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ABSTRACT

We recently developed a time-stepping method for simulat-
ing rigid multi-body systems with intermittent contact that is im-
plicit in the geometric information [1]. In this paper, we extend
this formulation to quasi-rigid or locally compliant objects, i.e.,
objects with a rigid core surrounded by a compliant layer, sim-
ilar to Song et al. [2]. The difference in our compliance model
from existing quasi-rigid models is that, based on physicalmoti-
vations, we assume the compliant layer has a maximum possible
normal deflection beyond which it acts as a rigid body. There-
fore, we use an extension of the Kelvin-Voigt (i.e. linear spring-
damper) model for obtaining the normal contact forces by in-
corporating the thickness of the compliant layer explicitly in the
contact model. We use the Kelvin-Voigt model for the tangential
forces and assume that the contact forces and moment satisfyan
ellipsoidal friction law.

We model each object as an intersection of convex inequal-
ities and write the contact constraint as a complementaritycon-
straint between the contact force and a distance function depen-
dent on the closest points and the local deformation of the body.
The closest points satisfy a system of nonlinear algebraic equa-
tions and the resultant continuous model is a Differential Com-
plementarity Problem (DCP). This enables us to formulate a ge-
ometrically implicit time-stepping scheme for solving theDCP
which is more accurate than a geometrically explicit scheme.
The discrete problem to be solved at each time-step is a mixed
nonlinear complementarity problem.

INTRODUCTION

To automatically plan and execute tasks involving intermit-
tent contact, one must be able to accurately predict the object
motions in such systems. Applications include haptic interac-
tions, collaborative human-robot manipulation, such as rearrang-
ing the furniture in a house, as well as industrial automation, such
as simulation of parts feeders. These applications are character-
ized by intermittency of contact, presence of stick-slip frictional
behavior and deformation at the contact surfaces. The deforma-
tion at the contact is usually verysmalland therefore the objects
can be modeled as quasi-rigid or locally compliant [2–5],i.e.,
each body consists of a rigid core surrounded by a thin compli-
ant shell. Such objects may have a maximum possible deflection
and the contact will behave as a rigid contact once the maximum
deflection is reached. This motivates us to model the objectsas
locally compliant objects with a limit on the allowable deflection
at the contact.

The dynamics of multi-rigid-body systems with unilateral
contacts can be modeled as differential algebraic equations
(DAE) [6] if the contact interactions (sliding, rolling, orseparat-
ing) at each contact are known. However, in general, the contact
interactions are not knowna priori, but rather are discovered as
part of the solution process. To handle the many possibilities in
a rigorous theoretical and computational framework, the model
is formulated as a differential complementarity problem [7, 8].
The primary sources of stability and accuracy problems in dy-
namic simulation are polyhedral approximations of smooth bod-
ies, the decoupling of collision detection from the solution of the
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dynamic time-stepping subproblem, and approximations to the
quadratic Coulomb friction model. Irrespective of whetherthe
model of the object is rigid or locally compliant, all state-of-the-
art time steppers [4,9,10] are explicit with respect to the geomet-
ric information,i.e., they use the geometric information obtained
from a collision detection algorithm at the start of the current
time step to compute the state at the end of the time step with-
out modifying this information. The method of Tzitzouris [11]
is the only geometrically implicit method developed to date, but
it requires a closed form distance function between the two bod-
ies which is usually not available. In our previous work [1] we
showed simulation results of a disk rolling on a plane without slip
and depicted the loss of energy due to polyhedral approximation
and the approximation of the distance function. To overcome
this, we presented ageometrically implicittime-stepping scheme
for convex objects described by implicit surfaces in which the
collision detection and dynamic time stepping problem is solved
in the same time step.

The main focus of this paper is to develop a geometrically-
implicit time-stepping model for dynamic simulation of convex
objects described by implicit surfaces, assuming single point
contact between the objects and local compliance at the con-
tacts. However, unlike other locally compliant models, we as-
sume a limit on the maximum amount of allowable deflection
which is realistic in many scenarios (e.g., to model flesh and
bone for biomechanics and human robot interaction). We ex-
tend our formulation for contact constraints presented in [1] to
include the deflection at the contact and use a linear viscoelas-
tic Kelvin-Voigt model (i.e., a linear spring-damper model) for
modeling the compliance. The contact constraints also takeinto
account the maximum allowable deflection at the contact point.
Since we are assuming an upper bound on the deflection, there
can be an instantaneous jump in the contact forces when the rigid
core is reached. Thus we formulate our time-stepping problem at
the velocity-impulse level instead of the force-acceleration level
so that the resulting time-steppers are better behaved.

Our paper is organized as follows. In Section 1, we survey
the relevant literature. In Section 2, we present both the continu-
ous and discrete time dynamics model for multi-rigid-body sys-
tems with an ellipsoidal dry friction law. In Section 3, we review
the non-penetration condition for the contact constraintspre-
sented in [1]. Thereafter, in section 4, we modify these contact
constraints to include compliant contacts with limits on the max-
imum allowable deflection. The discrete time dynamics model
along with the contact constraints form a mixed nonlinear com-
plementarity problem at each time-step. In Section 5, we give
examples that validate and elucidate our time-stepping scheme.
Finally in section 6, we present our conclusions and lay out the
future work.

RELATED WORK
Dynamics of multi-rigid-body systems with unilateral con-

tacts can be modeled as differential algebraic equations (DAE)
[6] if the contact interactions (sliding, rolling, or separating) at
each contact are known. However, in general, the contact in-
teractions are not knowna priori, but rather are discovered as
part of the solution process. To handle the many possibilities in
a rigorous theoretical and computational framework, the model
is formulated as a differential complementarity problem [7, 8].
The differential complementarity problem is solved using atime-
stepping scheme and the resultant system of equations to be
solved at each step is a (linear/nonlinear) complementarity prob-
lem.

Definition 1 (Nonlinear Complementarity Problem (NCP)). Let
f (z) ∈ R

n be a given vector function ofz ∈ R
n. The nonlinear

complementarity problem is to findz satisfying 0≤ z ⊥ f (z) ≥
0, where the symbol⊥ connotes orthogonality (i.e., f(z) ·z = 0)
and vector inequalities hold on a per element basis.

When f (z) is linear inz, then the problem is referred to as a
linear complementarity problem (LCP). Of particular importance
to this work is a generalization of the NCP known as themixed
nonlinear complementarity problem[12].

Definition 2. Let g(u,v) : R
n1 ×R

n2 → R
n1 and f (u,v) : R

n1 ×
R

n2 →R
n2 be given vector functions ofu∈R

n1 andv∈R
n2, with

n1+n2 = n. The mixed nonlinear complementarity problem is to
find u andv satisfying

g(u,v) = 0, u, free

0≤ v ⊥ f (u,v) ≥ 0

Frictional collisions between rigid bodies have a long his-
tory in mechanics [13, 14]. Here, we give an overview of the
basic approaches and refer the reader to a recent survey arti-
cle [15] for a more comprehensive review. There are two pri-
mary approaches to modeling collisions: coefficient of restitu-
tion based approaches and force based methods. In the former,
the process of energy transfer and dissipation during collision
is modeled by various coefficients relating the velocity (orim-
pulses) before contact to that after contact. However, the ex-
tension of these concepts to situations with multiple contacts is
not straightforward. The force based approaches use a compli-
ant contact model to compute the contact forces where the con-
tact compliance is modeled as a (linear/nonlinear) spring-damper
system. In the simplest model (known as Kelvin-Voigt model or
linear spring-damper model), the normal contact force is given
by a linear function of the deformation and the rate of deforma-
tion (F = kδ + cδ̇) i.e. the flexibility of the body is lumped as a
linear spring (with spring constantk) and damper (with damp-
ing coefficientc). The limitations of the linear model are docu-
mented in [15]. Hertz introduced a nonlinear model of the form
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F = kδn, wheren is a constant [16]. This model was extended to
a nonlinear spring-damper model by Hunt and Crossley [17] of
the formF = kδn + cδpδ̇q, wherep,q are constants. The mod-
els presented above are believed to be of increasing accuracy but
there are more unknown constants dependent on geometry of the
objects and material properties that have to be determined ex-
perimentally (except for some simple cases). This is a general
feature of all proposed contact compliance models. In [18] acon-
tinuum model of the deformations at each contact is used. Song
and Kumar [2] have used a 3D linear distributed contact model
to compute the contact forces. In this paper we use a lumped
3D linear spring-damper to model the contact compliance simi-
lar to [19]. However, we note that we could have replaced this
with a lumped nonlinear model if required. We use an elliptic
dry friction law [20] that is a generalization of Coulomb’s fric-
tion law to model the friction at the contact.

DYNAMIC MODEL FOR RIGID BODY SYSTEMS
In complementarity methods, the instantaneous equations

of motion of a multi-rigid-body system consist of five parts:
(a) Newton-Euler equations,(b) Kinematic map relating the
generalized velocities to the linear and angular velocities, (c)
Equality constraints to model joints,(d) Normal contact condi-
tion to model intermittent contact, and(e) Friction law. Parts
(a) and(b) form a system of ordinary differential equations,(c)
is a system of (nonlinear) algebraic equations,(d) is given by a
system of complementarity constraints, and(e) can be written
as a system of complementarity constraints for Coulomb friction
law using the maximum work dissipation principle. In this paper
we use a more general elliptic dry friction law [20]. Thus, the
dynamic model is adifferential complementarity problem(DCP).
To solve this system of equations, we set up a time-stepping
scheme and solve a complementarity problem at each time step.
We present below the instantaneous-time formulation as well
as an Euler time-stepping scheme. To simplify the exposition,
we ignore the presence of joints or bilateral constraints inthe
following discussion. However, all of the discussion belowholds
in the presence of bilateral constraints.

To describe the dynamic model mathematically, we first in-
troduce some notation. Letq j be the position and orientation
of body j in an inertial frame andν j be the concatenated vector
of linear (v) and angular (ω) velocities. The generalized coor-
dinates,q, and generalized velocity,ν of the whole system are
formed by concatenatingq j andν j respectively. Letλin be the
normal contact force at theith contact andλn be the concatenated
vector of the normal contact forces. Letλit andλio be the orthog-
onal components of the friction force on the tangential plane at
the ith contact andλt, λo be the respective concatenated vectors.
Let λir be the frictional moment about theith contact normal and
λr be the concatenated vector of the frictional moments. Letnb

be the number of bodies andnc be the number of contacts. The
instantaneous dynamic model can then be written as follows:

Newton-Euler Equations of Motion:

M(q)ν̇ = Wnλn +Wtλt +Woλo +Wrλr + λapp+ λvp (1)

whereM(q) is the inertia tensor,λapp is the vector of external
forces,λvp is the vector of Coriolis and centripetal forces,Wn,
Wt, Wo, andWr are dependent onq and map the normal contact
forces, frictional contact forces, and frictional momentsto the
body reference frame.

Kinematic Map:

q̇ = G(q)ν (2)

whereG is the matrix mapping the generalized velocity of the
body to the time derivative of the position and orientation.The
JacobianG may be a non-square matrix (e.g., using a unit quater-
nion to represent orientation) butGTG = I .

Nonpenetration Constraints: The normal contact constraint
for the ith contact is

0≤ λin ⊥ ψin(q,t) ≥ 0 (3)

wherei = 1. . .nc are the number of contacts,ψin is a signed dis-
tance function orgap functionfor the ith contact with the prop-
erty ψin(q,t) > 0 for separation,ψin(q,t) = 0 for touching, and
ψin(q,t) < 0 for interpenetration. The above gap function is de-
fined in the configuration space of the system. Note that thereis
usually no closed form expression forψin(q,t).

Friction Model:

(λit, λio), λir ∈ argmax{−(vitλ′
it +vioλ′

io +vir λ′
ir) :

(λ′
it, λ′

io,λ
′
ir) ∈ Fi(λin,µi)}

wherei = 1. . .nc, vi is the relative velocity at contacti and the

friction cone is defined byFi(λin,µi) = {(λit, λio, λir) :
(

λit
eit

)2
+

(

λio
eio

)2
+

(

λir
eir

)2
≤ µ2

i λ2
in} whereeit, eio andeir are given positive

constants defining the friction ellipsoid andµi is the coefficient
of friction at theith contact [21,22].
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Time-Stepping Formulation: We use a velocity-level formu-
lation and an Euler time-stepping scheme to discretize the above
system of equations. Lettℓ denote the current time,h be the
time step. Use the superscriptsℓ andℓ + 1 to denote quantities
at beginning and end of theℓth time step respectively. Using
ν̇ℓ+1

≈ (νℓ+1− νℓ)/h andq̇ℓ+1
≈ (qℓ+1−qℓ)/h, and writing in

terms of the impulses we get the following discrete time system.

Mνℓ+1 = Mνℓ +h(Wnλℓ+1
n +Wtλℓ+1

t +Woλℓ+1
o +Wrλℓ+1

r

+ λℓ
app+ λvp)

qℓ+1 = qℓ +hGνℓ+1

0≤ hλℓ+1
n ⊥ ψn(qℓ+1) ≥ 0

h(λℓ+1
it , λℓ+1

io , λℓ+1
ir ) ∈ argmax{−(

(

vℓ+1
it

)

λ′
it +

(

vℓ+1
io

)

λ′
io

+
(

vℓ+1
ir

)

λ′
ir)

: h(λℓ+1
it , λℓ+1

io ,λℓ+1
ir ) ∈ Fi(hλin,µi)}

(4)

The argmax formulation of the friction law has a useful al-
ternative formulation [20]:

E2
t Upn ◦WT

t νℓ+1 +pt ◦σ = 0

E2
oUpn ◦WT

o νℓ+1 +po◦σ = 0

E2
r Upn ◦WT

r νℓ+1 +pr ◦σ = 0

(Upn)◦ (Upn)−
(

E2
t

)−1
(pt ◦pt)−

(

E2
o

)−1
(po◦po)

−
(

E2
r

)−1
(pr ◦pr) ≥ 0

(5)

where◦ connotes the Hadamard product, the impulsep(·) = hλ(·),
the matricesEt, Eo, Er, andU are diagonal withith diagonal ele-
ment equal toeit, eio, eir, andµi respectively,σ is a concatenated
vector of the Lagrange multipliers arising from the Fritz John op-
timality conditions of argmax formulation. Each componentof
σ ( σi ) is the magnitude of the slip velocity at contacti.

Equation 4, which is to be solved at each time step, is ei-
ther an LCP or an NCP depending on the time of evaluation of
W(·), the approximation used forψn(qℓ+1), and the representa-
tion of the friction model. If we evaluateW(·) at ℓ + 1, use a
quadratic friction law (Equation (5)), and useψn(qℓ+1), we have
a geometrically implicit NCP formulation ensuring that thecon-
tact conditions are satisfied at the end of the time step. However,
evaluatingψn(qℓ+1) is possible only if we have a closed form
expression for the distance function, which we do not have in
general. Instead, in the next section we formulate the gap func-
tion between the closest points as a set of algebraic equations,
and subsequently extend the formulation to include compliance.

NON-PENETRATION CONSTRAINT
In this section we rewrite the contact condition (Equation 3)

as a complementarity condition in the work space, combine it
with an optimization problem to find the closest points and prove
that the resultant system of equations ensures that the contact
constraints are satisfied [1]. For ease of exposition, we assume
here that each object is a convex object described by a single
implicit surface. A more general formulation where each object
is described by an intersection of implicit surfaces is given in
Appendix A of [1]. Let us consider theith contact. Let the two
objects be defined by convex functionsf (ξ1) ≤ 0 andg(ξ2) ≤ 0
respectively, whereξ1 and ξ2 are the coordinates of points in
the two objects. Leta1 anda2 be the closest points on the two
objects. The equations of the implicit surfaces have the property
that for any pointx, the point lies inside the object forf (x) < 0,
on the object surface forf (x) = 0, and outside the object for
f (x) > 0. Thus, we can define the gap function in work space as
either f (a2) or g(a1) and write the complementarity conditions
as either one of the following two conditions:

0≤ λin ⊥ f (a2) ≥ 0

0≤ λin ⊥ g(a1) ≥ 0
(6)

wherea1 anda2 are the closest points on object 1 and 2 given by

argmin {‖ξ1− ξ2‖2 : f (ξ1) ≤ 0, g(ξ2) ≤ 0} (7)

It can be shown easily from the Karush-Kuhn-Tucker (KKT)
conditions of Equation 7 thata1 anda2 are the solutions of the
following system of algebraic equations.

a1−a2 = −l1∇ f (a1) = l2∇g(a2)

f (a1) = 0

g(a2) = 0

(8)

where l1 and l2 are the Lagrange multipliers. The geometric
meaning of the first two equations is that the normals to the two
surfaces at their closest points are aligned with the line joining
the closest points. The solution to Equation 8 gives the closest
point when the two objects are separate. However, whena1 = a2,
the solution is either the touching point of the two surfacesor a
point lying on the intersection curve of the two surfaces. Thus,
as written, Equation 8 and 6 do not guarantee non-penetration.
However, note that the distinction between touching pointsand
intersecting points, as shown in Figure 1, is that the normals to
the two surfaces at the touching points are aligned while it is not
so for intersection points. Whena1 = a2, we lose the geometric
information that the normals at the two points are aligned ifwe
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f(x) <= 0

g(x) <= 0

f(x) <= 0

f(x) <= 0

g(x) <= 0
g(x) <= 0

Figure 1. THREE CONTACT CASES: (LEFT) OBJECTS ARE SEPA-

RATE, (MIDDLE) OBJECTS ARE TOUCHING, (RIGHT) OBJECTS ARE

INTERSECTING.

write our equations in the form above. Rewriting the above equa-
tions in terms of the unit vectors allows us to avoid this problem.

a1−a2 = −‖a1−a2‖
∇ f (a1)

‖∇ f (a1)‖
∇ f (a1)

‖∇ f (a1)‖
= − ∇g(a2)

‖∇g(a2)‖
f (a1) = 0

g(a2) = 0

(9)

Proposition: Equation 6 and 9 together represent the contact
constraints i.e. the two objects will satisfy the contact constraints
at the end of each time step if and only if Equation 6 and 9 hold
together.
Proof: As discussed above.
Note that, since the first two vector equations are equating unit
vectors, there are only two independent equations for each,and
the above system has 6 independent equations in 6 variables.Al-
though we have restricted our discussion to convex objects,we
believe that this framework can be extended to nonconvexobjects
that are described as an union of convex objects.

COMPLIANT CONTACT MODELING
In this section we describe the 3D linear viscoelastic model

of contact [19] and modify our contact constraints to include the
deflections at the contact. We incorporate this model in our time-
stepping scheme and present the Mixed NCP problem that we
are solving at each time step. We extend the Kelvin-Voigt model
with the physically motivated observation that the deformations
in the normal direction are bounded by some maximum value.
For example, a human finger has a thin compliant layer of mus-
cle and tissue surrounding the rigid core (bone). The application
of a force on the finger results in a deformation of the thin com-
pliant layer until the rigid core is reached, at which point the
non-penetration response is rigid. Therefore, our model allows
for a maximum possible deflection, beyond which the contact be-
haves as a rigid body contact. The linear model can be replaced
by a nonlinear model but this comes at the cost of more unknown
modeling parameters to be determined experimentally. For sim-
plicity of exposition, we consider only one of the objects tobe

flexible at each contact. The general formulation where boththe
bodies are flexible will contain the additional constraint that the
contact forces acting on both the bodies have to be equal. For
each contacti, the normal impact forceλin is broken apart into
two components:

λin = λinr + λins (10)

whereλins is the component of the force that is obtained from
the deformation of the spring andλinr is the component from im-
pact with the rigid core. The tangential force at each contact,
λif = [λit,λio] is also given by a linear spring-damper model.
However, we do not have a bound on the maximum displace-
ment in the tangential direction. Concatenating all the individ-
ual force components into vectors allows us to write for each
contact (we drop subscripti for legibility), λ = Kδ+Cδ̇, where
λ = [λns,λt,λo] andδ = [δn,δt,δo] are 3×1 column vectors with
δn,δt,δo being the normal and tangential deflection. The matri-
cesK , C are stiffness and damping matrices given by

K =





Knn Knt Kno

Ktn Ktt Kto

Kon Kot Koo



 C =





Cnn Cnt Cno

Ctn Ctt Cto

Con Cot Coo





For systems with multiple contact, the contact forcesλ, and body
deformationsδ become concatenations ofnc subvectors, where
nc is the number of contacts. The stiffness and damping matri-
ces are block diagonal matrices of size 3nc × 3nc, where each
diagonal block of size 3×3 represent one contact.

Complementarity Formulation
When we consider contact compliance the contact con-

straints in Section 3 need to be modified to take into account
the deflectionδ. We denote the maximum normal deflection by
δo

n > 0 and assume that it will be determined experimentally. Fig-
ure 2 shows two objects in contact with each other. The bold line
shows the deformed shapes of the two objects. The point of con-
tact is the point where the virtual objects shown by dotted lines
touch. The deflections of the two objects along the normal at
the contact point areδn1 andδn2 respectively. In the subsequent
discussion, we will assumeδn1 = 0 for simplicity and drop the
subscript 2 fromδn2. Therefore, the constraints for the closest
points are given by

a1−a2 = −‖a1−a2‖
∇ f (a1)

‖∇ f (a1)‖
∇ f (a1)

‖∇ f (a1)‖
= − ∇g(a2)

‖∇g(a2)‖
0 = f (a1)

0 = g(a2)+ δ̄n

(11)
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f(a1) = 0

g(a2) = 0

g(a2) +

f(a1) +

a1= a 2

 = 0

 = 0δn1

δn2

δn2δn1

Figure 2. SCHEMATIC REPRESENTATION OF THE DEFLECTION AT

CONTACT. THE CONTACT IS WHERE THE DOTTED CURVES TOUCH.

whereδ̄n is thealgebraic distance. However, the normal contact
force is given in terms of the Euclidean deflection. To obtainthe
Euclidean deflection from this algebraic deflection we note that
the Euclidean deflection is the distance between the pointa2 and
the point where the normal tog(a2) + δn2 = 0 at a2 intersects
g(a2) = 0. From the above argument it can be seen that

g(a2 + δn
∇g(a2)

‖∇g(a2)‖
) = 0 (12)

The complementarity conditions in Equation (6) thus becomes:

0≤ λns⊥ ψ(a1,a2)+ δ̄n ≥ 0

0≤ λnr ⊥ δo
n− δn ≥ 0

(13)

whereψ(a1,a2) = f (a2) or g(a1) for implicit surfaces. When the
two bodies are not in contact the right hand side of both the com-
plementarity constraints are positive and hence we do not have
any contact force. The above system of equations are to be writ-
ten for each of the contacting bodies. This formulation ensures
that we satisfy the contact constraints at the end of the timestep
taking into consideration the possibility of the deflectionof the
body. It does not require the computation of penetration depth
for obtaining the deflection as required in [4]. It ensures that we
get a collision response in a fixed time-step scheme.

We can now formulate the mixed NCP for the geometrically-
implicit lumped compliant contact time-stepper. The vector
of unknownsz can be partitioned intoz = [u, v] whereu =
[ν, a1, a2, δ̄n, δn, δt, δo, pt, po, pr] andv = [pns, pnr, σ]. The

equality constraints in the mixed NCP are:

0 = −Mνℓ+1+Mνℓ +Wℓ+1
n pℓ+1

n +Wℓ+1
t pℓ+1

t +Wℓ+1
o pℓ+1

o

+Wℓ+1
r pℓ+1

r +pℓ
app+pℓ

vp

0 = pℓ+1−
(

hKδℓ+1 +C(δℓ+1− δℓ)
)

0 = (aℓ+1
1 −aℓ+1

2 )+‖aℓ+1
1 −aℓ+1

2 ‖ ∇ f (aℓ+1
1 )

‖∇ f (aℓ+1
1 )‖

0 =
∇ f (aℓ+1

1 )

‖∇ f (aℓ+1
1 )‖

+
∇g(aℓ+1

2 )

‖∇g(aℓ+1
2 )‖

0 = f (aℓ+1
1 )

0 = g(aℓ+1
2 )+ δ̄ℓ+1

n

0 = g(aℓ+1
2 + δℓ+1

n
∇g(aℓ+1

2 )

‖∇g(aℓ+1
2 )‖

)

0 = E2
t Upℓ+1

n ◦ (WT
t )ℓ+1νℓ+1+pℓ+1

t ◦σℓ+1

0 = E2
oUpℓ+1

n ◦ (WT
o )ℓ+1νℓ+1+pℓ+1

o ◦σℓ+1

0 = E2
r Upℓ+1

n ◦ (WT
r )ℓ+1νℓ+1+pℓ+1

r ◦σℓ+1

(14)

wherepℓ+1 = [pℓ+1
n pℓ+1

t pℓ+1
o ]T , pℓ+1

n = pℓ+1
ns +pℓ+1

nr andδℓ+1 =

[δℓ+1
n δℓ+1

t δℓ+1
o ]T .

The complementarity constraints onv are:

0≤





pℓ+1
ns

pℓ+1
nr

σℓ+1



 ⊥







ψ(aℓ+1
1 , aℓ+1

2 )+ δ̄ℓ+1
n

δo
n− δℓ+1

n
ζ/h






≥ 0 (15)

where

ζ = Upℓ+1
n ◦Upℓ+1

n −
(

E2
t

)−1
(

pℓ+1
t ◦pℓ+1

t

)

−
(

E2
o

)−1
(

pℓ+1
o ◦pℓ+1

o

)

−
(

E2
r

)−1
(

pℓ+1
r ◦pℓ+1

r

)

In the above formulation, we seeu∈R
6nb+13nc, v∈R

3nc, the
vector function of equality constraints maps[u,v] to R

6nb+13nc

and the vector function of complementarity constraints maps
[u,v] to R

3nc wherenb andnc are the number of bodies and num-
ber of contacts respectively. If using convex bodies only, the
number of contacts can be determined directly from the number
of bodies,nc = ∑nb

i=1 i. Lastly, we divide the impulses in Equa-
tion 15 byh for numerical stability.

ILLUSTRATIVE EXAMPLES
We present two examples to illustrate our approach. The

first example is that of a disc falling onto a elastic half plane

6 Copyright c© 2007 by ASME
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Figure 3. UNIT DISC FALLING ONTO A FRICTIONLESS COMPLIANT

SURFACE WITH A SINGLE SPRING ELEMENT.

from rest. We vary the maximum deflection and show that the
response when the rigid core is hit is quite different from the
one when it is not hit. The second example consists of a rigid
spinning ellipsoid dropping on an elastic half plane. We note
that the algebraic distance is same as the euclidean distance for
a halfplaneatx + b <= 0 whena is a unit vector. Therefore in
our presentation of the examples we have not made a distinction
between the two. All of our numerical results were obtained by
the PATH solver [23]. PATH is freely available and is the most
robust complementarity problem solvers available.

Example 1: Unit Disc Falling on a Frictionless Half-
Plane

In this example, we simulate a rigid unit disc falling onto
a compliant horizontal half-plane. The contact is modeled as a
single frictionless contact with no damping. Depending on the
value of maximum deflection, the disc may or may not make
contact with the rigid core of the half-plane. Figure 3 illustrates
the problem.

There are 10 unknowns in this system, with
2 complementarity constraints: z = [u,v] =
[vx,vy,ω,a1x,a1y,a2x,a2y,δn, pns, pnr]. We can formulate
the 8 equality constraint equations onu as (omitted superscripts
indicate timel ):

0 = −Mνℓ+1+Mν+Wℓ+1
n pℓ+1

ns +Wℓ+1
n pℓ+1

nr +papp (16)

0 = pℓ+1
ns −hkδℓ+1

n (17)

0 = aℓ+1
2 −aℓ+1

1 +‖aℓ+1
2 −aℓ+1

1 ‖n̂ (18)

0 =
∇a1 f1(a1)

ℓ+1

‖∇a1 f1(a1)ℓ+1‖ + n̂ (19)

0 = f1(a1)
ℓ+1 (20)

0 = f2(a2)
ℓ+1+ δℓ+1

n (21)

The complementarity constraints onv are:

0≤
[

pℓ+1
ns

pℓ+1
nr

]

⊥
[

aℓ+1
1y

+ δℓ+1
n

δo
n− δℓ+1

n

]

≥ 0 (22)

The unit disc’s initial position wasq = [0, 1.5,0] with zero initial
velocityν = [0, 0, 0]. The only force acting on the disc was grav-
ity. The mass of the disc was 1kg and the moment of inertia about
the center of mass was 0.5 kg·m2. We used a step sizeh= 10−4s.
The spring stiffness we used wask = 1000kg/s2. The maximum
penetration depth was altered for two experiments such thatfor
the first experiment impact with the rigid core occurs, and for the
second experiment impact with the rigid core does not occur.For
experiment one,δ0

n = 0.05m and for experiment twoδ0
n = 1m.
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Figure 4. SIMULATION RESULTS FOR A UNIT DISC FALLING ON A

HALF-PLANE MAKING CONTACT WITH THE RIGID CORE.
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Figure 4 illustrates the results of the first experiment in
which the maximum spring deflection was not large enough
to prevent impact with the rigid core. There is a large non-
penetration impulse (Fig. 4(a)) generated at approximately 0.34
seconds corresponding to when the spring reached maximum de-
flection and impact with the rigid core occurs. As expected with
a rigid impact, we also see an instantaneous change in veloc-
ity (Fig. 4(d)) to zero and loss of energy (Fig. 4(e)). Subsequent
to the impact, the motion of the disc (Fig. 4(c)) become oscil-
latory as it bounces on the undamped spring (Fig. 4(b)) and the
velocity is smooth. The total energy is preserved after impact.
The small loss of energy seen in Figure 4(e) is on the order of
10−5J per time step, which is acceptable using a time step of
10−4s and an Euler approximation in the time-stepping formula-
tion. For the second round of experiments, the maximum spring
deflection was set large enough that impact with the rigid core
never occurs. We see the oscillatory behavior of the position
over the lifetime of the simulation (Fig. 5(c)) as expected with
an undamped spring. As guaranteed by our model, no component
of the normal force comes from impact with the rigid core; the
spring contributes solely to the normal force (Fig. 5(b)). Addi-
tionally, without any impacts the plot of velocity is smoothwith
changes occurring only from the force of gravity and the spring
force (Fig. 5(d)). Since there is no impact nor damping of the
spring, we expect there to be no loss of energy in the system.
Figure 5(a) confirms this assumption, where again, the smallloss
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Figure 5. SIMULATION RESULTS FOR A UNIT DISC FALLING ON A

HALF-PLANE NOT MAKING CONTACT WITH THE RIGID CORE.

is on the order of 10−5J per step.

Example 2: 3D Frictional Ellipsoid
In this example we drop an ellipsoid with an initial angular

velocity onto a half-plane. There is no closed form distancefunc-
tion between an ellipsoid and half-plane, and the closest points
between the two bodies are found explicitly by our formulation.
The minor axes of the ellipsoid are 0.01m and the major axis is
0.5m resulting in the following implicit function describing the
surface:

f (x,y,z) =
(x−qx)

2

0.252 +
(y−qy)

2

0.0052 +
(z−qz)

2

0.0052 −1

where[qx, qy, qz] is the position of the center of gravity of the
ellipsoid in the fixed spatial frame. The mass of the ellipsoid is
1.0kg. It has an initial linear velocity of zero and angular velocity
of [0, 0, 5]T rad/s. For all experiments the only applied force was
gravity and we used a step size of 10−4 seconds.

Unlike the previous 2D example, the contact in this exam-
ple is frictional and includes damping of the spring forces.The
stiffnessK and dampingC matrices are:

K =





36000 0 0
0 8000 0
0 0 8000



 C = 2
√

K

The friction parameters are:et = 1,eo = 1,er = 0.04 andµ= 0.4.
The maximum depth was set toδ0

n = 0.005m.
We varied the initial orientation of the ellipsoid for two dif-

ferent experiments. In the first experiment we set the initial
orientation of the body frame to coincide with the fixed spatial
frameq = [0, 0, 0.15,1, 0, 0,0], where the first three elements
correspond to the ellipsoid’s center of gravity and the lastfour
are the unit quaternion representing the orientation. In the second
experiment, we angled the initial orientation of the body frame
q = [0, 0, 0.15,0.9962, 0, 0.0872,0]

For the first experiment, we would expect the ellipsoid to
have a constant angular velocity while falling, hit the halfplane,
and stop spinning due to the torsional friction. We see this exact
behavior as shown in Figure 6. There is a large non-penetration
impulse occurring just before 0.2 seconds, corresponding to the
impact of the ellipsoid on the half-plane. This impact removes
most of the energy because of the non-penetration and damp-
ing impulses. Corresponding to the rigid impact, there is anin-
stantaneous drop in the angular velocity. The remaining velocity
and kinetic energy are slowly dissipated by the torsional friction,
and at approximately 0.4 seconds the ellipsoid transitionsfrom
sliding to sticking. Unlike the undamped example with the os-
cillatory behavior of the position, in this example the damping

8 Copyright c© 2007 by ASME
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Figure 6. SIMULATION RESULTS FOR AN ELLIPSOID DROPPED

ONTO A HALFPLANE. Y-AXIS SET TO [−25,100] IN FORCE PLOT.

causes the position of the ellipsoid to settle to a resting height on
the surface. After settling there is a constant normal spring force
approximately equal to the weight of the ellipsoid.

In the second experiment, the angled initial orientation
causes moments at the time of impact such that angular veloc-
ities in thex andy directions appear after impact. This behavior
is seen in our simulation and the results are presented in Figure 7.
There again is the large non-penetration impulse generatedfrom
hitting the rigid core, however, in this example the impact causes
sliding to occur until approximately 0.5 seconds when the ellip-
soid transitions to rolling. Since we are using an exact repre-
sentation of the surface geometry, the rolling behavior continues
ad-infinitum as expected.

CONCLUSION
In this paper we presented a geometrically implicit time

stepping scheme for dynamic simulation of convex objects with
compliant contact, building on our recent work in [1]. We as-
sumed that the objects are described by implicit surfaces and
the deflections at the contacts are small. We model the contact
compliance using a 3D linear viscoelastic model and motivated
by practical applications we explicitly considered a maximum
bound on the amount of deflection in our model. We demon-
strated our approach through example simulations. We see sev-
eral directions for future work. We would like to address the

question of existence and uniqueness of solutions of the mixed
NCP we formulate. In parallel, we wish to perform more exten-
sive numerical experimentation with this approach. Moreover,
we want to extend our present approach to non-convex objects
described as a union of convex objects. We also plan to extend
our approach to objects described by parametric surfaces. Fi-
nally, we will incorporate a distributed compliant impact law to
simulate a broader class of problems.
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