of the task requiring combining the objects — using the
APIs where the starting class contained methods referencing the
helper classes (rather than the reverse). Because of the varied
nature of our tasks, and because the strategies and work styles
exhibited by our participants are consistent with those we have
seen in earlier studies, we feel confident that these results will
generalize to different APIs as well.

The rest of the paper is structured as follows. Section 2 discusses
other API design goals that potentially compete with usability.
Section 3 summarizes related research on API usability and object
design. Section 4 describes the methodology used to create and
run our user study. Section 5 presents the empirical results of the
study and Section 6 discusses their implications. Section 7
describes the potential threats to the validity of our study, how we
have tried to mitigate them, and the dimensions in which the
results of our study might generalize.

2. OTHER API DESIGN
CONSIDERATIONS
This paper focuses on the usability considerations of API design
(and specifically learnability and discoverability considerations).
However, there are other API design considerations such as those
relating to performance, implementation and architecture [Stylos
2007a]. In this section we discuss how method placement affects
some of these other API design goals.

Our general finding is that it is better for methods to be on the
class that the user starts from (e.g., on mailMessage in Figure
1). However, in some cases, methods might not be placed on the
most discoverable class so as to preserve information hiding. For
example, it might be desirable for the MailMessage class not to
know about the existence of a MailServer class. This
information hiding might be more important in cases where the
two classes are on different abstraction layers within the API, to
prevent a lower level from knowing about a higher level.

In some cases it might not be desirable to place a method on an
interface or on an abstract class. For example, if MailMessage
is an interface, placing the send() method in MailMessage
would require additional, possibly duplicated, code for all
implementing classes, and miss an opportunity for reuse.

Placing a method on two or more different classes — for example
giving both MailMessage and MailServer a send()
method — has the additional disadvantages of increasing the size
of the API and the implementation.

An API design must weigh these and other trade-offs and come to
solutions that are appropriate for particular APIs, audiences, and
use cases. The purpose of our research is to provide additional
data that can inform API design decisions by providing a focused
usability evaluation.

In cases where the API design implications of the usability
evaluation might not be appropriate, the usability observations can
still be used to inform tool and documentation design.

This study focuses specifically on the learnability aspects of API
usability. We feel that this is an important part of usability for
several reasons. APIs are so large that people must often learn to
use different parts; no one is an expert at every part of today’s
large frameworks. Additionally, finding and initially learning an
API is the first and one of the most common steps in using APIs.
Finally, APIs’ learnability can affect their adoption, determining
whether or not an API is used further or not. Anecdotally we have
heard of companies switching which APIs they use to implement
a product because early development in one API was too difficult.
Focusing on the early aspects of usability helps ensure that
programmers will stick around to appreciate the other aspects.

Programming language design also impacts method placement. In
some object-oriented languages, methods are not necessarily
“owned” by one class but can be equally associated with all of the
classes in its signature [3]. This would seem to remove the
asymmetric discovery barrier created by current languages’
method ownership. However, this also comes at the expense of
potentially making it harder to find the methods that are currently
owned by only one class by filling up the documentation and
code-completion menus with many potentially less-relevant
methods. Currently, method ownership is a useful (though
imperfect) clue about which methods are most relevant to a class.

3. RELATED WORK
Most previous research has focused on studying the usability of
specific APIs [4][5]. Our research attempts to generate more
generalizable results by studying patterns that occur across many
different APIs.

This research follows our previous work examining the usability
implications of factory [9] and required-constructor object
creation [18] patterns. These studies were inspired by API
usability research at Microsoft [4] and elsewhere [2][15].

API designers with experience building some of the most widely
used APIs have published API design guidelines [1][7]. These
resources provide insightful anecdotes on how to (and how not to)
design APIs, but do not provide specific guidance on method
placement.

Cwalina recommends that APIs require the instantiation of only a
single object for common tasks [7], which would simplify the task

106

of method placement. Our observations support this; this study is
designed to provide evidence for how to make it easier to
accomplish tasks requiring the instantiation of multiple objects.

Information foraging theory describes users’ exploration of many
different types of data in terms of Information Scent [16].
Researchers have found many common patterns that seem to
occur across many different domains that meet a certain set of
criteria. Previous work has shown that information foraging
theory likely applies to program maintenance [14], and it seems
also likely that it would apply exploring an API using its code and
documentation, which would allow previous research to be
leveraged to better understand API usability. The focus of our
study is specifically about searching for a starting class and
methods in classes, and so results from the previous information
foraging theory research does not provide sufficient guidance for
design.

4. METHOD
To test our hypotheses, we selected real-world tasks from real
APIs in which multiple objects were required. However, we
distilled down the tasks to be small enough to be feasible to
implement in about half an hour with no prior knowledge. We
also included an intentionally domain-independent task.

4.1 Study Overview
Our study involved ten programmers each performing three small
programming tasks. In addition, for two of the tasks, they were
asked to first write pseudocode for how they would expect to
solve the task (before looking at any real APIs). This allowed us
to capture the programmers’ expectations about the task
independent from the actual APIs. During the programming stage
we used the think aloud protocol to capture more information
about what programmers were looking for and what their
assumptions were.

Participants were given the following study instructions:

This study involves using Java APIs to perform a series of
small programming tasks. We are studying the APIs, not you.

In some tasks, you will be asked to first use a text editor to
write the code that you would expect to write to solve the task.
Then you will be asked to use Eclipse to write a small program
that performs the specified task using the specific APIs (unless
otherwise specified). After 30 minutes on each task, you will be
asked to continue to the next task so that we can collect
observations about as many tasks as possible.

We used screen capturing software to record the contents of the
screen and programmers’ think-aloud verbalizations. By asking
programmers which subtasks they were working on when it was
not clear, we were able to use the recorded videos to measure how
much time participants spent on different aspects of the tasks.

For the pseudocode writing step, programmers were given only a
text editor. For the programming steps programmers were
presented with an Eclipse IDE environment and a Firefox browser
with the appropriate Javadocs. (Because they were using modified
APIs, we told them — if asked — that they should not use other
internet resources to find sample code. However, most
participants did not ask.)

In the tasks, condition A represented the API closest to the real
API (if applicable), in which the task required the use of an object
that was not referenced by the class we expected to be found as a
starting point. Condition B represented the “fixed” API, in which
the class we expected would be used as a starting class did contain
a method referencing the helper class. APIs in each condition
were fully functional so that participants’ programs could be
compiled and would actually work.

To create the different conditions, we modified the source code of
the original API implementations and used the modified APIs and
implementations to generate new JAR libraries and Javadoc
documentation. At the beginning of each task, we loaded an
Eclipse project with a skeleton class and showed participants how
to use the Firefox web browser to access the Javadoc pages for the
task. We used Eclipse version 3.3.1 and Firefox version 2 on a
MacBook Pro running OS X 10.5 with an external monitor, mouse
and keyboard.

The order of the tasks was balanced to account for any learning
effects. Participants were randomly assigned to conditions for
each task, with the restriction that each participant was given at
least one task in condition A and at least one task in condition B.

To test the hypothesis that programmers would find the same
starting classes, we did not tell programmers which classes were
required to complete the task. However, to limit the scope of the
tasks and ensure that participants used the APIs we were
interested in, we did tell participants which packages to use.

4.2 Participants
We used on-campus posters and electronic message boards to
advertise our study and get participants. We prescreened
participants using an online survey that asked potential candidates
about their programming experience and contained a small
programming question to ensure sufficient knowledge of Java.

Our ten participants had between one and eleven years of Java
experience, with a median of 3 years. All participants were male,
and ranged in age from 19 to 26, with a median age of 23.

4.3 Email Task
The email task involved a slight modification of the javax.mail
APIs. In the actual API, a Message class must be sent using a
static method on Transport class. In the modified condition B, we
added a static send() method on the MimeMessage class as
well.

The instructions for the email task were as follows:

In EmailTask.txt, write pseudocode for how you would expect
to send an email message. Now add code to the EmailTask.java
file in the EmailTask Eclipse project to finish this task using
the Java Mail APIs in the javax.mail.* packages.

Send the email to ProgrammingStudy@gmail.com with
whatever text you please. You may check if the email was
received by logging into the ProgrammingStudy account with
the password: ********.

The javax.mail package and its subpackages contained 61 non-
exception classes.

107

Programmers were given starter code that set up mail server
information in the Session object. However, this starter code did
not contain references to the Message or Transport classes.
Programmers were given access to local Javadoc files for the Java
Mail APIs.

The starter code was as follows:

Properties props = new Properties();

props.put("mail.smtp.host", "localhost");

props.put("mail.from",
"ProgrammingStudy@gmail.com");

Session session =
Session.getInstance(props, null);

Possible solution code for the two conditions were as follows:

MimeMessage msg = new MimeMessage(session);

msg.setFrom("ProgrammingStudy@gmail.com");

msg.setRecipients(Message.RecipientType.TO,
"ProgrammingStudy@gmail.com");

msg.setSubject("Test Subject");

msg.setText("Test message body");

Transport.send(msg);
 OR
msg.send();

4.4 Web Authentication Task
The web task was based on a modified version of the Apache
Axis2 API for web-services1. In this API, username and password
authentication are set by passing an Authentication class instance
to the Options class. To simplify the study task, we extended and
repackaged the actual Axis2 API to include a class capable of
downloading the contents of webpages in a single operation. In
the original API the Authenticator was set using a generic method
on the Options class and a special string flag; we simplified this to
a specific setDefaultAuthenticator() method to focus
specifically on the decision to use the Options class.

The instructions for the web task were as follows:

In WebTask.txt, write pseudocode for how you would expect to
show the html contents of the password protected page
http://www.jsstylos.com/protected/test.html on the console. You
may test access the page in a web-browser, using the username
“username1” and password “password1”. Now use the
WebPageTask.java file in the WebTask Eclipse project to print
out the contents of this webpage using the APIs in
org.apache.axis2.transport.http.* packages.

The org.apache.axis2.transport.http package contained 32 classes,
at most three of which were needed to complete the task.

Possible solution code for the two conditions were:
WebRequest webRequest = new WebRequest();

webRequest.setUrl("http://www.jsstylos.com/protect
ed/test.html");

Authenticator authenticator = new Authenticator();

authenticator.setUsername("username1");

1 http://ws.apache.org/axis2

authenticator.setPassword("password1");

Options.setDefaultAuthenticator(authenticator);

 OR

webRequest.setDefaultAuthenticator(authenticator);

System.out.println(webRequest.getPageContents());

4.5 Thingies Task
The Thingies task was designed to test the API pattern outside of
programmers’ expectations from any particular domain. To this
end we modified the names of a real API with nonsensical names
as in previous studies [9]. Unlike the other tasks, programmers
were given a starting class and were not asked to write
pseudocode. In condition B of the Thingies task, participants were
required to find an object that could “bless” their Foo instance in a
package of 53 nonsensically-named classes.

The instructions were as follows:

Use the ThingiesTask.java file in the ThingiesTask Eclipse
project to write a program that successfully calls the runMe()
method on a Foo object in the Thingies package.

Simply creating a new Foo object and calling the runMe()
method resulted in a runtime exception saying that the instance of
the foo must be “blessed” before calling runMe(). In condition
A there was a bless method which took as an argument an
instance of a Narn object, making it necessary to instantiate a
Narn object to bless the Foo and successfully call runMe(). In
condition B the Narn class had a bless method, which took an
instance of a Foo as an argument.

Possible solution code for the two conditions were:

Foo foo = new Foo();

Narn narn = new Narn();

narn.bless(foo);

 OR
foo.bless(narn);

Figure 2. Each bar represents the object-combination time
spent by a participant. In condition A tasks, a helper class

contained a required method. In condition B, this method was
placed on the main class. (Colors are just to make the bars

easier to differentiate.)

108

foo.runMe();

5. RESULTS
Our primary result was that, for each task, programmers were
dramatically and significantly faster — between 2.4 and 11.2
times faster — at combining multiple objects in condition B, in
which the class we anticipated as being used for exploration
included a method referencing the required other class. To reduce
variance, we factored out the time participants spent finding a
starting class. The results for the three tasks are shown in Figure
2.

In condition B, all programmers finished all tasks. Two of the five
participants in the condition A email task and two of the five
participants in the condition A web task failed to finish in 30
minutes; in the analysis, we used their time spent combining
objects up until the time limit.

In the email task, participants spent an average of 11.2 minutes
finding and using the Transport object to send the email message
in condition A, and an average of 1 minute sending the email
message in condition B.

In the web authentication task participants spent an average of
15.2 minutes finding and using the appropriate authentication
classes in condition A, compared to an average of 2 minutes in
condition B.

In the thingies task participants spent an average of 6.8 minutes
finding and using the Narn object to bless the Foo object in
condition A compared to 2.8 minutes in condition B.

Because the timing data exhibited both ceiling and floor effects,
we used the Wilcoxian Rank Sum method for computing statistic
significance. We found statistically significant (p < 0.05)
differences between conditions A and B for each of the three
tasks.

We did not see a statistically significant effect of task order or
individual participant programming experience on task
completion times, showing that there was sufficient counter-
balancing.

We also found evidence that, for the tasks we selected,
programmers found and used the same classes as starting points.
In the email task, all ten of our participants found and instantiated
or read the documentation for the Message class before finding
or reading the Transport documentation (no one started in the
Transport class and then found the Message or
MimeMessage later). In the web task, eight of our ten
participants found and instantiated or read the documentation for
the WebRequest class before examining or instantiating the
Authorization or Options classes. This is true despite the
fact that we did not tell programmers which classes to use. Along
with the results from the participants’ pseudocode, this suggests
that the classes programmers find and use to explore the API are
strongly influenced by programmers’ expectations and the names
of the classes in the API.

Based on the pseudocode written by our participants before seeing
the actual APIs, all of our participants expected to be able to call a
“send()” method on the same class they used to represent the
email. Eight of the ten participants expected to be able to specify
the username and password in the same object used to request the
contents of the password-protected webpage.

An example of pseudocode one participant wrote for the email
task was:

emailsender sr =new emailsender();

sr.setemailid(emailid);

sr.setsubject(subject);

sr.setserver(server)

sr.setmessage(message);

sr.send();

An example of pseudocode another participant wrote for the
webtask was:

HTTPGrabber webGrab = new HTTPGrabber();
webGrab.setURL("http://www.jsstylos.com/protecte
d/test.html");

webGrab.addHeader("username", "username1");

webGrab.addHeader("password", "password1");

String s = webGrab.fetchURL();

6. DISCUSSION
The APIs in which the methods were on helper objects were
harder to use because:

• Not finding an expected method, participants would sometimes
question their (correct) choice of starting class;

• Programmers had to recognize that the use of an additional
class was required;

• Programmers had to locate the additional class.

The common strategy programmers used to find a starting class
was to browse the class list in the package documentation of the
Javadocs. Based on the seeming relevance of a class name they
would then visit the Javadoc for that class. In the class
documentation, participants used the short textual summary and
also the list of available methods to help determine if the class
could help them solve the task. If it looked potentially relevant but
did not seem to contain all of the necessary information, they
would sometimes explore the class’s interfaces or subclasses, but
more commonly would go back to the package list to browse for
another class. Several of our participants performed similar
explorations using Eclipse’s code completion as the primary
method instead of the Javadocs. The Eclipse workspace was set
up so that the Javadocs were linked with the JAR files, so that the
mouse-over tool-tip of a class or method would show the Javadoc
documentation.

Most participants browsed the package list and class
documentation from top to bottom, rather than using search or
scanning to check if a particular name occurred in the alphabetical
list. However, several of our participants used Firefox’s in-page
search function to look for specific keywords in the Javadocs.
This was sometimes a successful strategy, even when class names
did not exactly match the search term. For example, search for
“send” in the mail documentation found the
SendFailedException class, which referenced
Tranport.send(Message) in its “See also” list. One
participant chose to enable Firefox’s “Highlight all” search
parameter to visually reveal all the instances of his search terms
on the page. It is possible that web documentation that more

109

directly supports search — such as Microsoft’s MSDN — would
prompt programmers to make greater use of searching.

Although the Javadocs included a “Use” page for each class,
which listed all of the classes that reference the selected class and
so included the needed helper class for these tasks, only one of
our participants ever looked at a Use page. To support tasks like
the ones in this study one might argue for more prominent display
of this information. However, for some classes, the Use page
contained more than a hundred different references, which are all
presumably important to some use of the class.

Most of the participants’ pseudocode was of the following form:

Object obj = new Object();

obj.setProperty(value);

...

obj.callActionMethod();
Based on our previous studies [18][9], this seem to be a
commonly expected form of API for Java and C# developers.
Several of the unexpected difficulties we have observed
programmers having are as a result of APIs not following this
simple model, by not providing a default constructor (or any
public constructor), for example by requiring the combination of
multiple objects, or by requiring the use of subclasses. It does not
seem feasible to be able to provide such simple and high-level
classes for every possible task — much of the rich expressiveness
of APIs comes from being decomposed into multiple parts that
can be assembled in new ways. However, this model would seem
to be a standard of simplicity to which APIs might aspire for the
most common tasks.

Previous research [4] has used the Cognitive Dimensions
framework [10] to classify and better understand the root causes
of API usability barriers. In terms of these dimensions, the results
of our study can be seen to reveal barriers stemming from
visibility and hidden dependencies. While not hidden in the
resulting code, the dependencies between a class and a class that
acts on it are effectively hidden by the tools and documentation as
used by our participants. Programmers’ difficulties finding related
classes may also be seen as a challenge in progressive evaluation.
Having coded an incomplete solution, the API offers little direct
feedback on how to complete the task.

6.1 Email Task Discussion
The email task used APIs that were the least modified from the
actual public APIs; in condition A, participants did use the real
public APIs directly. Because of this, there were several
additional API complexities that presented barriers for
participants.

All of the participants in our study examined the abstract Message
class before finding the concrete MimeMessage class. Most
participants found the Message class by browsing the list of
classes in the javax.mail package Javadocs. Many of the
participants attempted to instantiate an instance of the Message
class, even after recently viewing documentation stating that the
class was abstract.

6.2 Web Task Discussion
In the web task, unlike in the other two tasks, neither the two main
required classes — WebRequest and Authenticator —
directly referenced the other. Instead, the Options class

referenced the Authenticator class, and the WebRequest
class implicitly used the Options class. Surprisingly, however,
combining these two classes did not take participants significantly
longer than the objects in the other two tasks. This might be in
part because none of the 30 classes provided were obvious starting
points, and participants reverted to a brute force examination of
every class. We restricted participants to this package and chose
this package size to ensure that the task would be feasible and
focus on the APIs we designed, however this made the
exploration simpler than in actual tasks. In a programmer’s real
work, without instructions specifying which package to use,
searching all of the possible packages for relevant classes would
likely be even more time-consuming.

6.3 Thingies Task Discussion
Surprisingly, participants were faster at recognizing the need for
and finding the required helper class in the Thingies task, in which
the classes did not have sensible names, than they were in the two
other, more sensible tasks. The reason for this seemed to be that
— lacking any semantic clues from the API names —
programmers reverted to a comprehensive hunt for a class with a
relevant looking method. In the other tasks, programmers spent
more time trying to understand the classes, which ended up taking
more time. However, this strategy only worked in the thingies task
because the package was small enough that programmers could
manually scan each class. In a larger and less bounded API, this
strategy would likely be less effective.

7. EXTERNAL VALIDITY
When studying API usability, it is important to identify the scope
with which our results might be generalized and the potential
limitations of our study.

The participants in our study were all PhD, masters, or
undergraduate students. However because the work and
exploration strategies exhibited by our subjects matched those
observed in previous studies with more varied participants [4][6],
we feel that the results will generalize beyond this population, at
least to other programmers exhibiting the common “pragmatic”
and “opportunistic” work-styles [6]. Programmers in our study
exhibited one of these two personas, characterized by bottom-up
and learn-as-you-go coding techniques.

The three tasks in our study were smaller than most realistic
programming tasks, so that we could test more tasks and to avoid
extraneous task complications. There could be more complicated
effects of method placement within larger and longer tasks, and it
is not yet clear what the time impact would be on programmers
doing their own tasks. Because of the similarities in work
strategies we saw across our tasks, and because programmers
often approach larger programming tasks by focusing on smaller
subtasks, we feel that our results will generalize to different and
larger tasks. Because of all of our tasks focused on creating or
modifying code, we cannot say what the usability implications of
method placement are on other tasks such as reading or debugging
code.

During the study we had the competing goals of having
programmers work in a realistic manner to get accurate timing
information and to gain insight into programmers’ thoughts and
assumptions while they worked. We chose to use the think-aloud
protocol, which likely affected their times. However, because we
used the same protocol in both conditions, we think that the

110

relative time comparisons between the two conditions are still
valid.

Because we used modified versions of real APIs, participants in
our study were not able to use internet resources to find sample
code, a common starting strategy when learning a new API.
However, because it is often not easy or possible to find an
appropriate sample for the right version of the right API, we feel
that the exploration of APIs without sample code is still a useful
indication of its usability.

The programming tasks we used were in Java, and the
documentation we provided used the standard Javadoc format. A
different documentation style might lead to different programmer
behavior; for example, documentation that emphasized searching
might make programmers less likely to browse classes, instead
guessing relevant search terms. However, we expect that
programmers would find similar starting points whether by
searching or browsing, and have similar difficulties after they find
these starting points.

8. IMPLICATIONS
Because we directly compared an API solution to the issue of
method placement, the most direct implication from the results of
our study is that changing the APIs would directly benefit
programmers. However, the problems we observed our
participants having with the original APIs could also be addressed
in fixes to the documentation or the developer tools.

8.1 API Design
One question when trying to address API method placement
usability issues in an API is whether we can automatically identify
potential problems. Identifying and fixing potential method
placement usability issues across a large API would require
empirical data on: the most common tasks for any given part of
the API; the classes programmers select as starting points to try to
accomplish these tasks; and the code the programmers end up
writing. Given these three things it would be possible to
approximate the exploration difficulty of a given task by using a
graph of which classes reference which other classes in their type
signature. API designers might have information about tasks,
starting points, and sample code while designing an API. In these
cases, it would be possible to manually inspect the sample
solutions that some API designers recommend creating before the
actual API [1][7] to identify potential discoverability barriers
before an API is released, potentially improving method
placement.

One additional issue highlighted by this study was the difficulty
programmers have finding classes that are useful to begin
exploration of an API. Placing methods on a main class still does
not solve the problem of easily finding the starting class in the
first place. As with other API usability issues, this could be
addressed by changes to the API, documentation or tools. Existing
API recommendations all point to class naming as a critical aspect
of usability [7], and our research confirms this. Based on the
think-aloud, participants in our study seemed to primarily use the
class names in the list of classes in a package to decide which
classes to look at. Cwalina et al. recommend reserving the more
general, recognizable class names for common and implementable
classes [7]. The classes in the email task are an example of how
not to do this: the attractive name Message is used by the
abstract class, while the implementable class is named the more

obscure MimeMessage. In addition to using recognizable high-
level class names for common classes, our study suggests that
giving common classes names that start early in the alphabet when
possible might also be helpful.

8.2 Documentation Design
An alternative solution that we are currently exploring is to leave
the APIs as they are and to change the documentation to help
programmers more easily find related classes. One simple solution
would be to use the @see Javadoc tag to reference more related
classes. However, as revealed by the pseudocode written by our
participants, programmers often expect to need only one class,
and so a documentation solution would have to not only make it
easy to find the related class but find an effective way of helping
programmers realize that they need another class. Another
potential solution would be to add more descriptive textual
documentation. However, programmers in our studies often skim
or completely skip over textual class documentation, choosing to
refer to the list of methods and fields instead.

A more proactive documentation solution could be to modify the
format of Javadoc to include placeholder methods where
programmers might expect a method to be. For example,
programmers scanning the list of methods on the Message class
could see an entry for send() even if that method did not exist.
Instead the documentation would mark that method as a
placeholder method and include source code for how to use the
real methods to accomplish the same task (Transport.send(
message) in this case). This technique could also be integrated
into developer tools, so that programmers using code completion
or other design-time features would find these placeholders as
well, which in an IDE could be automatically expanded into the
actual code. This technique would come at the cost of potentially
cluttering classes with too many placeholder methods, possibly
making it harder to find actual methods; however, based our
programmers’ ability to deal with current classes with many
methods, we do not expect this increase in methods to be
problematic.

8.3 Tool Design
Development tools such as the Eclipse and Visual Studio IDEs
could also do more to support programmers using multiple objects
and finding methods on helper classes. Current IDE features like
code-completion and class hierarchy browsers make it easy to see
the methods on a given class but much harder to find other,
related classes. Newer research tools like Strathcona [11] might
help by showing programmers relevant example code that
includes helper classes. However, these tools typically require
large example repositories and are potentially more complicated
and heavyweight than features like code-completion.

9. FUTURE WORK
This study focuses on just one of the many usability issues that
programmers encounter when using APIs; we plan to identify and
address more API usability issues in our future work.

Javadoc could also be changed to make appropriate starting
classes easier to find. We plan to experiment with different
prototype alternative designs to the flat alphabetical class list. For
example, a degree-of-interest font-size model could enlarge the
names of more common classes. These sizes could be calculated
on class usage statistics from the Internet or a sample database,
from team-specific navigation data [8], or from hand annotations.

111

Or based on a fixed number of primary tasks, appropriate starting
classes could be flagged and displayed in bold, for example. We
plan to explore designs that can be applied to current APIs
without extensive manual work.

Programmers in our studies have often used code-completion as a
means of exploring an API. We plan to explore how to make
code-completion even more useful based on the results of our
studies. For example, by suggesting methods from other classes
and by automatically completing instantiation code even when a
factory is required. We plan to address the issue of finding the
right starting class using code-completion also, by changing the
suggestion order or visual prominence, for example.

Another interesting avenue of future research is the modeling of
programmers API exploration behaviors. Previous research on
programming personas suggests that different types of users have
different programming styles and strategies [6], but we are still
just beginning to understand what these strategies are in the
context of API exploration. A more formal, empirically based
model of programmers’ behaviors would inform API,
documentation and tool design. Recent research on programming
understanding has framed programming comprehension in terms
of fact finding – searching for discrete chunks of knowledge about
how a large system works [13]. This might be a helpful way to
frame programmers’ exploration of APIs as well – for example in
the tasks in this study, finding that a Transport class was required
to send an email message was one fact that programmers needed
to find in the documentation.

10. CONCLUSIONS
This paper presents results from a study showing that
programmers were faster using APIs in which the classes from
which they started their exploration included references to the
other classes they needed. We hope that API designers will
consider this knowledge along with their other API design goals
to help create APIs that make it easier for programmers to
perform common tasks. We hope also that the designers of
programming environments and API documentation will use this
observation to help create tools and documentation that help
programmers more easily and simply find related classes
necessary for common tasks using their natural exploration
strategies. And we hope our series of studies will inspire others to
study even more aspects of the usability of APIs, so that usability
can be an important consideration for all future designs.

11. ACKNOWLEDGMENTS
We would like to thank Jack Beaton, Uri Dekel and Jonathan
Aldrich for their feedback on drafts of this paper and this research.
This work was funded in part by a grant from SAP, and in part by
the National Science Foundation, under NSF grant CCF-0811610,
and as part of the EUSES consortium (End Users Shaping
Effective Software) under NSF grant ITR CCR-0324770. Any
opinions, findings and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect
those of the National Science Foundation.

12. REFERENCES
[1] Bloch, J., Effective Java Programming Language Guide, Sun

Microsystems, Mountain View, CA, 2001.
[2] Bore, C., and S. Bore, “Profiling software API usability for

consumer electronics”, Consumer Electronics, 2005.

[3] Chambers, C. Object-Oriented Multi-Methods in Cecil.
European Conference on Object-Oriented Programming. 33-
56. 1992.

[4] Clarke, S. Measuring API Usability. Dr. Dobbs Journal,
May 2004, pp S6-S9. 2004.

[5] Clarke, S. Describing and Measuring API Usability with the
Cognitive Dimensions. Cognitive Dimensions of Notations
10th Anniversary Workshop. 2006.

[6] Clarke, S. “What is an End User Software Engineer?”, End
User Software Engineering, Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2007.

[7] Cwalina, K. and Abrams, B. Framework Design Guidelines.
Addison-Wesley, Upper Saddle River, NJ, 2005.

[8] DeLine, R., Czerwinski, M. and Robertson, G. Easing
Program Comprehension by Sharing Navigation Data. IEEE
Symposium on Visual Languages and Human-Centric
Computing. 241-248. 2005.

[9] Ellis, B., Stylos, J. and Myers, B. The Factory Pattern in API
Design: A Usability Evaluation. International Conference on
Software Engineering. 2007.

[10] Green, T.R.G., and M. Petre, “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’
Framework”, Journal of Visual Languages and Computing,
1996, pp 131-174.

[11] Holmes, R. and Murphy, G. C. Using structural context to
recommend source code examples. Proceedings of the
International Conference on Software Engineering (St.
Louis, MO, USA, May 15-21, 2005). 117-125.

[12] Ko, A., Myers, B. and Aung, H. Six Learning Barriers in
End-User Programming Systems. IEEE Symposium on
Visual Languages and Human-Centric Computing (Rome,
Italy, September 26-29, 2004).199-206. 2004.

[13] LaToza, T, Garlan, D., Herbsleb, J., and Myers, B. Program
comprehension as fact finding. ACM SIGSOFT Symposium
on the Foundations of Software Engineering. 361-370. 2007.

[14] Lawrance, J., Bellamy, R. and Burnett, M. Scents in
Programs: Does Information Foraging Theory Apply to
Program Maintenance? IEEE Symposium on Visual
Languages and Human-Centric Computing. 15-22. 2007.

[15] McLellan, S.G., A.W. Roesler, et al, “Building More Usable
APIs”, Software, IEEE, 1998, 15(3) pp 78-86.

[16] Stephens, D. W., and Krebs, J. R. Foraging theory.
Princeton, NJ: Princeton University Press. 1986.

[17] Stylos, J., and Myers, B. Mica: A Web-Search Tool for
Finding API Components and Examples. IEEE Symposium
on Visual Languages and Human-Centric Computing. 195-
202. 2006.

[18] Stylos, J. and Clarke, S. Usability Implications of Requiring
Parameters in Objects’ Constructors. International
Conference on Software Engineering. 529-539. 2007.

[19] Stylos, J. and Myers, B. Mapping the Space of API Design
Decisions. IEEE Symposium on Visual Languages and
Human-Centric Computing. 50-57. 2007.

112

