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Abstract—In this paper, we investigate offer generation meth-
ods for automated negotiation on multiple issues with no in-
formation about the opponent’s utility function. In existing
negotiation literature, it is usually assumed that an agent has
full information or probabilistic beliefs about the other agent’s
utility function. However, it is usually not possible for agents to
have complete information about the other agent’s preference
or accurate probability distributions. We prove that using an
alternating projection strategy, it is possible to reach an agreement
in general automated multi-attribute negotiation, where the agents
have nonlinear utility functions and no information about the
utility function of the other agent. We also prove that rational
agents do not have any incentive to deviate from the proposed
strategy. We further present simulation results to demonstrate
that the solution obtained from our protocol is quite close to the
Nash bargaining solution.

I. INTRODUCTION

In bilateral multi-attribute negotiation, two parties (or
agents) with limited common knowledge about each other’s
preferences want to arrive at an agreement over a set of
issues when they have (possibly) conflicting preferences over
the issues. In the extant literature on theoretical analysis of
negotiation, it is usually assumed that an agent either has
(a) a complete knowledge of the preference structure of the
opponents (i.e., the utility of the agents are assumed to be
known, e.g., [1]) or has (b) a probability distribution over the
preferences of the agents is known (e.g., [2], [3], [4]). Further-
more, much of the literature on negotiation with incomplete
information has focused on developing equilibrium strategies
for single issue negotiation. Computational modelers, whose
goal is to build protocols and strategies for software agents
to negotiate, consider multi-attribute negotiations and usually
provide heuristic strategies for the negotiating agent. Most
of the literature also assumes that the agents have linear
additive utility functions. In general, the negotiation may
involve multiple issues, the utility functions of the agents may
be nonlinear, and an agent may not have any knowledge about
the utility of the other player. A fundamental open question in
bilateral negotiation in such a general setting, that we study in
this paper, is the following: Is it possible to design negotiation

strategies for agents so that they come to an agreement given
that they have no prior knowledge about their opponent’s
utility function?

Fig. 1. Illustrative sketch of the offer space of 2 agents negotiating on 2
issues. The 2 curves (called reservation curves) denote the set of all offers with
value equal to the reservation utility of the agents. The convex sets bounded
by the two curves are the feasible offer sets of the agents (e.g., O

′
1 is a

feasible offer for agent 1). The zone of agreement is the common intersection
of the two sets (hatched region). Each agent knows its own reservation curve
(e.g., agent 2 knows only the solid curve). The agents know neither the other
agent’s reservation curve, nor the zone of agreement.

Formally, there is a set of n (≥ 1) issues and 2 negotiators,
with each negotiator having a private utility function (known
only to her). The utility functions can be nonlinear but they
are assumed to be (strictly) concave. Each agent also has a
private reservation utility, and any offer that gives a utility
less than her reservation utility is not acceptable to an agent.
The agents use an alternating-offer protocol to negotiate [5].
Figure 1 gives a geometric view of the offer space for two
agents negotiating on two issues. The zone of agreement
(hatched region in Figure 1) is the set of offers that is
acceptable to both agents. Any point within the zone of
agreement is called a satisficing agreement and the goal of



the agents is to find an agreement that satisfies both agents.
However, either agent does not know the other agent’s utility
function, and therefore, the zone of agreement is unknown.
Thus, geometrically speaking, in negotiation, the goal of the
agents is to find a point in the zone of agreement, where
none of the agents have any explicit knowledge of the zone
of agreement. Note that if the zone of agreement is empty,
there is no agreement that can be achieved for the negotiation
problem.

Let us consider two agents negotiating on a single issue
(e.g., a buyer and a real estate agent negotiating on the price
of a house). If the zone of agreement is non-empty (i.e., the
lowest price at which the seller is willing to sell the house is
less than the highest price the buyer is willing to pay), and
the agents are willing to concede enough, there will always be
an agreement reached in the negotiation (since an offer of an
agent with utility equal to her reservation utility is acceptable
to the other agent). However, for two agents negotiating on
two issues, even if an agent makes an offer with utility equal
to her reservation utility the offer may not be acceptable to
her opponent. For example, Figure 1 shows that although the
offers O1 and O2 give agents 1 and 2 their least possible
utilities (i.e., they concede as much as they can), O1 and O2

do not lie in the (unknown) zone of agreement and hence are
not acceptable offers. Therefore, developing methods to find
offers that provably lie in the zone of agreement with agents
not having any information about opponents utility function is
a challenging problem, that, hitherto has not been addressed.
Provable convergence to an agreement is a desirable property
to have for designing automated negotiation agents.

In this paper, we prove that an alternating projection strategy
for generating offers that has been proposed in the litera-
ture [6], [7] guarantees that the agents reach an agreement.
The alternating projection strategy consists of two steps: (a) A
concession step in which the agents reduce the utility of offers
that are acceptable to them (unless they have reached their
reservation utility) (b) An offer generation step in which they
use the previous offer of their opponent to generate a new offer
with utility equal to their current acceptable utility. We show
that the convergence holds for general concave utility functions
irrespective of the specific concession strategy the agents adopt
(as long as the agents concede up to their individual reservation
utilities). In previous work, the concession strategies used by
the agents were not reactive to whether the opponent was
conceding or not. Hence it was not clear whether the agents
had any incentive to concede. We prove that if the agents
use reactive concession strategies, i.e., each agent concedes
by an amount proportional to her evaluation of the amount of
concession of her opponent, then the agents have no incentive
to deviate from the concession strategy. To the best of our
knowledge, this is the first paper that gives negotiation strate-
gies with guaranteed convergence to a satisficing solution for
general multi-attribute, bilateral negotiation with agents hav-
ing nonlinear utility functions and no knowledge about other
agents preferences. We also demonstrate the performance of
the alternating projection strategy through simulations.

The remainder of the paper is organized as follows: In Sec-
tion II, we give a review of related literature. In Section III, we
outline the framework of automated negotiation. Thereafter, in
Section IV, we present our convergence proof of the alternat-
ing projection protocol for offer generation. In Section VII we
discuss the simulation results and in Section VIII we conclude
the paper with a discussion of future work.

II. RELATED LITERATURE

Theoretical study of negotiation has been done in the
economics literature as well as in artificial intelligence (AI) lit-
erature. For the literature using non-cooperative game theoretic
models of negotiation, the alternating-offer game, which was
first proposed by Rubinstein [5], is one of the most popular
negotiation protocols for bilateral single-issue setting. Work in
economics using the framework of the alternating-offer game
often focus on single issue problem. In the original alternating-
offer game in [5], as well as subsequent literature (e.g., [8]),
the two players (or agents) with complete information have
incentive to concede because it is assumed that the utility of
the negotiation outcome decreases with time. Transaction cost
of bargaining is another reason for the players to concede
(see [9]). Some studies (e.g., [10], [11]) consider outside
options as an alternative incentive for the players (or agents) to
concede over time. These studies also extend the alternating-
offer game to the setting where the two players have in-
complete and asymmetric information, i.e., they are uncertain
about the opponent’s type. In our setting, the agents have no
information about the opponent’s utility structure or type, and
no time discounting effect, transaction cost, or outside options
are considered. In our setting, the players concede as a part
of the search process to achieve a possible agreement in the
absence of any information about the opponent’s utility.

The alternating-offer game has also been extended to multi-
agent or multi-issue negotiation (e.g., [12] , [13], [14]). They
usually assume that there are two issues in the negotiation and
that the agents utility functions are linear and additive on the
values of the two issues (e.g. [15], [16]). However, the agents
in real-world are likely to have much more complex utility
functions, and the information might be incomplete. Thus, the
optimal negotiation strategies and the equilibrium under those
negotiation settings with simplified assumptions are difficult to
apply in practice. In our setting, there is no knowledge about
the other agent’s utility function. To the best of our knowledge,
no notion of equilibrium solutions has been developed in such
no-knowledge settings. Hence, we use the notion of satisficing
solution.

The literature using AI methods focus on developing
tractable heuristics for negotiating agents to generate offers.
Although there is a large body of automated negotiation
literature [17], most prior work assumes either full information
or commonly known random distributions. In the presence of
incomplete information, Bayesian learning has been proposed
in agents’ negotiation strategy [18]. A classification method
for learning an opponent’s preferences during a bilateral
multi-issue negotiation using Bayesian techniques is developed



in [19]. However, the Bayesian updating rule is only applicable
when the agents are of certain set of types. There are also
works that utilize a non-biased mediator in the negotiation
strategy (e.g., [20], [6]). In [6], the authors propose a Pareto-
optimal mediating protocol where, in each period, the mediator
provides a negotiation baseline and the agents propose base
offers on this line. In [20], negotiations mediated by automated
mediator are concluded significantly faster than non-mediated
ones by conducting an experiment. However, the existence of
a non-biased mediator cannot always be assumed.

When the agents’ utility functions have general forms [6]
propose a shortest-distance proposing method that reaches ne-
gotiation outcome with no knowledge of opponent utility func-
tion. The agents operate in a offer counter-offer paradigm [5].
Each agent starts with her highest utility offer and use a
concession strategy by which they determine their current
utility. The agent then proposes the closest offer (among all the
offers that corresponds to her current utility) to the opponents
offer. Similar methods have been proposed in more specific
settings [21], [22], [23]. Although, it was shown through
simulations in [6] (and also in an extension of the protocol
to three agents negotiating on two issues in [7]), that the
agents using the protocol always reach an agreement, there
was no formal proof of convergence. Our paper is the first
to mathematically prove the convergence of a negotiation
protocol by applying the alternating projection theory [24].

III. THE NEGOTIATION FRAMEWORK

We consider two self-interested agents negotiating on a set
of issues j ∈ {1, 2, ..., n}. Let i ∈ {1, 2} denote the two
agents. We assume that the issues take on continuous values
and the negotiation domain for each issue is Ωj = [0, 1], with
0 and 1 corresponding to the extreme values of the issues.
We assume that the utility function of each agent is strictly
convex, a widely applied assumption in economics (see [25]).
The utility function of agent i, ui (x) , i = 1, 2 is continuous
and concave ∀x ∈ [0, 1]n. Without loss of generality, we can
normalize the range of agent i’s utility function to [0, 1]. The
properties of the utility function ensure the monotonicity of
preferences, i.e., an agent’s utility is increasing or decreasing
in one issue if the other issues are held constant. Each agent,
i, has a reservation utility, rui. Any offer with utility less
than its reservation utility is not acceptable to an agent. The
set of all feasible offers that an agent i can accept is Ai =
{x ∈ [0, 1]n |ui (x) ≥ rui}. The set Ai is strictly convex for
each i. The zone of agreement, Z , is defined as the common
intersection of the feasible offer sets of both agents, i.e., Z =
A1 ∩ A2. Since the zone of agreement is the intersection of
two convex sets, it is a convex set. For a solution to exist to
any negotiation problem, the zone of agreement has to be non-
empty. Any point within the zone of agreement is acceptable
to both agents and we call such a solution a satisficing solution
to the negotiation.

A. The Negotiation Model

The alternating-offer game, which was first proposed by [5],
is one of the most popular negotiation models. In an
alternating-offer game, an agent proposes her offer and the
other agent responds to the offer by either proposing a new
offer or accepting the offer. If the offer made by the opponent
is within her acceptable offer set, an agent accepts the offer,
otherwise she proposes a counter-offer. This process continues
until an agreement or the negotiation deadline is reached.

Solution Concept for Negotiation: There have been dif-
ferent definitions proposed for a proper negotiation solution.
Axiomatic solution concepts has been proposed for bargaining
games (e.g., Nash bargaining solution [1], Kalai-Smorodinsky
solution [26], egalitarian solution [27], pareto-optimal solu-
tion). The set of points that satisfy these different solution
requirements are all subsets of the zone of agreement. How-
ever, computing them requires that all the agents know each
other’s utility functions. Since an agent does not know the
utility function of her opponent, we use a satisficing solution
as our solution concept. A satisficing solution is any agreement
that gives the negotiators a utility greater than or equal to their
reservation utility. The use of a satisficing solution in this very
general setting where the agents have no information about
their opponents is in the spirit of Herbert Simon [28].

Informally speaking, a negotiating agent not only wants
to reach an agreement with the other agent but also may
want to obtain as much utility as possible. Thus, when agents
start out in a negotiation, they want to propose offers that
have the highest utility for them and gradually move towards
offers with lower utility. However, they will neither propose
nor accept any offer with utility lower than their reservation
utility. This intuition implies that, during negotiation, agents
gradually reduce the utility of offers acceptable to them (which
is very often seen in practice). Consequently, we assume
that during the negotiation, agents use a concession strategy
(e.g., the time-dependent strategy in [29]) to determine their
current utility at time t (denoted by si(t)). This concession
continues until an agent reaches her reservation utility. In other
words, si(t) is a monotonically decreasing function of t and
si(t) ≥ rui,∀t. We do not make any assumptions on the
manner in which the agents reduce their utilities. For agent
i, let Ai

t be the set of all offers that have utilities higher than
si(t) at time t. The set, Ai

t = {x ∈ [0, 1]n |ui (x) ≥ si(t)}, is
called the current feasible offer set of agent i. For all t, Ai

t is
a convex set and Ai

1 ⊆ Ai
2 ⊆ · · · ⊂ Ai. The boundary of the

set Ai
t is called the indifference surface (or curve) of agent i

at time t.
Problem Statement The problem that we are studying

in this paper can be formally stated as follows: Given 2
agents negotiating on n issues where (a) each agent, i, has
a strictly concave private utility function, ui, and a strategy
for concession that is monotonically decreasing with time (up
to the reservation utility, rui), and (b) the zone of agreement
has a nonempty interior, find a method for computing the offer
an agent should propose such that it is guaranteed that the



agents will eventually reach an agreement.
Agent Strategy: The negotiation strategy that we will use

consists of two steps [6]. When it is an agent’s turn to make an
offer, the agent first checks if the current offer lies within her
acceptable offer set. If the current offer is satisficing the agents
reach an agreement and the negotiation ends. Otherwise, the
agent reduces her current utility and thus increases the set
of offers acceptable to her. She then generates an offer on
the indifference surface corresponding to her current utility
by projecting her opponent’s offer to her current indifference
surface. Note that this method generates an offer that is
satisficing to the agent and closest (in terms of Euclidean
distance) to the offer made by her opponent.

In the next section, we will first present the alternating
projection method for computing offers for an agent and then
give a convergence proof for the method. The convergence
proof is asymptotic in nature, i.e., it is proven that the agents
will converge to a common point in the zone of agreement as
time tends to infinity. This is useful when there is no deadline
for negotiation as is the case in many application domains.
The infinite time convergence is unavoidable, since the only
requirement we have on an agent’s concession strategy is that
the strategy is monotonically decreasing. Thus, it is possible
that an agent may concede so slowly so as to reach its
reservation utility as time tends to infinity. Now, if there are
negotiation deadlines then questions of finite time convergence
are relevant. We formulate this question and study it in a later
section.

IV. OFFER GENERATION METHOD

In the alternating projection offer generation method, if
an agent rejects her opponent’s offer, she proposes her own
offer by choosing the projection of the opponent’s offer to
her current indifference surface. Figure 2 presents an example
of the alternating projection proposing protocol negotiating
on two issues. In this example, the solid indifference curves
belong to agent 1 and the dashed indifference curves belong
to agent 2. In period t − 4, agent 1 proposes an offer x1

t−4.
In period t− 3 , agent 2 rejects this offer and identifies x2

t−3

on her indifference curve such that x2
t−3 is the projection of

x1
t−4 to her indifference curve. In period t−2, agent 1 rejects

this offer and identifies x1
t−2 by projection of x2

t−3 to her
current indifference curve. The process continues until an offer
is accepted or the deadline is reached.

A. Convergence of Alternating Projection Method

The convergence of a negotiation strategy implies that
the negotiating agents are guaranteed to reach an agreement
if the zone of agreement is not empty. We first introduce
some notation. Let agent i at period t + 1 propose an offer
xi

t+1 = PAi
t+1

(xj
t ), if xj

t /∈ Ai
t+1, where i, j ∈ {1, 2}, i 6= j

and PAi
t+1

(xj
t ) is the projection of xj

t onto the convex face of
Ai

t+1.
We state the following theorem without proof, since it will

be useful in our proof of convergence (please see [24] for
proof).

𝑥𝑡
1 

𝑥𝑡−1
2  

𝑥𝑡−2
1  

𝑥𝑡−3
2  

𝑥𝑡−4
1  

issue2 

issue1 

Fig. 2. The alternating projection protocol for two issues and two agents.

Theorem IV.1. The projection map PK for a closed convex set
K in a real space satisfies ‖PK(x)−PK(y)‖ ≤ ‖x−y‖,for all
x, y with equality holding only if ‖x−PK(x)‖ = ‖y−PK(y)‖.

The key idea in the proof is to first show that the distance
between the offers of the two agents strictly decreases over
time under the alternating projection proposing method (see
Lemma IV.2).

Lemma IV.2. For any 3 sequential offers proposed by the
two agents, xi

t−1, x
j
t and xi

t+1, we have ‖xi
t+1−xj

t‖ < ‖xj
t −

xi
t−1‖.

Proof: Define x̃i
t as follows: x̃i

t+1 = PAi
t−1

(xj
t ), if xj

t /∈
Ai

t, where i, j ∈ {1, 2}, i 6= j and PAi
t−1

(xj
t ) is the projection

of xj
t onto the convex face of Ai

t−1. By Theorem IV.1, we
obtain ‖xj

t − xi
t−1‖ ≥ ‖PAi

t−1
(xj

t ) − PAj
t
(xi

t−1)‖ = ‖x̃i
t+1 −

xj
t‖. Since Ai

t ⊂ Ai
t+1 for i ∈ {1, 2}, it is easy to show that

‖x̃i
t+1−xj

t‖ > ‖xi
t+1−xj

t‖. We therefore have ‖xi
t+1−xj

t‖ <

‖x̃i
t+1 − xj

t‖ ≤ ‖xj
t − xi

t−1‖.
Using Lemma IV.2 we can obtain the following result.

Lemma IV.3. For a given negotiation problem, if the zone
of agreement has a nonempty interior and there are infinite
periods to negotiate, i.e. T → ∞, the agents are guaranteed
to reach an agreement using a monotonic concession strategy
and an alternating projection proposing protocol .

Proof: Suppose ∃ s such that A1
s∩A2

s 6= ∅, (otherwise for
∀t, A1

t∩A2
t = ∅, which implies no interior point in the zone of

agreement) then as Ai
t ⊂ Ai

t+1 for i ∈ {1, 2}, we have for all
t1 ≥ s and t2 ≥ s, A1

t1 ∩A2
t2 6= ∅. Since the distance between

the offers decrease with time (c.f. Lemma IV.2) and there is a
non-empty intersection of the acceptable offer sets of the two
agents, the offers will converge to a point in the intersection of
the two sets. This can be shown using standard arguments for
proving the convergence of the alternating projection method
to a point within the set C ∩D when C ∩D 6= ∅, where C



and D are two fixed convex sets [24].

V. FINITE TIME CONVERGENCE OF OFFER GENERATION
METHOD

In the previous section, we proved that as long as the zone
of agreement has a non-empty interior and the agents concede
so that they reach their reservation utilities, the agents can
reach an agreement. We did not make any assumption about
the time an agent takes to concede to the reservation utility. In
this section, we study the finite time convergence properties
of the alternating projection method for offer generation. This
is relevant for negotiation with deadlines. For negotiation
with deadlines, one needs to be careful with the question of
whether the agents will reach an agreement or not. Even if the
zone of agreement is non-empty, whether the agents reach an
agreement or not depends on the relative volume of the zone
agreement with respect to the whole offer space as well as the
rate of concession of the agents. For example, for a negotiation
deadline of T , consider the case where two agents use the
concession strategy that they will propose offers with their
highest utility up to time T −1 and then propose an offer with
utility equal to their reservation utility at time T . Technically,
the agents use a monotonically decreasing concession strategy
and reaches the reservation utility at time T . However, the
intersection of the current feasible offer sets up to time T − 1
may be empty, and although the zone of agreement is non-
empty, the proposal at time T may not be within the zone of
agreement and therefore, there will be no agreement.

To understand finite time convergence properties of a
method for computing offers, we study the following question:
Given that the concession strategies of the agents are such that
all the agents reach their reservation utilities in finite time,
say T0, do the agents converge to an agreement in finite time
(provided the zone of agreement has a non-empty interior)?
Note that we do not make any assumptions about the specific
concession strategy used by the agents.

The answer to this question is yes in general. We first give
a sketch of the formal proof of this claim for two agents
negotiating on two issues to show the basic intuition.

Theorem V.1. For two agents negotiating on two issues, if
the agents use concession strategies such that they reach their
reservation utilities in finite time, then they can reach an
agreement in finite time (assuming that the zone of agreement
has a non-empty interior).

Proof: Without loss of generality, we can assume that
each agent starts with an offer on her indifference curve
corresponding to her reservation utility (since by assumption
she reaches her reservation utility in finite time). Figure 3
shows the indifference curves corresponding to the reservation
utilities for two agents, say 1 and 2, negotiating on two
issues. Since the indifference curves are strictly concave, they
intersect at exactly two points. Let A1 and A2 be the feasible
offer sets for the two agents. Let θ be the minimum of the
two angles made by the tangents at the intersection points.
In Figure 3, ∠AOB = θ, and OA and OB are the tangents

to the two curves at O. Let P be the initial offer of agent
1. The projection of P on A2 is Q. The projection of Q
on A1 is R and the projection of R on A2 is S, and so
on. Thus the offer sequence is {P,Q,R, S, . . . }. Let A be
the intersection of the tangent to A1 at O with PQ. Con-
struct the sequence {A,B, C, D, E, . . . }, where AB ⊥ OB,
BC ⊥ OA, CD ⊥ OB and so on. Since the sets A1 and
A2 are strictly convex, the sequence {P,R, . . . } approaches
O faster than the sequence S = {A,C, E, . . . }. Thus, if the
sequence {A,C, E, . . . } reaches O in finite time then the
sequence {P,R, . . . } reaches O in finite time.

Now, AB = OA sin(θ),∠ABC = ∠AOB = θ. Therefore
AC = AB sin(∠ABC) = OA sin2(θ). Similarly CE =
OC sin2(θ), and so on. Since the angle θ is a constant for
any given negotiation problem, at each step, the distance of a
point in the sequence S reduces by a constant ratio. Hence,
the sequence S converges to O in finite time, which implies
that the sequence {P,R, . . . } reaches O in finite time. Thus,
the agents reach the same point in the zone of agreement in
finite time.

E

A

2A

O

P

Q

A

B

D
S

R

Agent 1’s indifference curve

Agent 2’s indifference curve

C

1

Fig. 3. Two agents negotiating on two issues.

VI. INCENTIVE OF AGENTS TO CONCEDE

In the previous sections, we proved that the alternating
projection strategy proposed in the literature guarantees that
the agents converge to an agreement provided the zone of
agreement is non-empty and the agents concede. We first note
that if an agent 1 concedes, there is no incentive for her to
propose an offer on the indifference surface that is not the
projection of her opponent 2’s offer. This is because all points
on the indifference surface of agent 1 have the same utility
and by proposing another point she may decrease the chance
of reaching an agreement. However, one can argue that an
agent may want to deviate from the proposal strategy by not
conceding since that may give her more utility. For example,
since agent 2’s concession strategy is independent of agent 1’s
strategy, agent 2 will continue to concede till she reaches her
reservation utility. Thus, agent 1 may gain more utility by not
conceding.

In this section, we show that there is a reactive concession
strategy, namely, concede by an amount proportional to the
perceived change in utility of the opponent’s offer that is
rational (i.e., if agents follow this strategy, they do not have
any incentive to deviate). More precisely, we prove that if any
of the agents do not concede, it is possible for the opponent
to determine this within a finite number of rounds and hence



stop conceding. This, combined with the fact that an agent
does not know her opponents utility provides the threat of the
negotiation coming to a stall, even if the zone of agreement is
non-empty. Since the utility of a negotiated agreement is not
worse than the utility for breakdown (which can be thought
of as the reservation utility), it is rational for the agent to
concede.

We now prove that if agent 1 stops conceding and agent 2
uses a reactive strategy, the negotiation can stall. As shown in

𝒖𝟏 𝒙 = 𝒖𝟏 𝒙𝒕
𝟏 = 𝒔𝟏 𝒕  

𝒙𝒕
𝟏 

𝒙∗ 

𝒖𝟐 𝒙 = 𝒖𝟐 𝒙𝒕
𝟏  

𝒖𝟐 𝒙 = 𝒖𝟐 𝒙∗  

𝒖𝟐 𝒙 =𝒔𝟐 𝒕  

𝒖𝟐 𝒙 =𝒔𝟐 𝒕 + ∆ 

Note: ∆= 𝒖𝟐 𝒙∗ − 𝒖𝟐 𝒙𝒕
𝟏  

Fig. 4. Figure for proving that there is an incentive to concede.

Figure 4, let agent 1 propose x1
t at time t. If agent 1 stops to

concede from time t, all offers proposed by agent 1 after time
t are on the indifference surface u1 (x) = u1

(
x1

t

)
= s1 (t).

Let x∗ be the point on the indifference surface u1 (x) = s1 (t)
such that u2 (x) = u2 (x∗) is the highest possible perceived
utility by agent 2. Therefore, ∆ = u2 (x∗) − u2

(
x1

t

)
would

be the largest possible perceived utility improvement for agent
2. Hence, using the reactive strategy, agent 2 would concede
by at most ∆. If ∆ < (s2 (t) − u2 (x∗)), where s2 (t) is the
current utility level of agent 2 at time t, the negotiation will
stall (see Figure 4 for the two-issue case). Since agent 1 has
no knowledge about the utility function of agent 2, she is
uncertain about whether the largest possible perceived utility
improvement for agent 2, ∆, is larger than s2 (t) − u2 (x∗).
Thus, agent 1 is not sure about whether there will be an
agreement or not if she stops to concede from time t. Since
an agreement would provide higher utility than her reserved
utility for no agreement, agent 1 would not stop conceding.
By a similar argument, agent 2 would keep conceding through
the negotiation process.

VII. SIMULATION RESULTS

The convergence proofs of the alternating projection pro-
tocol presented above is either asymptotic in nature, or gives
finite time convergence if the agents concede to their reserva-
tion utilities in finite time. It is imperative to also understand
the practical convergence performance of our algorithm with
increasing number of issues and the quality of the solution
obtained. In this section, we present simulation results that

show that the algorithm always converges (to a finite numerical
precision) in finite number of rounds (that depends on the
desired numerical precision). We evaluate our solution with
respect to the Nash bargaining solution [1].

For performing simulations, we choose a time-dependent
concession strategy function that has been suggested in the
literature [6], [13], [7]. The current utility of agent i in round
t is given by

si(t) = 1− (1− rui)
(

t

T

)1/βi

, (1)

where rui is the reservation utility and T is the negotiation
deadline. In Equation (1), the reservation utility smoothly
decays from a maximum value of 1 at t = 0 to a value of
rui at t = T , with the decay rate controlled by the parameter
βi. For all the presented simulation results, T = 200 rounds.

We have assumed a very general hyperquadric utility
function [30] for the agents.

ui(x) = 1−
Q∑

k=1

|Hk(x)|nk ,

where x is the n-dimensional proposal vector, Hk(x) =∑N
j=1 akjxj , nk = lk/mk, lk,mk ∈ Z+; f(x) is strictly

concave if 1 < nk < ∞. Hyperquadrics are a very general
class of functions used in computer graphics [30] and can
model a wide range of convex functions. The feasible set of
offers for an agent i at time t is the intersection of the unit
n-dimensional hypercube [0, 1]N with ui(x) ≥ si(t). Popular
convex functions for modeling utilities in economics like the
Cobb-Douglas functions can be shown to be special cases
of the hyperquadric function. The sole reason for using this
function is that it is possible to generate a wide variety of
preference structures for the agents with these functions.

In order to evaluate the quality of our negotiation solutions,
we compare it against the Nash bargaining solution which is
also Pareto optimal. The Nash bargaining solution maximizes
the joint utility (i.e., the product of the utilities) of the agents.
For the class of (strictly) concave utility functions that we con-
sider, we can obtain the Nash bargaining solution by solving a
convex optimization problem and hence we can easily find this
solution irrespective of the number of negotiation issues. In the
paper, we have used the solver CVX [31], [32] implemented
in MATLAB for obtaining the Nash bargaining solution.

Figure 5 shows a typical sequence of offers generated by
the two agents negotiating over three issues (for simplicity of
presentation). Agents’ utility functions are randomly created
hyperquadrics (whose domain is the unit square). The bound-
ary of the acceptable set of offers for the reservation utility is
shown for each agent by the solid and dashed lines. The decay
parameter βi in Equation 1 is 1.2 and the reservation utility
is 0.2 for each agent. The ratio of the joint utility obtained by
our algorithm to the Nash bargaining solution is 0.9928. The
utilities obtained by agents 1 and 2 with the corresponding
Nash solution utilities in parenthesis are: 0.2408(0.2219) and
0.2672 (0.2921).
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Fig. 5. Sequence of offers made by the two agents in a three-issue negotiation
scenario using the alternating projection algorithm.

TABLE I
PERFORMANCE OF THE ALTERNATING PROJECTION ALGORITHM FOR

RANDOMLY GENERATED PROBLEMS WITH DIFFERENT NUMBER OF ISSUES.

No. of No. of rounds Ratio of Joint Utility
issues Mean SD Mean SD

2 31.2 5.2 0.9676 0.0339
3 36.9 5.0 0.9586 0.0440
5 41.8 4.8 0.9432 0.0522
7 44.9 3.6 0.9202 0.0714
9 45.5 2.8 0.9583 0.0265

In order to test the performance of our algorithm with
increasing number of issues, we ran simulations with randomly
generated utility functions with different number of issues
for various values of βi. Table I presents typical results for
two agents negotiating on m issues for a random choice of
βi, namely, βi ∈ [0.8, 1.2], for i = 1, 2. The reservation
utility of the two agents are selected to ensure that the zone
of agreement is non-empty. The number of issues are varied
between 2 and 9. The results are averaged over 100 random
runs for each row of the table. The numerical tolerance used
for convergence is 0.001. As can be seen from Table I (second
and third columns), the number of rounds required to arrive
at an agreement do not change much with the increase in
number of issues. The solution obtained is very near to the
Nash bargaining solution (fourth and fifth columns).

In the previous simulations, an agent’s concession strategy
was not reactive to her opponent’s concession strategy. We
now consider the case where each agent adapts her concession
strategy according to her perception of her opponent’s amount
of concession. The perceived utility of agent i for agent j’s
offer, xj , is ui(xj). Thus, the change in perceived utility of
agent i for agent j’s offer at round t is

∆ui(t) = (ui(xj(t))− ui(xj(t− 2)))+

where y+ = max{0, y}. The current utility of agent i in round
t is given by

sadjust
i (t) = min{si(t), si(t− 2) + ∆ui(t)}, (2)

TABLE II
PERFORMANCE OF THE ALTERNATING PROJECTION ALGORITHM WITH

REACTIVE CONCESSION STRATEGY.

No. of No. of rounds Ratio of Joint Utility
issues Mean SD Mean SD

2 30.7 4.5 0.9752 0.0395
3 34.5 5.6 0.9755 0.0283
5 41.9 4.6 0.9149 0.1450
7 43.1 2.7 0.9498 0.0767
9 45.1 3.4 0.9462 0.0532

where si(t) is the current utility of agent i in the original
time-dependent concession strategy.

Figure 6 shows a simulation where the agent 1 stops
conceding after reaching half of its reservation utility. Since
agent 2 is reactive, it realizes within a few steps that agent
1 is not conceding and it stops conceding. Hence, although
the zone of agreement of the two agents is nonempty, the
two agents do not reach an agreement, as the agents stop
conceding.
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Fig. 6. Sequence of offers made by the two agents without a final agreement
in a three-issue negotiation scenario using the reactive concession strategy
when agent 1 stops conceding.

Table II shows the performance of the algorithm when the
adjusted time-dependent concession strategy is used. Using
similar setting as Table I, two agents negotiate on m issues
for a random choice of βi ∈ [0.8, 1.2], i = 1, 2. Comparing the
results in Table II with Table I, we find that both the number
of rounds and the ratio of joint utility are close. It suggests
that the adjusted time-dependent concession strategy does not
affect the performance of the algorithm adversely.

VIII. CONCLUDING REMARKS

In this paper, we prove that the alternating projection
method is guaranteed to enable negotiating agents to arrive
at an agreement for general automated multi-attribute negoti-
ation. We show that agents can arrive at an agreement, even
if they have no knowledge about each other’s utility function.
This is the first paper that formally establishes the convergence
of a proposal method by investigating the geometric properties



of the negotiation process. The convergence guarantees hold
for any nonlinear concave utility function. We also show that
in the absence of any information about the opponent this offer
generation strategy along with a reactive concession strategy is
a rational strategy. Using simulations we demonstrated that the
solution obtained by our algorithm is quite close to the Nash
bargaining solution (that maximizes the joint utility of the
agents). The negotiation converges in a reasonable number of
iterations and scales well as the number of issues are increased.

Several broader issues need to be further addressed. One
possibility is to generalize this alternating projection method
to negotiation between multiple (more than two) agents, and
investigate whether the convergence of the method still holds.
At present our agents are myopic in nature and do not try to
learn the other agents utility function from the sequence of
offers. It would also be interesting to investigate whether the
agents can be incorporated with some learning capability so
that they converge to a better agreement.
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