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ABSTRACT

We recently developed a time-stepping method for simulat-
ing rigid multi-body systems with intermittent contactttlsaim-
plicit in the geometric information [1]. In this paper, wetexd
this formulation to quasi-rigid or locally compliant objes i.e.,
objects with a rigid core surrounded by a compliant layemsi
ilar to Song et al. [2]. The difference in our compliance mbde
from existing quasi-rigid models is that, based on physicati-
vations, we assume the compliant layer has a maximum pessibl
normal deflection beyond which it acts as a rigid body. There-
fore, we use an extension of the Kelvin-Voigg. (inear spring-
damper) model for obtaining the normal contact forces by in-
corporating the thickness of the compliant layer exphciti the
contact model. We use the Kelvin-Voigt model for the tangent
forces and assume that the contact forces and moment sauisfy
ellipsoidal friction law.

We model each object as an intersection of convex inequal-
ities and write the contact constraint as a complementaniy-
straint between the contact force and a distance functiqgrede
dent on the closest points and the local deformation of thiybo
The closest points satisfy a system of nonlinear algebgime
tions and the resultant continuous model is a Differentiah©
plementarity Problem (DCP). This enables us to formulatea g
ometrically implicit time-stepping scheme for solving h€P
which is more accurate than a geometrically explicit scheme

INTRODUCTION

To automatically plan and execute tasks involving intermit
tent contact, one must be able to accurately predict thecbbje
motions in such systems. Applications include haptic sxter
tions, collaborative human-robot manipulation, such asresg-
ing the furniture in a house, as well as industrial autonmaoch
as simulation of parts feeders. These applications arectear
ized by intermittency of contact, presence of stick-sliptfonal
behavior and deformation at the contact surfaces. The mefor
tion at the contact is usually vegmalland therefore the objects
can be modeled as quasi-rigid or locally compliant [2-+5,,
each body consists of a rigid core surrounded by a thin cempli
ant shell. Such objects may have a maximum possible deftectio
and the contact will behave as a rigid contact once the maximu
deflection is reached. This motivates us to model the obgets
locally compliant objects with a limit on the allowable detien
at the contact.

The dynamics of multi-rigid-body systems with unilateral
contacts can be modeled as differential algebraic equation
(DAE) [6] if the contact interactions (sliding, rolling, separat-
ing) at each contact are known. However, in general, theaobnt
interactions are not knowa priori, but rather are discovered as
part of the solution process. To handle the many possésliti
a rigorous theoretical and computational framework, thel@ho
is formulated as a differential complementarity problemg[7
The primary sources of stability and accuracy problems in dy

The discrete problem to be solved at each time-step is a mixed hamic simulation are polyhedral approximations of smoaitt-b

nonlinear complementarity problem.

ies, the decoupling of collision detection from the solotad the
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dynamic time-stepping subproblem, and approximation$éo t
quadratic Coulomb friction model. Irrespective of whethies
model of the object is rigid or locally compliant, all staaéthe-
art time steppers [4,9,10] are explicit with respect to teerget-

ric information,i.e., they use the geometric information obtained
from a collision detection algorithm at the start of the ewtr

time step to compute the state at the end of the time step with-

out modifying this information. The method of Tzitzourisl]1
is the only geometrically implicit method developed to qémet

it requires a closed form distance function between the tad b
ies which is usually not available. In our previous work [1& w
showed simulation results of a disk rolling on a plane wittsip
and depicted the loss of energy due to polyhedral approiomat
and the approximation of the distance function. To overcome
this, we presentedgeometrically implicitime-stepping scheme
for convex objects described by implicit surfaces in whibk t
collision detection and dynamic time stepping problem Igesd
in the same time step.

The main focus of this paper is to develop a geometrically-
implicit time-stepping model for dynamic simulation of a@x
objects described by implicit surfaces, assuming singleatpo

contact between the objects and local compliance at the con-

tacts. However, unlike other locally compliant models, vge a
sume a limit on the maximum amount of allowable deflection
which is realistic in many scenarios.g., to model flesh and
bone for biomechanics and human robot interaction). We ex-
tend our formulation for contact constraints presentedLirt¢
include the deflection at the contact and use a linear viaseel
tic Kelvin-Voigt model {.e., a linear spring-damper model) for
modeling the compliance. The contact constraints alsoitdke
account the maximum allowable deflection at the contacttpoin

Since we are assuming an upper bound on the deflection, there

can be an instantaneous jump in the contact forces whergide ri
core is reached. Thus we formulate our time-stepping prolle
the velocity-impulse level instead of the force-accelieratevel
so that the resulting time-steppers are better behaved.

Our paper is organized as follows. In Section 1, we survey
the relevant literature. In Section 2, we present both timiico-
ous and discrete time dynamics model for multi-rigid-bogs-s
tems with an ellipsoidal dry friction law. In Section 3, weview
the non-penetration condition for the contact constrapres
sented in [1]. Thereatfter, in section 4, we modify these acint
constraints to include compliant contacts with limits oa thax-
imum allowable deflection. The discrete time dynamics model
along with the contact constraints form a mixed nonlinean-co
plementarity problem at each time-step. In Section 5, we giv
examples that validate and elucidate our time-steppingraeh
Finally in section 6, we present our conclusions and lay et t
future work.

RELATED WORK

Dynamics of multi-rigid-body systems with unilateral con-
tacts can be modeled as differential algebraic equatioA&]D
[6] if the contact interactions (sliding, rolling, or sep#ing) at
each contact are known. However, in general, the contact in-
teractions are not knowa priori, but rather are discovered as
part of the solution process. To handle the many posséslit
a rigorous theoretical and computational framework, thel@ho
is formulated as a differential complementarity problemg]7
The differential complementarity problem is solved usiriyree-
stepping scheme and the resultant system of equations to be
solved at each step is a (linear/nonlinear) complemewtarith-
lem.

Definition 1 (Nonlinear Complementarity Problem (NQP)Let
f(z) € R" be a given vector function af € R". The nonlinear
complementarity problem is to findsatisfying 0<z L f(z) >
0, where the symbal connotes orthogonality.é., f(z) -z = 0)
and vector inequalities hold on a per element basis.

Whenf(z) is linear inz, then the problem is referred to as a
linear complementarity problem (LCP). Of particular imgaarce
to this work is a generalization of the NCP known as ithiged
nonlinear complementarity problefh2].

Definition 2. Letg(u,v) : R™ x R™ — R™ andf(u,v) : R™ x
R" — R"™ pe given vector functions af € R™ andv € R"2, with
Ny + n2 = n. The mixed nonlinear complementarity problem is to
find u andv satisfying

g(u,v) =0, u,free
0<v L f(uv)>0

Frictional collisions between rigid bodies have a long his-
tory in mechanics [13, 14]. Here, we give an overview of the
basic approaches and refer the reader to a recent survey arti
cle [15] for a more comprehensive review. There are two pri-
mary approaches to modeling collisions: coefficient ofinest
tion based approaches and force based methods. In the former
the process of energy transfer and dissipation duringsiofli
is modeled by various coefficients relating the velocity ifar
pulses) before contact to that after contact. However, e e
tension of these concepts to situations with multiple cctstés
not straightforward. The force based approaches use a eompl
ant contact model to compute the contact forces where the con
tact compliance is modeled as a (linear/nonlinear) spdaigper
system. In the simplest model (known as Kelvin-Voigt model o
linear spring-damper model), the normal contact force vemi
by a linear function of the deformation and the rate of deform
tion (F = kd+ c9) i.e. the flexibility of the body is lumped as a
linear spring (with spring constak) and damper (with damp-
ing coefficientc). The limitations of the linear model are docu-
mented in [15]. Hertz introduced a nonlinear model of therfor
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F =kd", wheren is a constant [16]. This model was extended to

be the number of bodies amg be the number of contacts. The

a nonlinear spring-damper model by Hunt and Crossley [17] of instantaneous dynamic model can then be written as follows:

the formF = kd" + cdPdY, wherep,q are constants. The mod-
els presented above are believed to be of increasing agdomac

there are more unknown constants dependent on geometny of th

objects and material properties that have to be determired e
perimentally (except for some simple cases). This is a géner
feature of all proposed contact compliance models. In [1&jra

tinuum model of the deformations at each contact is usedg Son

and Kumar [2] have used a 3D linear distributed contact model wherel\)/\l (a)
to compute the contact forces. In this paper we use a lumped Orces, Avp

3D linear spring-damper to model the contact compliancé-sim

lar to [19]. However, we note that we could have replaced this

with a lumped nonlinear model if required. We use an elliptic
dry friction law [20] that is a generalization of Coulombisck
tion law to model the friction at the contact.

DYNAMIC MODEL FOR RIGID BODY SYSTEMS

In complementarity methods, the instantaneous equations

of motion of a multi-rigid-body system consist of five parts:
(a) Newton-Euler equations(b) Kinematic map relating the
generalized velocities to the linear and angular velagitie)
Equality constraints to model jointsd) Normal contact condi-
tion to model intermittent contact, ar(@) Friction law. Parts
(a) and(b) form a system of ordinary differential equatiof(s)

is a system of (nonlinear) algebraic equatiafb, is given by a
system of complementarity constraints, gl can be written
as a system of complementarity constraints for Coulomitidiric
law using the maximum work dissipation principle. In thippa
we use a more general elliptic dry friction law [20]. Thusgth
dynamic model is differential complementarity proble(®@CP).

Newton-Euler Equations of Motion:

M (q)\) == Wn)\n"‘Wt)\t+W0)\0+Wr)\r+)\app+ Avp (1)

is the inertia tensor\app is the vector of external
is the vector of Coriolis and centripetal forcé¥,,
Wi, Wo, andW, are dependent ajpand map the normal contact
forces, frictional contact forces, and frictional mometdghe
body reference frame.

Kinematic Map:

q=G(q)v 2)

whereG is the matrix mapping the generalized velocity of the
body to the time derivative of the position and orientatidine
JacobiarG may be a hon-square matrig.J, using a unit quater-
nion to represent orientation) bGt' G = |.

Nonpenetration Constraints: The normal contact constraint
for theith contact is

0 < Ain L Win(g,t) >0 (3)

To solve this system of equations, we set up a time-stepping Wherei = 1...nc are the number of contactfi, is a signed dis-
scheme and solve a complementarity problem at each time step tance function ogap functionfor theith contact with the prop-

We present below the instantaneous-time formulation a$ wel
as an Euler time-stepping scheme. To simplify the expasitio
we ignore the presence of joints or bilateral constraintth@
following discussion. However, all of the discussion belovids

in the presence of bilateral constraints.

To describe the dynamic model mathematically, we first in-
troduce some notation. Lefj be the position and orientation
of body j in an inertial frame an@; be the concatenated vector
of linear () and angular) velocities. The generalized coor-
dinates,q, and generalized velocity, of the whole system are
formed by concatenating; andv; respectively. Leki, be the
normal contact force at théh contact and,, be the concatenated
vector of the normal contact forces. gt andAj, be the orthog-
onal components of the friction force on the tangential plah
theith contact andy, Ao be the respective concatenated vectors.
Let Ajr be the frictional moment about thih contact normal and
Ar be the concatenated vector of the frictional moments.npet

3

erty Win(qg,t) > O for separationyin(qg,t) = O for touching, and
Win(g,t) < O for interpenetration. The above gap function is de-
fined in the configuration space of the system. Note that tisere
usually no closed form expression 19 (q,t).

Friction Model:

(Ait, Nio), Air € argmax —(VieA; 4 Viokio + VirAfy)
( i,tv >‘i107)‘i,r) ek ()\imui)}
wherei = 1...n, v; is the relative velocity at contactand the
2
friction cone is defined b (Ain, ) = {(Ait, Aio, Air) : (%) +
Aj 2 Aj 2 242 . ..
(ﬁ) + (a—':) < KA} wheres, €0 ande; are given positive

constants defining the friction ellipsoid apdis the coefficient
of friction at theith contact [21, 22].

Copyright © 2007 by ASME



Time-Stepping Formulation: We use a velocity-level formu-
lation and an Euler time-stepping scheme to discretizehbge
system of equations. Lét denote the current timdy be the
time step. Use the superscrigteind? + 1 to denote quantities
at beginning and end of thé&h time step respectively. Using
vl = (vt —vh /hand gt = (g1 —qf)/h, and writing in
terms of the impulses we get the following discrete timeeyst

MV = M+ h(WoAS T+ WA T WS + WAl
+ Aappt+Avp)
q' "t = g’ + hGv+?
0< h)\f]Jrl 1 wn(q€+l) >0
AN, Mg A € argman — (V) A+ (Vg ) Vo
+ (V) M)
thME, AL ALY € Fi(hhin, )}
(4)

The argmax formulation of the friction law has a useful al-
ternative formulation [20]:

E2UpnoW{ V™ 4 pioo=0
EgUpno WiVt +pooc =0
E2Upno W vl 4 poc=0
-1 -1
(Upn) o (Upn) — (E?) " (propy) — (E5) ~ (Poo Po)
—(E?) *(prop) >0

(5)

whereo connotes the Hadamard product, the impplse=hA.),
the matrice€:, Eo, E;, andU are diagonal witlith diagonal ele-
ment equal t&;, &0, &r, andy; respectivelyg is a concatenated
vector of the Lagrange multipliers arising from the Frithd@p-
timality conditions of argmax formulation. Each componeht
o ( g)) is the magnitude of the slip velocity at contact

Equation 4, which is to be solved at each time step, is ei-
ther an LCP or an NCP depending on the time of evaluation of
W), the approximation used fap,(q‘**), and the representa-
tion of the friction model. If we evaluaté/ ) at/+ 1, use a
quadratic friction law (Equation (5)), and ugg(q‘*1), we have
a geometrically implicit NCP formulation ensuring that ten-
tact conditions are satisfied at the end of the time step. Mexyve
evaluatingn(q‘*1) is possible only if we have a closed form
expression for the distance function, which we do not have in
general. Instead, in the next section we formulate the gap-fu
tion between the closest points as a set of algebraic emqsatio
and subsequently extend the formulation to include compéa

NON-PENETRATION CONSTRAINT

In this section we rewrite the contact condition (Equatipn 3
as a complementarity condition in the work space, combine it
with an optimization problem to find the closest points ara/pr
that the resultant system of equations ensures that thaatont
constraints are satisfied [1]. For ease of exposition, warass
here that each object is a convex object described by a single
implicit surface. A more general formulation where eacteabj
is described by an intersection of implicit surfaces is give
Appendix A of [1]. Let us consider thigh contact. Let the two
objects be defined by convex functioh&1) < 0 andg(§z) <0
respectively, wheré&, and &, are the coordinates of points in
the two objects. Let; anday be the closest points on the two
objects. The equations of the implicit surfaces have thpgnty
that for any poini, the point lies inside the object fdi(x) < 0,
on the object surface fof (x) = 0, and outside the object for
f(x) > 0. Thus, we can define the gap function in work space as
either f(a2) or g(a1) and write the complementarity conditions
as either one of the following two conditions:

0<Ain Log(az) ©)

>0
>0
wherea; anday are the closest points on object 1 and 2 given by

argmin {[[&1—&|*: f(&1) <0, g(&2) <0} (7)

It can be shown easily from the Karush-Kuhn-Tucker (KKT)
conditions of Equation 7 that; anday are the solutions of the
following system of algebraic equations.

ap—ay=—110f(a1) =1>00(ap)
f(al) =0
g(az) =0

(8)

wherel; andl, are the Lagrange multipliers. The geometric
meaning of the first two equations is that the normals to ttee tw
surfaces at their closest points are aligned with the lifgirg
the closest points. The solution to Equation 8 gives theeslbs
point when the two objects are separate. However, vehenay,

the solution is either the touching point of the two surfagea
point lying on the intersection curve of the two surfacesug,h
as written, Equation 8 and 6 do not guarantee non-pengiratio
However, note that the distinction between touching poams
intersecting points, as shown in Figure 1, is that the nosrtal
the two surfaces at the touching points are aligned whikeritoit

so for intersection points. Whem = ay, we lose the geometric
information that the normals at the two points are aligneslef
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Figure 1. THREE CONTACT CASES: (LEFT) OBJECTS ARE SEPA-
RATE, (MIDDLE) OBJECTS ARE TOUCHING, (RIGHT) OBJECTS ARE
INTERSECTING.

f(x) <=0

write our equations in the form above. Rewriting the aboweseq
tions in terms of the unit vectors allows us to avoid this peah

. Df(al)
al—az——Hal—aZHW
Of(a) _  Og(ar) 9
EHOIREE] ®)
f(al):o
g(a) =0

Proposition: Equation 6 and 9 together represent the contact
constraints ie. the two objects will satisfy the contact constraints
at the end of each time step if and only if Equation 6 and 9 hold
together.

Proof: As discussed above.

Note that, since the first two vector equations are equativity u
vectors, there are only two independent equations for e,
the above system has 6 independent equations in 6 vari#@ttes.
though we have restricted our discussion to convex objeats,
believe that this framework can be extended to nonconvesctdj
that are described as an union of convex objects.

COMPLIANT CONTACT MODELING

In this section we describe the 3D linear viscoelastic model
of contact [19] and modify our contact constraints to ineltide
deflections at the contact. We incorporate this model inioug-t

flexible at each contact. The general formulation where buoth
bodies are flexible will contain the additional constrahdttthe
contact forces acting on both the bodies have to be equal. For
each contact, the normal impact force;, is broken apart into
two components:

)\in = >\inr+)\ins (10)
whereAins is the component of the force that is obtained from
the deformation of the spring amgh, is the component from im-
pact with the rigid core. The tangential force at each cdntac
Ait = [Ait,Aio] is also given by a linear spring-damper model.
However, we do not have a bound on the maximum displace-
ment in the tangential direction. Concatenating all theviid
ual force components into vectors allows us to write for each
contact (we drop subscripfor legibility), A = Ko+ Cd, where
A = [Ans, At,Ao] @andd = [On, &, 8o are 3x 1 column vectors with
On, 01, & being the normal and tangential deflection. The matri-
cesK, C are stiffness and damping matrices given by

Knn Knt Kno Cnn Cnt Cno
K= Ktn Ktt Kto C= Ctn Ctt Cto
Kon Kot K00 Con Cot C00

For systems with multiple contact, the contact forkeand body
deformation® become concatenations f subvectors, where

nc is the number of contacts. The stiffness and damping matri-
ces are block diagonal matrices of size. % 3n;, where each
diagonal block of size & 3 represent one contact.

Complementarity Formulation

When we consider contact compliance the contact con-
straints in Section 3 need to be modified to take into account
the deflectiord. We denote the maximum normal deflection by
o9 > 0 and assume that it will be determined experimentally. Fig-
ure 2 shows two objects in contact with each other. The bod [i
shows the deformed shapes of the two objects. The point of con

stepping scheme and present the Mixed NCP problem that we tact is the point where the virtual objects shown by dottaddi

are solving at each time step. We extend the Kelvin-Voigtehod
with the physically motivated observation that the defaiores

in the normal direction are bounded by some maximum value.

touch. The deflections of the two objects along the normal at
the contact point arg,; andd,» respectively. In the subsequent
discussion, we will assum&,; = 0 for simplicity and drop the

For example, a human finger has a thin compliant layer of mus- subscript 2 fromd,,. Therefore, the constraints for the closest

cle and tissue surrounding the rigid core (bone). The aatitio

of a force on the finger results in a deformation of the thin eom
pliant layer until the rigid core is reached, at which poimé t
non-penetration response is rigid. Therefore, our modelval

for a maximum possible deflection, beyond which the contact b
haves as a rigid body contact. The linear model can be regplace

by a nonlinear model but this comes at the cost of more unknown

modeling parameters to be determined experimentally. iFor s
plicity of exposition, we consider only one of the objectd®

points are given by

. Df(al)
a—ay= —Hal—az||m
Of(an) _ Og(a2)
[0f(an)|  [[0g(a2)]l (11)
0= f(al)
0=g(a2) +n
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equality constraints in the mixed NCP are:

0= MV[-H‘—‘,-MV _|_Wl’+lpl’+l W€+1p[+1 Wl’+lpl’+l

+WEPE T+ Pt Pup
0=p - (K& +cE -8
Of ( l’+l)
0= (a§+l l’+l) + H l’+l l’,+l||
Iof @l
_ Of@'h) | Og@™
I EHC SN EECS
_ f( é+1)
0=g@)+5,"
Figure 2. SCHEMATIC REPRESENTATION OF THE DEFLECTION AT L
CONTACT. THE CONTACT IS WHERE THE DOTTED CURVES TOUCH. 0=g(a, altly 5t Dg(az+ ) )
1Dg(a5™)|
~ 0= E2UpLtLo (W] )ALy 4 pf+logftl
where.én i§ thgalgebraic distanceHowever, the .normal cont_act 0= E2UpLtLo (WD) Ly 4 pbtlo gitl
force is given in terms of the Euclidean deflection. To obtha 2U0/+1 LAl e 1
Euclidean deflection from this algebraic deflection we nbtd t 0=EfUp, "o (W )’ VTP oq’
the Euclidean deflection is the distance between the pgiand (14)
the point where the normal tg(ay) + dn2 = O atay intersects
g(az) = 0. From the above argument it can be seen that W?elreeézl 7 [1pf1+1 pitt pLthT, phtt = pbil 4 p4it anda’™ =
[6n+ 6t+ 60+ ]T.
The complementarity constraints grare:
Og(az)
92 O g(ag)) ~° 42 .
ﬁ-é—l LIJ(aiJrl /+1) —|—6 +
0< [ppt| L 5 -5t >0 (15
The complementarity conditions in Equation (6) thus beceime oltt Z/h

_ where
0<Ans L Y(ag,a onh>0
< Ans L P(ag,a) + &y > (13)

0<Ap L 62 -0 >0 (= Upf{”‘ o UpH1 (Etz)il (p“lo p“l)

~ (E2) " (pitopbt) — (B2) " (pFHopi™)

wherel(a;,a2) = f(ap) org(a;) forimplicit surfaces. When the
two bodies are not in contact the right hand side of both time-co
plementarity constraints are positive and hence we do na ha
any contact force. The above system of equations are to e wri
ten for each of the contacting bodies. This formulation eesu
that we satisfy the contact constraints at the end of the s$itee
taking into consideration the possibility of the deflectmiithe
body. It does not require the computation of penetratiorttdep
for obtaining the deflection as required in [4]. It ensured thie
get a collision response in a fixed time-step scheme.

We can now formulate the mixed NCP for the geometrically-
implicit lumped compliant contact time-stepper. The vecto ILLUSTRATIVE EXAMPLES
of unknownsz can be partitioned int@ = [u, v] whereu = We present two examples to illustrate our approach. The
[v, a1, @2, On, On, &, Oo, Pt, Po, Pr] @ndV = [pPns, Prr, O]. The first example is that of a disc falling onto a elastic half gan

In the above formulation, we seie= R5+13% v c R3% the
vector function of equality constraints majsv] to R +13%
and the vector function of complementarity constraints snap
[u,V] to R3"% whereny, andn, are the number of bodies and num-
ber of contacts respectively. If using convex bodies orig, t
number of contacts can be determined directly from the numbe
of bodies,n; = i“gli. Lastly, we divide the impulses in Equa-
tion 15 byh for numerical stability.
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velocityv = [0, 0, 0]. The only force acting on the disc was grav-

Q The unit disc’s initial position wag = [0, 1.5,0] with zero initial
al

o I”’n Lo aca ity. The mass of the disc was 1kg and the moment of inertiaabou
i the center of mass was 0.5-kg?. We used a step size=10"%s.
"l The spring stiffness we used wias= 1000kg/$. The maximum
Rigid Core penetration depth was altered for two experiments suchfdinat
the first experimentimpact with the rigid core occurs, amndfie
Figure 3. UNIT DISC FALLING ONTO A FRICTIONLESS COMPLIANT second experiment impact with the rigid core does not odearr.
SURFACE WITH A SINGLE SPRING ELEMENT. experiment one)? = 0.05m and for experiment twd = 1m.

from rest. We vary the maximum deflection and show that the
response when the rigid core is hit is quite different frora th

one when it is not hit. The second example consists of a rigid ~ **[ " = ™ 7 Towdeminoe - T T e £
spinning ellipsoid dropping on an elastic half plane. Weenot w0 ©
that the algebraic distance is same as the euclidean distanc R -

a halfplanealx +b <= 0 whena is a unit vector. Therefore in
our presentation of the examples we have not made a distimcti
between the two. All of our numerical results were obtaingd b ‘

the PATH solver [23]. PATH is freely available and is the most 00 o7 s os or 1 1z as 15 1 2 00 o7 on o5 os 1 1z 13 s in e
robust complementarity problem solvers available. e e

8
T

£ 10000 | i 1 s

5000

.
5

(a) Non-penetration force (b) Spring force
Example 1. Unit Disc Falling on a Frictionless Half-
Plane
In this example, we simulate a rigid unit disc falling onto ~ _ «|™, N I §oR
a compliant horizontal half-plane. The contact is modeleda | 1§ o
single frictionless contact with no damping. Depending loa t i :
value of maximum deflection, the disc may or may not make ¢ R
contact with the rigid core of the half-plane. Figure 3 ithases g ol
the problem.
There are 10 unknowns in this system, with TN M e Ce e e
2  complementarity  constraints: z = [uv] =
[VX’wa, a,, a1, Ay, Az, On, Pns, pm]_ We can formulate (c) Position of the disc’s center (d) Velocity of the disc
the 8 equality constraint equations oras (omitted superscripts
indicate timd): .
pot disc
1o P Il o — |
0= —MV* £ My + WE Pt 4 WEpi + pagp  (16) o
0= pLgt— hka L (17) oo\
0=a"—al"t+|laj" —al|n (18) 2,
Oa fr(aa)™t &
0= —— ———— (29) 6 :
[1Day fa(a0) | .
0= fi(a)*t (20) )
0= fo(a2) "+, (21) NS
0 0 02 04 06 08
Time (s)
The complementarity constraints grare:
(e) Energy
pltt altl g g+t
0< [ ?il] 1 6130 5é£1 >0 (22) Figure 4. SIMULATION RESULTS FOR A UNIT DISC FALLING ON A
nr n=—"n HALF-PLANE MAKING CONTACT WITH THE RIGID CORE.
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Figure 4 illustrates the results of the first experiment in is on the order of 10°J per step.
which the maximum spring deflection was not large enough
to prevent impact with the rigid core. There is a large non-
penetration impulse (Fig. 4(a)) generated at approxim&ai4
seconds corresponding to when the spring reached maximum de
flection and impact with the rigid core occurs. As expectetthwi
a rigid impact, we also see an instantaneous change in veloc-
ity (Fig. 4(d)) to zero and loss of energy (Fig. 4(e)). Suhsey
to the impact, the motion of the disc (Fig. 4(c)) become escil
latory as it bounces on the undamped spring (Fig. 4(b)) aad th

Example 2: 3D Frictional Ellipsoid

In this example we drop an ellipsoid with an initial angular
velocity onto a half-plane. There is no closed form disténoe-
tion between an ellipsoid and half-plane, and the closeisttpo
between the two bodies are found explicitly by our formulati
The minor axes of the ellipsoid are 0.01m and the major axis is
0.5m resulting in the following implicit function descriig the

velocity is smooth. The total energy is preserved after ichpa surface:

The small loss of energy seen in Figure 4(e) is on the order of

105J per time step, which is acceptable using a time step of F(xy.2) = (x—ax)? n (y—qy)? n (z-@)* 1
10~“s and an Euler approximation in the time-stepping formula- e 0.2%2 0.00% 0.00%

tion. For the second round of experiments, the maximum gprin

deflection was set large enough that impact with the rigi&cor  where|qy, ay, 9] is the position of the center of gravity of the
never occurs. We see the oscillatory behavior of the pasitio ellipsoid in the fixed spatial frame. The mass of the elligsei
over the lifetime of the simulation (Fig. 5(c)) as expectéthw  1.0kg. It has an initial linear velocity of zero and angulalocity

an undamped spring. As guaranteed by our model, no componentof [0, 0, 5|Trad/s. For all experiments the only applied force was
of the normal force comes from impact with the rigid core; the gravity and we used a step size of fGeconds.

spring contributes solely to the normal force (Fig. 5(b)Hdi Unlike the previous 2D example, the contact in this exam-
tionally, without any impacts the plot of velocity is smoatfth ple is frictional and includes damping of the spring forcghe

changes occurring only from the force of gravity and thergpri stiffnessk and dampindg matrices are:
force (Fig. 5(d)). Since there is no impact nor damping of the

spring, we expect there to be no loss of energy in the system.

. - : . : 36000 O 0
Figure 5(a) confirms this assumption, where again, the dossll K — 0 8000 O C—2VK
0 0 800
prendB B | The friction parameters are; = 1,6, =1, = 0.04 andu= 0.4.
al ) , The maximum depth was set&} = 0.005m.

s 5 s | | We varied the initial orientation of the ellipsoid for twofdi
£l 1 ol | ferent experiments. In the first experiment we set the initia
N ;! S R ) | orientation of the body frame to coincide with the fixed splati

L TR N I frameq = [0, 0, 0.15,1, 0, 0,0], where the first three elements

0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Time® e correspond to the ellipsoid’s center of gravity and the faar
are the unit quaternion representing the orientation.érsétond
(a) Energy (b) Force experiment, we angled the initial orientation of the bodynfie

g=10, 0, 0.15,0.9962 0, 0.08720]
For the first experiment, we would expect the ellipsoid to
have a constant angular velocity while falling, hit the p&dhe,
and stop spinning due to the torsional friction. We see thige
. \ behavior as shown in Figure 6. There is a large non-penetrati
« | | p impulse occurring just before 0.2 seconds, correspondiriyet
N e | ] impact of the ellipsoid on the half-plane. This impact ree®v
1 most of the energy because of the non-penetration and damp-

0 n L L L L L L L L 5 L L L L L L n L L
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

(rad/s)
Lo o s oo
— T

inear (m), angular (rad)

t
°
@

g
5
2
g
E
8
2
8
]

T T @) ing impulses. Corresponding to the rigid impact, there isnan
stantaneous drop in the angular velocity. The remainingoitsi
(c) Position (d) Velocity and kinetic energy are slowly dissipated by the torsionetitm,
and at approximately 0.4 seconds the ellipsoid transitfoos
Figure 5. SIMULATION RESULTS FOR A UNIT DISC FALLING ON A sliding to sticking. Unlike the undamped example with the os
HALF-PLANE NOT MAKING CONTACT WITH THE RIGID CORE. cillatory behavior of the position, in this example the damgp
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guestion of existence and uniqueness of solutions of theanix
B el I A NCP we formulate. In parallel, we wish to perform more exten-
SN R che sive numerical experimentation with this approach. Moszpv
' ] | we want to extend our present approach to non-convex objects
described as a union of convex objects. We also plan to extend
] our approach to objects described by parametric surfaces. F
o2 | 1 | | nally, we will incorporate a distributed compliant impaatJ to
"o or 02 03 o4 os os o7 05 o0 1 o 0% 02 63 04 o5 G5 o1 05 0o 1 simulate a broader class of problems.

Time (s) Time (s)

Energy (J)
Force (N)
IS
5

(a) Energy (b) Force

100 T T T T T T T T T 0.16 T T T T T T T T T

EEEcss |

Position: linear (m)
o
8
T

°
S o
—
Velocity: linear (m/s), angular (radls)
T
Force (N)
°
Position: linear (m)
o o
S 2
28
- \‘

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
T S S S R 2 . 1 . . 1 P . 1 Time () Time ()

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Time (s) Time (s)

(a) Force (b) Position
(c) Position (d) Velocity

0.0035

2
3

Figure 6. SIMULATION RESULTS FOR AN ELLIPSOID DROPPED
ONTO A HALFPLANE. Y-AXIS SET TO [—25,100 IN FORCE PLOT.

0.003

0.0025

BEERSS

0.002

0.0015

0.001

Spring deflection

0.0005

causes the position of the ellipsoid to settle to a restingtten
the surface. After settling there is a constant normal gpionce
approximately equal to the weight of the ellipsoid. B O
In the second experiment, the angled initial orientation e e
causes moments at the time of impact such that angular veloc-
ities in thex andy directions appear after impact. This behavior
is seen in our simulation and the results are presented uré-i§y
There again is the large non-penetration impulse genefiated 18
hitting the rigid core, however, in this example the impaiges
sliding to occur until approximately 0.5 seconds when tlip-el
soid transitions to rolling. Since we are using an exacteaepr
sentation of the surface geometry, the rolling behaviotioaes
ad-infinitum as expected.

Velocity: linear (mis), angular (rad/s)

—————— i PR o

00005 | 4

(c) Velocity (d) Spring displacements

pot Ellipsoid
pot spring 4
Kin --eeeee-

Energy (J)

CONCLUSION

In this paper we presented a geometrically implicit time
stepping scheme for dynamic simulation of convex objecth wi
compliant contact, building on our recent work in [1]. We as- 0 01 02 03 04 05 06 07 o8 o8 1
sumed that the objects are described by implicit surfacés an Time (s)
the deflections at the contacts are small. We model the dontac
compliance using a 3D linear viscoelastic model and mativat (e) Energy
by practical applications we explicitly considered a maxim
bound on the amount of deflection in our model. We demon- Figure 7. SIMULATION RESULTS FOR AN ELLIPSOID WITH AN-
strated our approach through example simulations. We see se GLED ORIENTATION DROPPED ONTO A HALFPLANE. Y-AXIS SET TO
eral directions for future work. We would like to address the [—100,100 IN FORCE PLOT.
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